1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33 
34 /* Register offsets */
35 #define PCH_SPCR		0x00	/* SPI control register */
36 #define PCH_SPBRR		0x04	/* SPI baud rate register */
37 #define PCH_SPSR		0x08	/* SPI status register */
38 #define PCH_SPDWR		0x0C	/* SPI write data register */
39 #define PCH_SPDRR		0x10	/* SPI read data register */
40 #define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
41 #define PCH_SRST		0x1C	/* SPI reset register */
42 #define PCH_ADDRESS_SIZE	0x20
43 
44 #define PCH_SPSR_TFD		0x000007C0
45 #define PCH_SPSR_RFD		0x0000F800
46 
47 #define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
49 
50 #define PCH_RX_THOLD		7
51 #define PCH_RX_THOLD_MAX	15
52 
53 #define PCH_TX_THOLD		2
54 
55 #define PCH_MAX_BAUDRATE	5000000
56 #define PCH_MAX_FIFO_DEPTH	16
57 
58 #define STATUS_RUNNING		1
59 #define STATUS_EXITING		2
60 #define PCH_SLEEP_TIME		10
61 
62 #define SSN_LOW			0x02U
63 #define SSN_HIGH		0x03U
64 #define SSN_NO_CONTROL		0x00U
65 #define PCH_MAX_CS		0xFF
66 #define PCI_DEVICE_ID_GE_SPI	0x8816
67 
68 #define SPCR_SPE_BIT		(1 << 0)
69 #define SPCR_MSTR_BIT		(1 << 1)
70 #define SPCR_LSBF_BIT		(1 << 4)
71 #define SPCR_CPHA_BIT		(1 << 5)
72 #define SPCR_CPOL_BIT		(1 << 6)
73 #define SPCR_TFIE_BIT		(1 << 8)
74 #define SPCR_RFIE_BIT		(1 << 9)
75 #define SPCR_FIE_BIT		(1 << 10)
76 #define SPCR_ORIE_BIT		(1 << 11)
77 #define SPCR_MDFIE_BIT		(1 << 12)
78 #define SPCR_FICLR_BIT		(1 << 24)
79 #define SPSR_TFI_BIT		(1 << 0)
80 #define SPSR_RFI_BIT		(1 << 1)
81 #define SPSR_FI_BIT		(1 << 2)
82 #define SPSR_ORF_BIT		(1 << 3)
83 #define SPBRR_SIZE_BIT		(1 << 10)
84 
85 #define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86 				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
87 
88 #define SPCR_RFIC_FIELD		20
89 #define SPCR_TFIC_FIELD		16
90 
91 #define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
94 
95 #define PCH_CLOCK_HZ		50000000
96 #define PCH_MAX_SPBR		1023
97 
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM		0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI	0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI	0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI	0x8816
103 
104 /*
105  * Set the number of SPI instance max
106  * Intel EG20T PCH :		1ch
107  * LAPIS Semiconductor ML7213 IOH :	2ch
108  * LAPIS Semiconductor ML7223 IOH :	1ch
109  * LAPIS Semiconductor ML7831 IOH :	1ch
110 */
111 #define PCH_SPI_MAX_DEV			2
112 
113 #define PCH_BUF_SIZE		4096
114 #define PCH_DMA_TRANS_SIZE	12
115 
116 static int use_dma = 1;
117 
118 struct pch_spi_dma_ctrl {
119 	struct dma_async_tx_descriptor	*desc_tx;
120 	struct dma_async_tx_descriptor	*desc_rx;
121 	struct pch_dma_slave		param_tx;
122 	struct pch_dma_slave		param_rx;
123 	struct dma_chan		*chan_tx;
124 	struct dma_chan		*chan_rx;
125 	struct scatterlist		*sg_tx_p;
126 	struct scatterlist		*sg_rx_p;
127 	struct scatterlist		sg_tx;
128 	struct scatterlist		sg_rx;
129 	int				nent;
130 	void				*tx_buf_virt;
131 	void				*rx_buf_virt;
132 	dma_addr_t			tx_buf_dma;
133 	dma_addr_t			rx_buf_dma;
134 };
135 /**
136  * struct pch_spi_data - Holds the SPI channel specific details
137  * @io_remap_addr:		The remapped PCI base address
138  * @master:			Pointer to the SPI master structure
139  * @work:			Reference to work queue handler
140  * @wk:				Workqueue for carrying out execution of the
141  *				requests
142  * @wait:			Wait queue for waking up upon receiving an
143  *				interrupt.
