1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/pci.h>
18 #include <linux/wait.h>
19 #include <linux/spi/spi.h>
20 #include <linux/interrupt.h>
21 #include <linux/sched.h>
22 #include <linux/spi/spidev.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/platform_device.h>
26 
27 #include <linux/dmaengine.h>
28 #include <linux/pch_dma.h>
29 
30 /* Register offsets */
31 #define PCH_SPCR		0x00	/* SPI control register */
32 #define PCH_SPBRR		0x04	/* SPI baud rate register */
33 #define PCH_SPSR		0x08	/* SPI status register */
34 #define PCH_SPDWR		0x0C	/* SPI write data register */
35 #define PCH_SPDRR		0x10	/* SPI read data register */
36 #define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
37 #define PCH_SRST		0x1C	/* SPI reset register */
38 #define PCH_ADDRESS_SIZE	0x20
39 
40 #define PCH_SPSR_TFD		0x000007C0
41 #define PCH_SPSR_RFD		0x0000F800
42 
43 #define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
44 #define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
45 
46 #define PCH_RX_THOLD		7
47 #define PCH_RX_THOLD_MAX	15
48 
49 #define PCH_TX_THOLD		2
50 
51 #define PCH_MAX_BAUDRATE	5000000
52 #define PCH_MAX_FIFO_DEPTH	16
53 
54 #define STATUS_RUNNING		1
55 #define STATUS_EXITING		2
56 #define PCH_SLEEP_TIME		10
57 
58 #define SSN_LOW			0x02U
59 #define SSN_HIGH		0x03U
60 #define SSN_NO_CONTROL		0x00U
61 #define PCH_MAX_CS		0xFF
62 #define PCI_DEVICE_ID_GE_SPI	0x8816
63 
64 #define SPCR_SPE_BIT		(1 << 0)
65 #define SPCR_MSTR_BIT		(1 << 1)
66 #define SPCR_LSBF_BIT		(1 << 4)
67 #define SPCR_CPHA_BIT		(1 << 5)
68 #define SPCR_CPOL_BIT		(1 << 6)
69 #define SPCR_TFIE_BIT		(1 << 8)
70 #define SPCR_RFIE_BIT		(1 << 9)
71 #define SPCR_FIE_BIT		(1 << 10)
72 #define SPCR_ORIE_BIT		(1 << 11)
73 #define SPCR_MDFIE_BIT		(1 << 12)
74 #define SPCR_FICLR_BIT		(1 << 24)
75 #define SPSR_TFI_BIT		(1 << 0)
76 #define SPSR_RFI_BIT		(1 << 1)
77 #define SPSR_FI_BIT		(1 << 2)
78 #define SPSR_ORF_BIT		(1 << 3)
79 #define SPBRR_SIZE_BIT		(1 << 10)
80 
81 #define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
82 				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
83 
84 #define SPCR_RFIC_FIELD		20
85 #define SPCR_TFIC_FIELD		16
86 
87 #define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
88 #define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
89 #define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
90 
91 #define PCH_CLOCK_HZ		50000000
92 #define PCH_MAX_SPBR		1023
93 
94 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
95 #define PCI_VENDOR_ID_ROHM		0x10DB
96 #define PCI_DEVICE_ID_ML7213_SPI	0x802c
97 #define PCI_DEVICE_ID_ML7223_SPI	0x800F
98 #define PCI_DEVICE_ID_ML7831_SPI	0x8816
99 
100 /*
101  * Set the number of SPI instance max
102  * Intel EG20T PCH :		1ch
103  * LAPIS Semiconductor ML7213 IOH :	2ch
104  * LAPIS Semiconductor ML7223 IOH :	1ch
105  * LAPIS Semiconductor ML7831 IOH :	1ch
106 */
107 #define PCH_SPI_MAX_DEV			2
108 
109 #define PCH_BUF_SIZE		4096
110 #define PCH_DMA_TRANS_SIZE	12
111 
112 static int use_dma = 1;
113 
114 struct pch_spi_dma_ctrl {
115 	struct dma_async_tx_descriptor	*desc_tx;
116 	struct dma_async_tx_descriptor	*desc_rx;
117 	struct pch_dma_slave		param_tx;
118 	struct pch_dma_slave		param_rx;
119 	struct dma_chan		*chan_tx;
120 	struct dma_chan		*chan_rx;
121 	struct scatterlist		*sg_tx_p;
122 	struct scatterlist		*sg_rx_p;
123 	struct scatterlist		sg_tx;
124 	struct scatterlist		sg_rx;
125 	int				nent;
126 	void				*tx_buf_virt;
127 	void				*rx_buf_virt;
128 	dma_addr_t			tx_buf_dma;
129 	dma_addr_t			rx_buf_dma;
130 };
131 /**
132  * struct pch_spi_data - Holds the SPI channel specific details
133  * @io_remap_addr:		The remapped PCI base address
134  * @master:			Pointer to the SPI master structure
135  * @work:			Reference to work queue handler
136  * @wait:			Wait queue for waking up upon receiving an
137  *				interrupt.
138  * @transfer_complete:		Status of SPI Transfer
139  * @bcurrent_msg_processing:	Status flag for message processing
140  * @lock:			Lock for protecting this structure
141  * @queue:			SPI Message queue
142  * @status:			Status of the SPI driver
143  * @bpw_len:			Length of data to be transferred in bits per
144  *				word
145  * @transfer_active:		Flag showing active transfer
146  * @tx_index:			Transmit data count; for bookkeeping during
147  *				transfer
148  * @rx_index:			Receive data count; for bookkeeping during
149  *				transfer
150  * @tx_buff:			Buffer for data to be transmitted
151  * @rx_index:			Buffer for Received data
152  * @n_curnt_chip:		The chip number that this SPI driver currently
153  *				operates on
154  * @current_chip:		Reference to the current chip that this SPI
155  *				driver currently operates on
156  * @current_msg:		The current message that this SPI driver is
157  *				handling
158  * @cur_trans:			The current transfer that this SPI driver is
159  *				handling
160  * @board_dat:			Reference to the SPI device data structure
161  * @plat_dev:			platform_device structure
162  * @ch:				SPI channel number
163  * @irq_reg_sts:		Status of IRQ registration
164  */
165 struct pch_spi_data {
166 	void __iomem *io_remap_addr;
167 	unsigned long io_base_addr;
168 	struct spi_master *master;
169 	struct work_struct work;
170 	wait_queue_head_t wait;
171 	u8 transfer_complete;
172 	u8 bcurrent_msg_processing;
173 	spinlock_t lock;
174 	struct list_head queue;
175 	u8 status;
176 	u32 bpw_len;
177 	u8 transfer_active;
178 	u32 tx_index;
179 	u32 rx_index;
180 	u16 *pkt_tx_buff;
181 	u16 *pkt_rx_buff;
182 	u8 n_curnt_chip;
183 	struct spi_device *current_chip;
184 	struct spi_message *current_msg;
185 	struct spi_transfer *cur_trans;
186 	struct pch_spi_board_data *board_dat;
187 	struct platform_device	*plat_dev;
188 	int ch;
189 	struct pch_spi_dma_ctrl dma;
190 	int use_dma;
191 	u8 irq_reg_sts;
192 	int save_total_len;
193 };
194 
195 /**
196  * struct pch_spi_board_data - Holds the SPI device specific details
197  * @pdev:		Pointer to the PCI device
198  * @suspend_sts:	Status of suspend
199  * @num:		The number of SPI device instance
200  */
201 struct pch_spi_board_data {
202 	struct pci_dev *pdev;
203 	u8 suspend_sts;
204 	int num;
205 };
206 
207 struct pch_pd_dev_save {
208 	int num;
209 	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
210 	struct pch_spi_board_data *board_dat;
211 };
212 
213 static const struct pci_device_id pch_spi_pcidev_id[] = {
214 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
215 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
216 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
217 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
218 	{ }
219 };
220 
221 /**
222  * pch_spi_writereg() - Performs  register writes
223  * @master:	Pointer to struct spi_master.