144  * @transfer_complete:		Status of SPI Transfer
145  * @bcurrent_msg_processing:	Status flag for message processing
146  * @lock:			Lock for protecting this structure
147  * @queue:			SPI Message queue
148  * @status:			Status of the SPI driver
149  * @bpw_len:			Length of data to be transferred in bits per
150  *				word
151  * @transfer_active:		Flag showing active transfer
152  * @tx_index:			Transmit data count; for bookkeeping during
153  *				transfer
154  * @rx_index:			Receive data count; for bookkeeping during
155  *				transfer
156  * @tx_buff:			Buffer for data to be transmitted
157  * @rx_index:			Buffer for Received data
158  * @n_curnt_chip:		The chip number that this SPI driver currently
159  *				operates on
160  * @current_chip:		Reference to the current chip that this SPI
161  *				driver currently operates on
162  * @current_msg:		The current message that this SPI driver is
163  *				handling
164  * @cur_trans:			The current transfer that this SPI driver is
165  *				handling
166  * @board_dat:			Reference to the SPI device data structure
167  * @plat_dev:			platform_device structure
168  * @ch:				SPI channel number
169  * @irq_reg_sts:		Status of IRQ registration
170  */
171 struct pch_spi_data {
172 	void __iomem *io_remap_addr;
173 	unsigned long io_base_addr;
174 	struct spi_master *master;
175 	struct work_struct work;
176 	struct workqueue_struct *wk;
177 	wait_queue_head_t wait;
178 	u8 transfer_complete;
179 	u8 bcurrent_msg_processing;
180 	spinlock_t lock;
181 	struct list_head queue;
182 	u8 status;
183 	u32 bpw_len;
184 	u8 transfer_active;
185 	u32 tx_index;
186 	u32 rx_index;
187 	u16 *pkt_tx_buff;
188 	u16 *pkt_rx_buff;
189 	u8 n_curnt_chip;
190 	struct spi_device *current_chip;
191 	struct spi_message *current_msg;
192 	struct spi_transfer *cur_trans;
193 	struct pch_spi_board_data *board_dat;
194 	struct platform_device	*plat_dev;
195 	int ch;
196 	struct pch_spi_dma_ctrl dma;
197 	int use_dma;
198 	u8 irq_reg_sts;
199 	int save_total_len;
200 };
201 
202 /**
203  * struct pch_spi_board_data - Holds the SPI device specific details
204  * @pdev:		Pointer to the PCI device
205  * @suspend_sts:	Status of suspend
206  * @num:		The number of SPI device instance
207  */
208 struct pch_spi_board_data {
209 	struct pci_dev *pdev;
210 	u8 suspend_sts;
211 	int num;
212 };
213 
214 struct pch_pd_dev_save {
215 	int num;
216 	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
217 	struct pch_spi_board_data *board_dat;
218 };
219 
220 static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
221 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
222 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
223 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
224 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
225 	{ }
226 };
227 
228 /**
229  * pch_spi_writereg() - Performs  register writes
230  * @master:	Pointer to struct spi_master.
231  * @idx:	Register offset.
232  * @val:	Value to be written to register.
233  */
234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
235 {
236 	struct pch_spi_data *data = spi_master_get_devdata(master);
237 	iowrite32(val, (data->io_remap_addr + idx));
238 }
239 
240 /**
241  * pch_spi_readreg() - Performs register reads
242  * @master:	Pointer to struct spi_master.
243  * @idx:	Register offset.
244  */
245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
246 {
247 	struct pch_spi_data *data = spi_master_get_devdata(master);
248 	return ioread32(data->io_remap_addr + idx);
249 }
250 
251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
252 				      u32 set, u32 clr)
253 {
254 	u32 tmp = pch_spi_readreg(master, idx);
255 	tmp = (tmp & ~clr) | set;
256 	pch_spi_writereg(master, idx, tmp);
257 }
258 
259 static void pch_spi_set_master_mode(struct spi_master *master)
260 {
261 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
262 }
263 
264 /**
265  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
266  * @master:	Pointer to struct spi_master.
267  */
268 static void pch_spi_clear_fifo(struct spi_master *master)
269 {
270 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
271 	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
272 }
273 
274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
275 				void __iomem *io_remap_addr)
276 {
277 	u32 n_read, tx_index, rx_index, bpw_len;
278 	u16 *pkt_rx_buffer, *pkt_tx_buff;
279 	int read_cnt;
280 	u32 reg_spcr_val;
281 	void __iomem *spsr;
282 	void __iomem *spdrr;
283 	void __iomem *spdwr;
284 
285 	spsr = io_remap_addr + PCH_SPSR;
286 	iowrite32(reg_spsr_val, spsr);
287 
288 	if (data->transfer_active) {
289 		rx_index = data->rx_index;
290 		tx_index = data->tx_index;
291 		bpw_len = data->bpw_len;
292 		pkt_rx_buffer = data->pkt_rx_buff;
293 		pkt_tx_buff = data->pkt_tx_buff;
294 
295 		spdrr = io_remap_addr + PCH_SPDRR;
296 		spdwr = io_remap_addr + PCH_SPDWR;
297 
298 		n_read = PCH_READABLE(reg_spsr_val);
299 
300 		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
301 			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
302 			if (tx_index < bpw_len)
303 				iowrite32(pkt_tx_buff[tx_index++], spdwr);
304 		}
305 
306 		/* disable RFI if not needed */
307 		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
308 			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
309 			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
310 
311 			/* reset rx threshold */
312 			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
313 			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
314 
315 			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
316 		}
317 
318 		/* update counts */
319 		data->tx_index = tx_index;
320 		data->rx_index = rx_index;
321 
322 		/* if transfer complete interrupt */
323 		if (reg_spsr_val & SPSR_FI_BIT) {
324 			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
325 				/* disable interrupts */
326 				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
327 						   PCH_ALL);
328 
329 				/* transfer is completed;
330 				   inform pch_spi_process_messages */
331 				data->transfer_complete = true;
332 				data->transfer_active = false;
333 				wake_up(&data->wait);
334 			} else {
335 				dev_err(&data->master->dev,
336 					"%s : Transfer is not completed",
337 					__func__);
338 			}
339 		}
340 	}
341 }
342 
343 /**
344  * pch_spi_handler() - Interrupt handler
345  * @irq:	The interrupt number.
346  * @dev_id:	Pointer to struct pch_spi_board_data.
347  */
348 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
349 {
350 	u32 reg_spsr_val;
351 	void __iomem *spsr;
352 	void __iomem *io_remap_addr;
353 	irqreturn_t ret = IRQ_NONE;
354 	struct pch_spi_data *data = dev_id;
355 	struct pch_spi_board_data *board_dat = data->board_dat;
356 
357 	if (board_dat->suspend_sts) {
358 		dev_dbg(&board_dat->pdev->dev,
359 			"%s returning due to suspend\n", __func__);
360 		return IRQ_NONE;
361 	}
362 
363 	io_remap_addr = data->io_remap_addr;
364 	spsr = io_remap_addr + PCH_SPSR;
365 
366 	reg_spsr_val = ioread32(spsr);
367 
368 	if (reg_spsr_val & SPSR_ORF_BIT) {
369 		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
370 		if (data->current_msg->complete) {
371 			data->transfer_complete = true;
372 			data->current_msg->status = -EIO;
373 			data->current_msg->complete(data->current_msg->context);
374 			data->bcurrent_msg_processing = false;
375 			data->current_msg = NULL;
376 			data->cur_trans = NULL;
377 		}
378 	}
379 
380 	if (data->use_dma)
381 		return IRQ_NONE;
382 
383 	/* Check if the interrupt is for SPI device */
384 	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
385 		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
386 		ret = IRQ_HANDLED;
387 	}
388 
389 	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
390 		__func__, ret);
391 
392 	return ret;
393 }
394 
395 /**
396  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
397  * @master:	Pointer to struct spi_master.
398  * @speed_hz:	Baud rate.
399  */
400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
401 {
402 	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
403 
404 	/* if baud rate is less than we can support limit it */
405 	if (n_spbr > PCH_MAX_SPBR)
406 		n_spbr = PCH_MAX_SPBR;
407 
408 	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
409 }
410 
411 /**
412  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
413  * @master:		Pointer to struct spi_master.
414  * @bits_per_word:	Bits per word for SPI transfer.