224  * @idx:	Register offset.
225  * @val:	Value to be written to register.
226  */
227 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
228 {
229 	struct pch_spi_data *data = spi_master_get_devdata(master);
230 	iowrite32(val, (data->io_remap_addr + idx));
231 }
232 
233 /**
234  * pch_spi_readreg() - Performs register reads
235  * @master:	Pointer to struct spi_master.
236  * @idx:	Register offset.
237  */
238 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
239 {
240 	struct pch_spi_data *data = spi_master_get_devdata(master);
241 	return ioread32(data->io_remap_addr + idx);
242 }
243 
244 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
245 				      u32 set, u32 clr)
246 {
247 	u32 tmp = pch_spi_readreg(master, idx);
248 	tmp = (tmp & ~clr) | set;
249 	pch_spi_writereg(master, idx, tmp);
250 }
251 
252 static void pch_spi_set_master_mode(struct spi_master *master)
253 {
254 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
255 }
256 
257 /**
258  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
259  * @master:	Pointer to struct spi_master.
260  */
261 static void pch_spi_clear_fifo(struct spi_master *master)
262 {
263 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
264 	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
265 }
266 
267 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
268 				void __iomem *io_remap_addr)
269 {
270 	u32 n_read, tx_index, rx_index, bpw_len;
271 	u16 *pkt_rx_buffer, *pkt_tx_buff;
272 	int read_cnt;
273 	u32 reg_spcr_val;
274 	void __iomem *spsr;
275 	void __iomem *spdrr;
276 	void __iomem *spdwr;
277 
278 	spsr = io_remap_addr + PCH_SPSR;
279 	iowrite32(reg_spsr_val, spsr);
280 
281 	if (data->transfer_active) {
282 		rx_index = data->rx_index;
283 		tx_index = data->tx_index;
284 		bpw_len = data->bpw_len;
285 		pkt_rx_buffer = data->pkt_rx_buff;
286 		pkt_tx_buff = data->pkt_tx_buff;
287 
288 		spdrr = io_remap_addr + PCH_SPDRR;
289 		spdwr = io_remap_addr + PCH_SPDWR;
290 
291 		n_read = PCH_READABLE(reg_spsr_val);
292 
293 		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
294 			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
295 			if (tx_index < bpw_len)
296 				iowrite32(pkt_tx_buff[tx_index++], spdwr);
297 		}
298 
299 		/* disable RFI if not needed */
300 		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
301 			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
302 			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
303 
304 			/* reset rx threshold */
305 			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
306 			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
307 
308 			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
309 		}
310 
311 		/* update counts */
312 		data->tx_index = tx_index;
313 		data->rx_index = rx_index;
314 
315 		/* if transfer complete interrupt */
316 		if (reg_spsr_val & SPSR_FI_BIT) {
317 			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
318 				/* disable interrupts */
319 				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
320 						   PCH_ALL);
321 
322 				/* transfer is completed;
323 				   inform pch_spi_process_messages */
324 				data->transfer_complete = true;
325 				data->transfer_active = false;
326 				wake_up(&data->wait);
327 			} else {
328 				dev_vdbg(&data->master->dev,
329 					"%s : Transfer is not completed",
330 					__func__);
331 			}
332 		}
333 	}
334 }
335 
336 /**
337  * pch_spi_handler() - Interrupt handler
338  * @irq:	The interrupt number.
339  * @dev_id:	Pointer to struct pch_spi_board_data.
340  */
341 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
342 {
343 	u32 reg_spsr_val;
344 	void __iomem *spsr;
345 	void __iomem *io_remap_addr;
346 	irqreturn_t ret = IRQ_NONE;
347 	struct pch_spi_data *data = dev_id;
348 	struct pch_spi_board_data *board_dat = data->board_dat;
349 
350 	if (board_dat->suspend_sts) {
351 		dev_dbg(&board_dat->pdev->dev,
352 			"%s returning due to suspend\n", __func__);
353 		return IRQ_NONE;
354 	}
355 
356 	io_remap_addr = data->io_remap_addr;
357 	spsr = io_remap_addr + PCH_SPSR;
358 
359 	reg_spsr_val = ioread32(spsr);
360 
361 	if (reg_spsr_val & SPSR_ORF_BIT) {
362 		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
363 		if (data->current_msg->complete) {
364 			data->transfer_complete = true;
365 			data->current_msg->status = -EIO;
366 			data->current_msg->complete(data->current_msg->context);
367 			data->bcurrent_msg_processing = false;
368 			data->current_msg = NULL;
369 			data->cur_trans = NULL;
370 		}
371 	}
372 
373 	if (data->use_dma)
374 		return IRQ_NONE;
375 
376 	/* Check if the interrupt is for SPI device */
377 	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
378 		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
379 		ret = IRQ_HANDLED;
380 	}
381 
382 	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
383 		__func__, ret);
384 
385 	return ret;
386 }
387 
388 /**
389  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
390  * @master:	Pointer to struct spi_master.
391  * @speed_hz:	Baud rate.
392  */
393 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
394 {
395 	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
396 
397 	/* if baud rate is less than we can support limit it */
398 	if (n_spbr > PCH_MAX_SPBR)
399 		n_spbr = PCH_MAX_SPBR;
400 
401 	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
402 }
403 
404 /**
405  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
406  * @master:		Pointer to struct spi_master.
407  * @bits_per_word:	Bits per word for SPI transfer.
408  */
409 static void pch_spi_set_bits_per_word(struct spi_master *master,
410 				      u8 bits_per_word)
411 {
412 	if (bits_per_word == 8)
413 		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
414 	else
415 		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
416 }
417 
418 /**
419  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
420  * @spi:	Pointer to struct spi_device.
421  */
422 static void pch_spi_setup_transfer(struct spi_device *spi)
423 {
424 	u32 flags = 0;
425 
426 	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
427 		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
428 		spi->max_speed_hz);
429 	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
430 
431 	/* set bits per word */
432 	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
433 
434 	if (!(spi->mode & SPI_LSB_FIRST))
435 		flags |= SPCR_LSBF_BIT;
436 	if (spi->mode & SPI_CPOL)
437 		flags |= SPCR_CPOL_BIT;
438 	if (spi->mode & SPI_CPHA)
439 		flags |= SPCR_CPHA_BIT;
440 	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
441 			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
442 
443 	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
444 	pch_spi_clear_fifo(spi->master);
445 }
446 
447 /**
448  * pch_spi_reset() - Clears SPI registers
449  * @master:	Pointer to struct spi_master.
450  */
451 static void pch_spi_reset(struct spi_master *master)
452 {
453 	/* write 1 to reset SPI */
454 	pch_spi_writereg(master, PCH_SRST, 0x1);
455 
456 	/* clear reset */
457 	pch_spi_writereg(master, PCH_SRST, 0x0);
458 }
459 
460 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
461 {
462 
463 	struct spi_transfer *transfer;
464 	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
465 	int retval;
466 	unsigned long flags;
467 
468 	spin_lock_irqsave(&data->lock, flags);
469 	/* validate Tx/Rx buffers and Transfer length */
470 	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
471 		if (!transfer->tx_buf && !transfer->rx_buf) {
472 			dev_err(&pspi->dev,
473 				"%s Tx and Rx buffer NULL\n", __func__);
474 			retval = -EINVAL;
475 			goto err_return_spinlock;
476 		}
477 
478 		if (!transfer->len) {
479 			dev_err(&pspi->dev, "%s Transfer length invalid\n",
480 				__func__);
481 			retval = -EINVAL;
482 			goto err_return_spinlock;
483 		}
484 
485 		dev_dbg(&pspi->dev,
486 			"%s Tx/Rx buffer valid. Transfer length valid\n",
487 			__func__);
488 	}
489 	spin_unlock_irqrestore(&data->lock, flags);
490 
491 	/* We won't process any messages if we have been asked to terminate */
492 	if (data->status == STATUS_EXITING) {
493 		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
494 		retval = -ESHUTDOWN;
495 		goto err_out;
496 	}
497 
498 	/* If suspended ,return -EINVAL */
499 	if (data->board_dat->suspend_sts) {
500 		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
501 		retval = -EINVAL;
502 		goto err_out;
503 	}
504 
505 	/* set status of message */
506 	pmsg->actual_length = 0;
507 	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
508 
509 	pmsg->status = -EINPROGRESS;
510 	spin_lock_irqsave(&data->lock, flags);
511 	/* add message to queue */
512 	list_add_tail(&pmsg->queue, &data->queue);
513 	spin_unlock_irqrestore(&data->lock, flags);
514 
515 	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
516 
517 	schedule_work(&data->work);
518 	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
519 
520 	retval = 0;
521 
522 err_out:
523 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
524 	return retval;
525 err_return_spinlock:
526 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
527 	spin_unlock_irqrestore(&data->lock, flags);
528 	return retval;
529 }
530 
531 static inline void pch_spi_select_chip(struct pch_spi_data *data,
532 				       struct spi_device *pspi)
533 {
534 	if (data->current_chip != NULL) {
535 		if (pspi->chip_select != data->n_curnt_chip) {
536 			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
537 			data->current_chip = NULL;
538 		}
539 	}
540 
541 	data->current_chip = pspi;
542 
543 	data->n_curnt_chip = data->current_chip->chip_select;
544 
545 	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
546 	pch_spi_setup_transfer(pspi);
547 }
548 
549 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
550 {
551 	int size;
552 	u32 n_writes;
553 	int j;
554 	struct spi_message *pmsg, *tmp;
555 	const u8 *tx_buf;
556 	const u16 *tx_sbuf;
557 
558 	/* set baud rate if needed */
559 	if (data->cur_trans->speed_hz) {
560 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
561 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
562 	}
563 
564 	/* set bits per word if needed */
565 	if (data->cur_trans->bits_per_word &&
566 	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
567 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
568 		pch_spi_set_bits_per_word(data->master,
569 					  data->cur_trans->bits_per_word);
570 		*bpw = data->cur_trans->bits_per_word;
571 	} else {
572 		*bpw = data->current_msg->spi->bits_per_word;
573 	}
574 
575 	/* reset Tx/Rx index */
576 	data->tx_index = 0;
577 	data->rx_index = 0;
578 
579 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
580 
581 	/* find alloc size */
582 	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
583 
584 	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
585 	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
586 	if (data->pkt_tx_buff != NULL) {
587 		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
588 		if (!data->pkt_rx_buff)
589 			kfree(data->pkt_tx_buff);
590 	}
591 
592 	if (!data->pkt_rx_buff) {
593 		/* flush queue and set status of all transfers to -ENOMEM */
594 		dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
595 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
596 			pmsg->status = -ENOMEM;
597 
598 			if (pmsg->complete)
599 				pmsg->complete(pmsg->context);
600 
601 			/* delete from queue */
602 			list_del_init(&pmsg->queue);
603 		}
604 		return;
605 	}
606 
607 	/* copy Tx Data */
608 	if (data->cur_trans->tx_buf != NULL) {
609 		if (*bpw == 8) {
610 			tx_buf = data->cur_trans->tx_buf;
611 			for (j = 0; j < data->bpw_len; j++)
612 				data->pkt_tx_buff[j] = *tx_buf++;
613 		} else {
614 			tx_sbuf = data->cur_trans->tx_buf;
615 			for (j = 0; j < data->bpw_len; j++)
616 				data->pkt_tx_buff[j] = *tx_sbuf++;
617 		}
618 	}
619 
620 	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
621 	n_writes = data->bpw_len;
622 	if (n_writes > PCH_MAX_FIFO_DEPTH)
623 		n_writes = PCH_MAX_FIFO_DEPTH;
624 
625 	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
626 		"0x2 to SSNXCR\n", __func__);
627 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
628 
629 	for (j = 0; j < n_writes; j++)
630 		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
631 
632 	/* update tx_index */
633 	data->tx_index = j;
634 
635 	/* reset transfer complete flag */
636 	data->transfer_complete = false;
637 	data->transfer_active = true;
638 }
639 
640 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
641 {
642 	struct spi_message *pmsg, *tmp;
643 	dev_dbg(&data->master->dev, "%s called\n", __func__);
644 	/* Invoke complete callback
645 	 * [To the spi core..indicating end of transfer] */
646 	data->current_msg->status = 0;
647 
648 	if (data->current_msg->complete) {
649 		dev_dbg(&data->master->dev,
650 			"%s:Invoking callback of SPI core\n", __func__);
651 		data->current_msg->complete(data->current_msg->context);
652 	}
653 
654 	/* update status in global variable */
655 	data->bcurrent_msg_processing = false;
656 
657 	dev_dbg(&data->master->dev,
658 		"%s:data->bcurrent_msg_processing = false\n", __func__);
659 
660 	data->current_msg = NULL;
661 	data->cur_trans = NULL;
662 
663 	/* check if we have items in list and not suspending
664 	 * return 1 if list empty */
665 	if ((list_empty(&data->queue) == 0) &&
666 	    (!data->board_dat->suspend_sts) &&
667 	    (data->status != STATUS_EXITING)) {
668 		/* We have some more work to do (either there is more tranint
669 		 * bpw;sfer requests in the current message or there are
670 		 *more messages)
671 		 */
672 		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
673 		schedule_work(&data->work);
674 	} else if (data->board_dat->suspend_sts ||
675 		   data->status == STATUS_EXITING) {
676 		dev_dbg(&data->master->dev,
677 			"%s suspend/remove initiated, flushing queue\n",
678 			__func__);
679 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
680 			pmsg->status = -EIO;
681 
682 			if (pmsg->complete)
683 				pmsg->complete(pmsg->context);
684 
685 			/* delete from queue */
686 			list_del_init(&pmsg->queue);
687 		}
688 	}
689 }
690 
691 static void pch_spi_set_ir(struct pch_spi_data *data)
692 {
693 	/* enable interrupts, set threshold, enable SPI */
694 	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
695 		/* set receive threshold to PCH_RX_THOLD */
696 		pch_spi_setclr_reg(data->master, PCH_SPCR,
697 				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
698 				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
699 				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
700 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
701 	else
702 		/* set receive threshold to maximum */
703 		pch_spi_setclr_reg(data->master, PCH_SPCR,
704 				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
705 				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
706 				   SPCR_SPE_BIT,
707 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
708 
709 	/* Wait until the transfer completes; go to sleep after
710 				 initiating the transfer. */
711 	dev_dbg(&data->master->dev,
712 		"%s:waiting for transfer to get over\n", __func__);
713 
714 	wait_event_interruptible(data->wait, data->transfer_complete);
715 
716 	/* clear all interrupts */
717 	pch_spi_writereg(data->master, PCH_SPSR,
718 			 pch_spi_readreg(data->master, PCH_SPSR));
719 	/* Disable interrupts and SPI transfer */
720 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
721 	/* clear FIFO */
722 	pch_spi_clear_fifo(data->master);
723 }
724 
725 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
726 {
727 	int j;
728 	u8 *rx_buf;
729 	u16 *rx_sbuf;
730 
731 	/* copy Rx Data */
732 	if (!data->cur_trans->rx_buf)
733 		return;
734 
735 	if (bpw == 8) {
736 		rx_buf = data->cur_trans->rx_buf;
737 		for (j = 0; j < data->bpw_len; j++)
738 			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
739 	} else {
740 		rx_sbuf = data->cur_trans->rx_buf;
741 		for (j = 0; j < data->bpw_len; j++)
742 			*rx_sbuf++ = data->pkt_rx_buff[j];
743 	}
744 }
745 
746 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
747 {
748 	int j;
749 	u8 *rx_buf;
750 	u16 *rx_sbuf;
751 	const u8 *rx_dma_buf;
752 	const u16 *rx_dma_sbuf;
753 
754 	/* copy Rx Data */
755 	if (!data->cur_trans->rx_buf)
756 		return;
757 
758 	if (bpw == 8) {
759 		rx_buf = data->cur_trans->rx_buf;
760 		rx_dma_buf = data->dma.rx_buf_virt;
761 		for (j = 0; j < data->bpw_len; j++)
762 			*rx_buf++ = *rx_dma_buf++ & 0xFF;
763 		data->cur_trans->rx_buf = rx_buf;
764 	} else {
765 		rx_sbuf = data->cur_trans->rx_buf;
766 		rx_dma_sbuf = data->dma.rx_buf_virt;
767 		for (j = 0; j < data->bpw_len; j++)
768 			*rx_sbuf++ = *rx_dma_sbuf++;
769 		data->cur_trans->rx_buf = rx_sbuf;
770 	}
771 }
772 
773 static int pch_spi_start_transfer(struct pch_spi_data *data)
774 {
775 	struct pch_spi_dma_ctrl *dma;
776 	unsigned long flags;
777 	int rtn;
778 
779 	dma = &data->dma;
780 
781 	spin_lock_irqsave(&data->lock, flags);
782 
783 	/* disable interrupts, SPI set enable */
784 	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
785 
786 	spin_unlock_irqrestore(&data->lock, flags);
787 
788 	/* Wait until the transfer completes; go to sleep after
789 				 initiating the transfer. */
790 	dev_dbg(&data->master->dev,
791 		"%s:waiting for transfer to get over\n", __func__);
792 	rtn = wait_event_interruptible_timeout(data->wait,
793 					       data->transfer_complete,
794 					       msecs_to_jiffies(2 * HZ));
795 	if (!rtn)
796 		dev_err(&data->master->dev,
797 			"%s wait-event timeout\n", __func__);
798 
799 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
800 			    DMA_FROM_DEVICE);
801 
802 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
803 			    DMA_FROM_DEVICE);
804 	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
805 
806 	async_tx_ack(dma->desc_rx);
807 	async_tx_ack(dma->desc_tx);
808 	kfree(dma->sg_tx_p);
809 	kfree(dma->sg_rx_p);
810 
811 	spin_lock_irqsave(&data->lock, flags);
812 
813 	/* clear fifo threshold, disable interrupts, disable SPI transfer */
814 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
815 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
816 			   SPCR_SPE_BIT);
817 	/* clear all interrupts */
818 	pch_spi_writereg(data->master, PCH_SPSR,
819 			 pch_spi_readreg(data->master, PCH_SPSR));
820 	/* clear FIFO */
821 	pch_spi_clear_fifo(data->master);
822 
823 	spin_unlock_irqrestore(&data->lock, flags);
824 
825 	return rtn;
826 }
827 
828 static void pch_dma_rx_complete(void *arg)
829 {
830 	struct pch_spi_data *data = arg;
831 
832 	/* transfer is completed;inform pch_spi_process_messages_dma */
833 	data->transfer_complete = true;
834 	wake_up_interruptible(&data->wait);
835 }
836 
837 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
838 {
839 	struct pch_dma_slave *param = slave;
840 
841 	if ((chan->chan_id == param->chan_id) &&
842 	    (param->dma_dev == chan->device->dev)) {
843 		chan->private = param;
844 		return true;
845 	} else {
846 		return false;
847 	}
848 }
849 
850 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
851 {
852 	dma_cap_mask_t mask;
853 	struct dma_chan *chan;
854 	struct pci_dev *dma_dev;
855 	struct pch_dma_slave *param;
856 	struct pch_spi_dma_ctrl *dma;
857 	unsigned int width;
858 
859 	if (bpw == 8)
860 		width = PCH_DMA_WIDTH_1_BYTE;
861 	else
862 		width = PCH_DMA_WIDTH_2_BYTES;
863 
864 	dma = &data->dma;
865 	dma_cap_zero(mask);
866 	dma_cap_set(DMA_SLAVE, mask);
867 
868 	/* Get DMA's dev information */
869 	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
870 			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
871 
872 	/* Set Tx DMA */
873 	param = &dma->param_tx;
874 	param->dma_dev = &dma_dev->dev;
875 	param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
876 	param->tx_reg = data->io_base_addr + PCH_SPDWR;
877 	param->width = width;
878 	chan = dma_request_channel(mask, pch_spi_filter, param);
879 	if (!chan) {
880 		dev_err(&data->master->dev,
881 			"ERROR: dma_request_channel FAILS(Tx)\n");
882 		data->use_dma = 0;
883 		return;
884 	}
885 	dma->chan_tx = chan;
886 
887 	/* Set Rx DMA */
888 	param = &dma->param_rx;
889 	param->dma_dev = &dma_dev->dev;
890 	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
891 	param->rx_reg = data->io_base_addr + PCH_SPDRR;
892 	param->width = width;
893 	chan = dma_request_channel(mask, pch_spi_filter, param);
894 	if (!chan) {
895 		dev_err(&data->master->dev,
896 			"ERROR: dma_request_channel FAILS(Rx)\n");
897 		dma_release_channel(dma->chan_tx);
898 		dma->chan_tx = NULL;
899 		data->use_dma = 0;
900 		return;
901 	}
902 	dma->chan_rx = chan;
903 }
904 
905 static void pch_spi_release_dma(struct pch_spi_data *data)
906 {
907 	struct pch_spi_dma_ctrl *dma;
908 
909 	dma = &data->dma;
910 	if (dma->chan_tx) {
911 		dma_release_channel(dma->chan_tx);
912 		dma->chan_tx = NULL;
913 	}
914 	if (dma->chan_rx) {
915 		dma_release_channel(dma->chan_rx);
916 		dma->chan_rx = NULL;
917 	}
918 	return;
919 }
920 
921 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
922 {
923 	const u8 *tx_buf;
924 	const u16 *tx_sbuf;
925 	u8 *tx_dma_buf;
926 	u16 *tx_dma_sbuf;
927 	struct scatterlist *sg;
928 	struct dma_async_tx_descriptor *desc_tx;
929 	struct dma_async_tx_descriptor *desc_rx;
930 	int num;
931 	int i;
932 	int size;
933 	int rem;
934 	int head;
935 	unsigned long flags;
936 	struct pch_spi_dma_ctrl *dma;
937 
938 	dma = &data->dma;
939 
940 	/* set baud rate if needed */
941 	if (data->cur_trans->speed_hz) {
942 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
943 		spin_lock_irqsave(&data->lock, flags);
944 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
945 		spin_unlock_irqrestore(&data->lock, flags);
946 	}
947 
948 	/* set bits per word if needed */
949 	if (data->cur_trans->bits_per_word &&
950 	    (data->current_msg->spi->bits_per_word !=
951 	     data->cur_trans->bits_per_word)) {
952 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
953 		spin_lock_irqsave(&data->lock, flags);
954 		pch_spi_set_bits_per_word(data->master,
955 					  data->cur_trans->bits_per_word);
956 		spin_unlock_irqrestore(&data->lock, flags);
957 		*bpw = data->cur_trans->bits_per_word;
958 	} else {
959 		*bpw = data->current_msg->spi->bits_per_word;
960 	}
961 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
962 
963 	if (data->bpw_len > PCH_BUF_SIZE) {
964 		data->bpw_len = PCH_BUF_SIZE;
965 		data->cur_trans->len -= PCH_BUF_SIZE;
966 	}
967 
968 	/* copy Tx Data */
969 	if (data->cur_trans->tx_buf != NULL) {
970 		if (*bpw == 8) {
971 			tx_buf = data->cur_trans->tx_buf;
972 			tx_dma_buf = dma->tx_buf_virt;
973 			for (i = 0; i < data->bpw_len; i++)
974 				*tx_dma_buf++ = *tx_buf++;
975 		} else {
976 			tx_sbuf = data->cur_trans->tx_buf;
977 			tx_dma_sbuf = dma->tx_buf_virt;
978 			for (i = 0; i < data->bpw_len; i++)
979 				*tx_dma_sbuf++ = *tx_sbuf++;
980 		}
981 	}
982 
983 	/* Calculate Rx parameter for DMA transmitting */
984 	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
985 		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
986 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
987 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
988 		} else {
989 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
990 			rem = PCH_DMA_TRANS_SIZE;
991 		}
992 		size = PCH_DMA_TRANS_SIZE;
993 	} else {
994 		num = 1;
995 		size = data->bpw_len;
996 		rem = data->bpw_len;
997 	}
998 	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
999 		__func__, num, size, rem);
1000 	spin_lock_irqsave(&data->lock, flags);
1001 
1002 	/* set receive fifo threshold and transmit fifo threshold */
1003 	pch_spi_setclr_reg(data->master, PCH_SPCR,
1004 			   ((size - 1) << SPCR_RFIC_FIELD) |
1005 			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1006 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1007 
1008 	spin_unlock_irqrestore(&data->lock, flags);
1009 
1010 	/* RX */
1011 	dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1012 	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1013 	/* offset, length setting */
1014 	sg = dma->sg_rx_p;
1015 	for (i = 0; i < num; i++, sg++) {
1016 		if (i == (num - 2)) {
1017 			sg->offset = size * i;
1018 			sg->offset = sg->offset * (*bpw / 8);
1019 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1020 				    sg->offset);
1021 			sg_dma_len(sg) = rem;
1022 		} else if (i == (num - 1)) {
1023 			sg->offset = size * (i - 1) + rem;
1024 			sg->offset = sg->offset * (*bpw / 8);
1025 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1026 				    sg->offset);
1027 			sg_dma_len(sg) = size;
1028 		} else {
1029 			sg->offset = size * i;
1030 			sg->offset = sg->offset * (*bpw / 8);
1031 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1032 				    sg->offset);
1033 			sg_dma_len(sg) = size;
1034 		}
1035 		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1036 	}
1037 	sg = dma->sg_rx_p;
1038 	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1039 					num, DMA_DEV_TO_MEM,
1040 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1041 	if (!desc_rx) {
1042 		dev_err(&data->master->dev,
1043 			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1044 		return;
1045 	}
1046 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1047 	desc_rx->callback = pch_dma_rx_complete;
1048 	desc_rx->callback_param = data;
1049 	dma->nent = num;
1050 	dma->desc_rx = desc_rx;
1051 
1052 	/* Calculate Tx parameter for DMA transmitting */
1053 	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1054 		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1055 		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1056 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1057 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1058 		} else {
1059 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1060 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1061 			      PCH_DMA_TRANS_SIZE - head;
1062 		}
1063 		size = PCH_DMA_TRANS_SIZE;
1064 	} else {
1065 		num = 1;
1066 		size = data->bpw_len;
1067 		rem = data->bpw_len;
1068 		head = 0;
1069 	}
1070 
1071 	dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1072 	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1073 	/* offset, length setting */
1074 	sg = dma->sg_tx_p;
1075 	for (i = 0; i < num; i++, sg++) {
1076 		if (i == 0) {
1077 			sg->offset = 0;
1078 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1079 				    sg->offset);
1080 			sg_dma_len(sg) = size + head;
1081 		} else if (i == (num - 1)) {
1082 			sg->offset = head + size * i;
1083 			sg->offset = sg->offset * (*bpw / 8);
1084 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1085 				    sg->offset);
1086 			sg_dma_len(sg) = rem;
1087 		} else {
1088 			sg->offset = head + size * i;
1089 			sg->offset = sg->offset * (*bpw / 8);
1090 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1091 				    sg->offset);
1092 			sg_dma_len(sg) = size;
1093 		}
1094 		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1095 	}
1096 	sg = dma->sg_tx_p;
1097 	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1098 					sg, num, DMA_MEM_TO_DEV,
1099 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1100 	if (!desc_tx) {
1101 		dev_err(&data->master->dev,
1102 			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1103 		return;
1104 	}
1105 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1106 	desc_tx->callback = NULL;
1107 	desc_tx->callback_param = data;
1108 	dma->nent = num;
1109 	dma->desc_tx = desc_tx;
1110 
1111 	dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1112 
1113 	spin_lock_irqsave(&data->lock, flags);
1114 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1115 	desc_rx->tx_submit(desc_rx);
1116 	desc_tx->tx_submit(desc_tx);
1117 	spin_unlock_irqrestore(&data->lock, flags);
1118 
1119 	/* reset transfer complete flag */
1120 	data->transfer_complete = false;
1121 }
1122 
1123 static void pch_spi_process_messages(struct work_struct *pwork)
1124 {
1125 	struct spi_message *pmsg, *tmp;
1126 	struct pch_spi_data *data;
1127 	int bpw;
1128 
1129 	data = container_of(pwork, struct pch_spi_data, work);
1130 	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1131 
1132 	spin_lock(&data->lock);
1133 	/* check if suspend has been initiated;if yes flush queue */
1134 	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1135 		dev_dbg(&data->master->dev,
1136 			"%s suspend/remove initiated, flushing queue\n", __func__);
1137 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1138 			pmsg->status = -EIO;
1139 
1140 			if (pmsg->complete) {
1141 				spin_unlock(&data->lock);
1142 				pmsg->complete(pmsg->context);
1143 				spin_lock(&data->lock);
1144 			}
1145 
1146 			/* delete from queue */
1147 			list_del_init(&pmsg->queue);
1148 		}
1149 
1150 		spin_unlock(&data->lock);
1151 		return;
1152 	}
1153 
1154 	data->bcurrent_msg_processing = true;
1155 	dev_dbg(&data->master->dev,
1156 		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1157 
1158 	/* Get the message from the queue and delete it from there. */
1159 	data->current_msg = list_entry(data->queue.next, struct spi_message,
1160 					queue);
1161 
1162 	list_del_init(&data->current_msg->queue);
1163 
1164 	data->current_msg->status = 0;
1165 
1166 	pch_spi_select_chip(data, data->current_msg->spi);
1167 
1168 	spin_unlock(&data->lock);
1169 
1170 	if (data->use_dma)
1171 		pch_spi_request_dma(data,
1172 				    data->current_msg->spi->bits_per_word);
1173 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1174 	do {
1175 		int cnt;
1176 		/* If we are already processing a message get the next
1177 		transfer structure from the message otherwise retrieve
1178 		the 1st transfer request from the message. */
1179 		spin_lock(&data->lock);
1180 		if (data->cur_trans == NULL) {
1181 			data->cur_trans =
1182 				list_entry(data->current_msg->transfers.next,
1183 					   struct spi_transfer, transfer_list);
1184 			dev_dbg(&data->master->dev, "%s "
1185 				":Getting 1st transfer message\n", __func__);
1186 		} else {
1187 			data->cur_trans =
1188 				list_entry(data->cur_trans->transfer_list.next,
1189 					   struct spi_transfer, transfer_list);
1190 			dev_dbg(&data->master->dev, "%s "
1191 				":Getting next transfer message\n", __func__);
1192 		}
1193 		spin_unlock(&data->lock);
1194 
1195 		if (!data->cur_trans->len)
1196 			goto out;
1197 		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1198 		data->save_total_len = data->cur_trans->len;
1199 		if (data->use_dma) {
1200 			int i;
1201 			char *save_rx_buf = data->cur_trans->rx_buf;
1202 			for (i = 0; i < cnt; i ++) {
1203 				pch_spi_handle_dma(data, &bpw);
1204 				if (!pch_spi_start_transfer(data)) {
1205 					data->transfer_complete = true;
1206 					data->current_msg->status = -EIO;
1207 					data->current_msg->complete
1208 						   (data->current_msg->context);
1209 					data->bcurrent_msg_processing = false;
1210 					data->current_msg = NULL;
1211 					data->cur_trans = NULL;
1212 					goto out;
1213 				}
1214 				pch_spi_copy_rx_data_for_dma(data, bpw);
1215 			}
1216 			data->cur_trans->rx_buf = save_rx_buf;
1217 		} else {
1218 			pch_spi_set_tx(data, &bpw);
1219 			pch_spi_set_ir(data);
1220 			pch_spi_copy_rx_data(data, bpw);
1221 			kfree(data->pkt_rx_buff);
1222 			data->pkt_rx_buff = NULL;
1223 			kfree(data->pkt_tx_buff);
1224 			data->pkt_tx_buff = NULL;
1225 		}
1226 		/* increment message count */
1227 		data->cur_trans->len = data->save_total_len;
1228 		data->current_msg->actual_length += data->cur_trans->len;
1229 
1230 		dev_dbg(&data->master->dev,
1231 			"%s:data->current_msg->actual_length=%d\n",
1232 			__func__, data->current_msg->actual_length);
1233 
1234 		/* check for delay */
1235 		if (data->cur_trans->delay_usecs) {
1236 			dev_dbg(&data->master->dev, "%s:"
1237 				"delay in usec=%d\n", __func__,
1238 				data->cur_trans->delay_usecs);
1239 			udelay(data->cur_trans->delay_usecs);
1240 		}
1241 
1242 		spin_lock(&data->lock);
1243 
1244 		/* No more transfer in this message. */
1245 		if ((data->cur_trans->transfer_list.next) ==
1246 		    &(data->current_msg->transfers)) {
1247 			pch_spi_nomore_transfer(data);
1248 		}
1249 
1250 		spin_unlock(&data->lock);
1251 
1252 	} while (data->cur_trans != NULL);
1253 
1254 out:
1255 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1256 	if (data->use_dma)
1257 		pch_spi_release_dma(data);
1258 }
1259 
1260 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1261 				   struct pch_spi_data *data)
1262 {
1263 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1264 
1265 	flush_work(&data->work);
1266 }
1267 
1268 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1269 				 struct pch_spi_data *data)
1270 {
1271 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1272 
1273 	/* reset PCH SPI h/w */
1274 	pch_spi_reset(data->master);
1275 	dev_dbg(&board_dat->pdev->dev,
1276 		"%s pch_spi_reset invoked successfully\n", __func__);
1277 
1278 	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1279 
1280 	return 0;
1281 }
1282 
1283 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1284 			     struct pch_spi_data *data)
1285 {
1286 	struct pch_spi_dma_ctrl *dma;
1287 
1288 	dma = &data->dma;
1289 	if (dma->tx_buf_dma)
1290 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1291 				  dma->tx_buf_virt, dma->tx_buf_dma);
1292 	if (dma->rx_buf_dma)
1293 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1294 				  dma->rx_buf_virt, dma->rx_buf_dma);
1295 	return;
1296 }
1297 
1298 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1299 			      struct pch_spi_data *data)
1300 {
1301 	struct pch_spi_dma_ctrl *dma;
1302 
1303 	dma = &data->dma;
1304 	/* Get Consistent memory for Tx DMA */
1305 	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1306 				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1307 	/* Get Consistent memory for Rx DMA */
1308 	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1309 				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1310 }
1311 
1312 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1313 {
1314 	int ret;
1315 	struct spi_master *master;
1316 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1317 	struct pch_spi_data *data;
1318 
1319 	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1320 
1321 	master = spi_alloc_master(&board_dat->pdev->dev,
1322 				  sizeof(struct pch_spi_data));
1323 	if (!master) {
1324 		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1325 			plat_dev->id);
1326 		return -ENOMEM;
1327 	}
1328 
1329 	data = spi_master_get_devdata(master);
1330 	data->master = master;
1331 
1332 	platform_set_drvdata(plat_dev, data);
1333 
1334 	/* baseaddress + address offset) */
1335 	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1336 					 PCH_ADDRESS_SIZE * plat_dev->id;
1337 	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1338 	if (!data->io_remap_addr) {
1339 		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1340 		ret = -ENOMEM;
1341 		goto err_pci_iomap;
1342 	}
1343 	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1344 
1345 	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1346 		plat_dev->id, data->io_remap_addr);
1347 
1348 	/* initialize members of SPI master */
1349 	master->num_chipselect = PCH_MAX_CS;
1350 	master->transfer = pch_spi_transfer;
1351 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1352 	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1353 	master->max_speed_hz = PCH_MAX_BAUDRATE;
1354 
1355 	data->board_dat = board_dat;
1356 	data->plat_dev = plat_dev;
1357 	data->n_curnt_chip = 255;
1358 	data->status = STATUS_RUNNING;
1359 	data->ch = plat_dev->id;
1360 	data->use_dma = use_dma;
1361 
1362 	INIT_LIST_HEAD(&data->queue);
1363 	spin_lock_init(&data->lock);
1364 	INIT_WORK(&data->work, pch_spi_process_messages);
1365 	init_waitqueue_head(&data->wait);
1366 
1367 	ret = pch_spi_get_resources(board_dat, data);
1368 	if (ret) {
1369 		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1370 		goto err_spi_get_resources;
1371 	}
1372 
1373 	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1374 			  IRQF_SHARED, KBUILD_MODNAME, data);
1375 	if (ret) {
1376 		dev_err(&plat_dev->dev,
1377 			"%s request_irq failed\n", __func__);
1378 		goto err_request_irq;
1379 	}
1380 	data->irq_reg_sts = true;
1381 
1382 	pch_spi_set_master_mode(master);
1383 
1384 	if (use_dma) {
1385 		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1386 		pch_alloc_dma_buf(board_dat, data);
1387 	}
1388 
1389 	ret = spi_register_master(master);
1390 	if (ret != 0) {
1391 		dev_err(&plat_dev->dev,
1392 			"%s spi_register_master FAILED\n", __func__);
1393 		goto err_spi_register_master;
1394 	}
1395 
1396 	return 0;
1397 
1398 err_spi_register_master:
1399 	pch_free_dma_buf(board_dat, data);
1400 	free_irq(board_dat->pdev->irq, data);
1401 err_request_irq:
1402 	pch_spi_free_resources(board_dat, data);
1403 err_spi_get_resources:
1404 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1405 err_pci_iomap:
1406 	spi_master_put(master);
1407 
1408 	return ret;
1409 }
1410 
1411 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1412 {
1413 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1414 	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1415 	int count;
1416 	unsigned long flags;
1417 
1418 	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1419 		__func__, plat_dev->id, board_dat->pdev->irq);
1420 
1421 	if (use_dma)
1422 		pch_free_dma_buf(board_dat, data);
1423 
1424 	/* check for any pending messages; no action is taken if the queue
1425 	 * is still full; but at least we tried.  Unload anyway */
1426 	count = 500;
1427 	spin_lock_irqsave(&data->lock, flags);
1428 	data->status = STATUS_EXITING;
1429 	while ((list_empty(&data->queue) == 0) && --count) {
1430 		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1431 			__func__);
1432 		spin_unlock_irqrestore(&data->lock, flags);
1433 		msleep(PCH_SLEEP_TIME);
1434 		spin_lock_irqsave(&data->lock, flags);
1435 	}
1436 	spin_unlock_irqrestore(&data->lock, flags);
1437 
1438 	pch_spi_free_resources(board_dat, data);
1439 	/* disable interrupts & free IRQ */
1440 	if (data->irq_reg_sts) {
1441 		/* disable interrupts */
1442 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1443 		data->irq_reg_sts = false;
1444 		free_irq(board_dat->pdev->irq, data);
1445 	}
1446 
1447 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1448 	spi_unregister_master(data->master);
1449 
1450 	return 0;
1451 }
1452 #ifdef CONFIG_PM
1453 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1454 			      pm_message_t state)
1455 {
1456 	u8 count;
1457 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1458 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1459 
1460 	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1461 
1462 	if (!board_dat) {
1463 		dev_err(&pd_dev->dev,
1464 			"%s pci_get_drvdata returned NULL\n", __func__);
1465 		return -EFAULT;
1466 	}
1467 
1468 	/* check if the current message is processed:
1469 	   Only after thats done the transfer will be suspended */
1470 	count = 255;
1471 	while ((--count) > 0) {
1472 		if (!(data->bcurrent_msg_processing))
1473 			break;
1474 		msleep(PCH_SLEEP_TIME);
1475 	}
1476 
1477 	/* Free IRQ */
1478 	if (data->irq_reg_sts) {
1479 		/* disable all interrupts */
1480 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1481 		pch_spi_reset(data->master);
1482 		free_irq(board_dat->pdev->irq, data);
1483 
1484 		data->irq_reg_sts = false;
1485 		dev_dbg(&pd_dev->dev,
1486 			"%s free_irq invoked successfully.\n", __func__);
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1493 {
1494 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1495 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1496 	int retval;
1497 
1498 	if (!board_dat) {
1499 		dev_err(&pd_dev->dev,
1500 			"%s pci_get_drvdata returned NULL\n", __func__);
1501 		return -EFAULT;
1502 	}
1503 
1504 	if (!data->irq_reg_sts) {
1505 		/* register IRQ */
1506 		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1507 				     IRQF_SHARED, KBUILD_MODNAME, data);
1508 		if (retval < 0) {
1509 			dev_err(&pd_dev->dev,
1510 				"%s request_irq failed\n", __func__);
1511 			return retval;
1512 		}
1513 
1514 		/* reset PCH SPI h/w */
1515 		pch_spi_reset(data->master);
1516 		pch_spi_set_master_mode(data->master);
1517 		data->irq_reg_sts = true;
1518 	}
1519 	return 0;
1520 }
1521 #else
1522 #define pch_spi_pd_suspend NULL
1523 #define pch_spi_pd_resume NULL
1524 #endif
1525 
1526 static struct platform_driver pch_spi_pd_driver = {
1527 	.driver = {
1528 		.name = "pch-spi",
1529 	},
1530 	.probe = pch_spi_pd_probe,
1531 	.remove = pch_spi_pd_remove,
1532 	.suspend = pch_spi_pd_suspend,
1533 	.resume = pch_spi_pd_resume
1534 };
1535 
1536 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1537 {
1538 	struct pch_spi_board_data *board_dat;
1539 	struct platform_device *pd_dev = NULL;
1540 	int retval;
1541 	int i;
1542 	struct pch_pd_dev_save *pd_dev_save;
1543 
1544 	pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1545 	if (!pd_dev_save)
1546 		return -ENOMEM;
1547 
1548 	board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1549 	if (!board_dat) {
1550 		retval = -ENOMEM;
1551 		goto err_no_mem;
1552 	}
1553 
1554 	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1555 	if (retval) {
1556 		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1557 		goto pci_request_regions;
1558 	}
1559 
1560 	board_dat->pdev = pdev;
1561 	board_dat->num = id->driver_data;
1562 	pd_dev_save->num = id->driver_data;
1563 	pd_dev_save->board_dat = board_dat;
1564 
1565 	retval = pci_enable_device(pdev);
1566 	if (retval) {
1567 		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1568 		goto pci_enable_device;
1569 	}
1570 
1571 	for (i = 0; i < board_dat->num; i++) {
1572 		pd_dev = platform_device_alloc("pch-spi", i);
1573 		if (!pd_dev) {
1574 			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1575 			retval = -ENOMEM;
1576 			goto err_platform_device;
1577 		}
1578 		pd_dev_save->pd_save[i] = pd_dev;
1579 		pd_dev->dev.parent = &pdev->dev;
1580 
1581 		retval = platform_device_add_data(pd_dev, board_dat,
1582 						  sizeof(*board_dat));
1583 		if (retval) {
1584 			dev_err(&pdev->dev,
1585 				"platform_device_add_data failed\n");
1586 			platform_device_put(pd_dev);
1587 			goto err_platform_device;
1588 		}
1589 
1590 		retval = platform_device_add(pd_dev);
1591 		if (retval) {
1592 			dev_err(&pdev->dev, "platform_device_add failed\n");
1593 			platform_device_put(pd_dev);
1594 			goto err_platform_device;
1595 		}
1596 	}
1597 
1598 	pci_set_drvdata(pdev, pd_dev_save);
1599 
1600 	return 0;
1601 
1602 err_platform_device:
1603 	while (--i >= 0)
1604 		platform_device_unregister(pd_dev_save->pd_save[i]);
1605 	pci_disable_device(pdev);
1606 pci_enable_device:
1607 	pci_release_regions(pdev);
1608 pci_request_regions:
1609 	kfree(board_dat);
1610 err_no_mem:
1611 	kfree(pd_dev_save);
1612 
1613 	return retval;
1614 }
1615 
1616 static void pch_spi_remove(struct pci_dev *pdev)
1617 {
1618 	int i;
1619 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1620 
1621 	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1622 
1623 	for (i = 0; i < pd_dev_save->num; i++)
1624 		platform_device_unregister(pd_dev_save->pd_save[i]);
1625 
1626 	pci_disable_device(pdev);
1627 	pci_release_regions(pdev);
1628 	kfree(pd_dev_save->board_dat);
1629 	kfree(pd_dev_save);
1630 }
1631 
1632 #ifdef CONFIG_PM
1633 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1634 {
1635 	int retval;
1636 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1637 
1638 	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1639 
1640 	pd_dev_save->board_dat->suspend_sts = true;
1641 
1642 	/* save config space */
1643 	retval = pci_save_state(pdev);
1644 	if (retval == 0) {
1645 		pci_enable_wake(pdev, PCI_D3hot, 0);
1646 		pci_disable_device(pdev);
1647 		pci_set_power_state(pdev, PCI_D3hot);
1648 	} else {
1649 		dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1650 	}
1651 
1652 	return retval;
1653 }
1654 
1655 static int pch_spi_resume(struct pci_dev *pdev)
1656 {
1657 	int retval;
1658 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1659 	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1660 
1661 	pci_set_power_state(pdev, PCI_D0);
1662 	pci_restore_state(pdev);
1663 
1664 	retval = pci_enable_device(pdev);
1665 	if (retval < 0) {
1666 		dev_err(&pdev->dev,
1667 			"%s pci_enable_device failed\n", __func__);
1668 	} else {
1669 		pci_enable_wake(pdev, PCI_D3hot, 0);
1670 
1671 		/* set suspend status to false */
1672 		pd_dev_save->board_dat->suspend_sts = false;
1673 	}
1674 
1675 	return retval;
1676 }
1677 #else
1678 #define pch_spi_suspend NULL
1679 #define pch_spi_resume NULL
1680 
1681 #endif
1682 
1683 static struct pci_driver pch_spi_pcidev_driver = {
1684 	.name = "pch_spi",
1685 	.id_table = pch_spi_pcidev_id,
1686 	.probe = pch_spi_probe,
1687 	.remove = pch_spi_remove,
1688 	.suspend = pch_spi_suspend,
1689 	.resume = pch_spi_resume,
1690 };
1691 
1692 static int __init pch_spi_init(void)
1693 {
1694 	int ret;
1695 	ret = platform_driver_register(&pch_spi_pd_driver);
1696 	if (ret)
1697 		return ret;
1698 
1699 	ret = pci_register_driver(&pch_spi_pcidev_driver);
1700 	if (ret) {
1701 		platform_driver_unregister(&pch_spi_pd_driver);
1702 		return ret;
1703 	}
1704 
1705 	return 0;
1706 }
1707 module_init(pch_spi_init);
1708 
1709 static void __exit pch_spi_exit(void)
1710 {
1711 	pci_unregister_driver(&pch_spi_pcidev_driver);
1712 	platform_driver_unregister(&pch_spi_pd_driver);
1713 }
1714 module_exit(pch_spi_exit);
1715 
1716 module_param(use_dma, int, 0644);
1717 MODULE_PARM_DESC(use_dma,
1718 		 "to use DMA for data transfers pass 1 else 0; default 1");
1719 
1720 MODULE_LICENSE("GPL");
1721 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1722 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1723 
1724