415  */
416 static void pch_spi_set_bits_per_word(struct spi_master *master,
417 				      u8 bits_per_word)
418 {
419 	if (bits_per_word == 8)
420 		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
421 	else
422 		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
423 }
424 
425 /**
426  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
427  * @spi:	Pointer to struct spi_device.
428  */
429 static void pch_spi_setup_transfer(struct spi_device *spi)
430 {
431 	u32 flags = 0;
432 
433 	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
434 		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
435 		spi->max_speed_hz);
436 	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
437 
438 	/* set bits per word */
439 	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
440 
441 	if (!(spi->mode & SPI_LSB_FIRST))
442 		flags |= SPCR_LSBF_BIT;
443 	if (spi->mode & SPI_CPOL)
444 		flags |= SPCR_CPOL_BIT;
445 	if (spi->mode & SPI_CPHA)
446 		flags |= SPCR_CPHA_BIT;
447 	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
448 			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
449 
450 	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
451 	pch_spi_clear_fifo(spi->master);
452 }
453 
454 /**
455  * pch_spi_reset() - Clears SPI registers
456  * @master:	Pointer to struct spi_master.
457  */
458 static void pch_spi_reset(struct spi_master *master)
459 {
460 	/* write 1 to reset SPI */
461 	pch_spi_writereg(master, PCH_SRST, 0x1);
462 
463 	/* clear reset */
464 	pch_spi_writereg(master, PCH_SRST, 0x0);
465 }
466 
467 static int pch_spi_setup(struct spi_device *pspi)
468 {
469 	/* check bits per word */
470 	if (pspi->bits_per_word == 0) {
471 		pspi->bits_per_word = 8;
472 		dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
473 	}
474 
475 	/* Check baud rate setting */
476 	/* if baud rate of chip is greater than
477 	   max we can support,return error */
478 	if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
479 		pspi->max_speed_hz = PCH_MAX_BAUDRATE;
480 
481 	dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
482 		(pspi->mode) & (SPI_CPOL | SPI_CPHA));
483 
484 	return 0;
485 }
486 
487 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
488 {
489 
490 	struct spi_transfer *transfer;
491 	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
492 	int retval;
493 	unsigned long flags;
494 
495 	/* validate spi message and baud rate */
496 	if (unlikely(list_empty(&pmsg->transfers) == 1)) {
497 		dev_err(&pspi->dev, "%s list empty\n", __func__);
498 		retval = -EINVAL;
499 		goto err_out;
500 	}
501 
502 	if (unlikely(pspi->max_speed_hz == 0)) {
503 		dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n",
504 			__func__, pspi->max_speed_hz);
505 		retval = -EINVAL;
506 		goto err_out;
507 	}
508 
509 	dev_dbg(&pspi->dev, "%s Transfer List not empty. "
510 		"Transfer Speed is set.\n", __func__);
511 
512 	spin_lock_irqsave(&data->lock, flags);
513 	/* validate Tx/Rx buffers and Transfer length */
514 	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
515 		if (!transfer->tx_buf && !transfer->rx_buf) {
516 			dev_err(&pspi->dev,
517 				"%s Tx and Rx buffer NULL\n", __func__);
518 			retval = -EINVAL;
519 			goto err_return_spinlock;
520 		}
521 
522 		if (!transfer->len) {
523 			dev_err(&pspi->dev, "%s Transfer length invalid\n",
524 				__func__);
525 			retval = -EINVAL;
526 			goto err_return_spinlock;
527 		}
528 
529 		dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
530 			" valid\n", __func__);
531 
532 		/* if baud rate has been specified validate the same */
533 		if (transfer->speed_hz > PCH_MAX_BAUDRATE)
534 			transfer->speed_hz = PCH_MAX_BAUDRATE;
535 	}
536 	spin_unlock_irqrestore(&data->lock, flags);
537 
538 	/* We won't process any messages if we have been asked to terminate */
539 	if (data->status == STATUS_EXITING) {
540 		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
541 		retval = -ESHUTDOWN;
542 		goto err_out;
543 	}
544 
545 	/* If suspended ,return -EINVAL */
546 	if (data->board_dat->suspend_sts) {
547 		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
548 		retval = -EINVAL;
549 		goto err_out;
550 	}
551 
552 	/* set status of message */
553 	pmsg->actual_length = 0;
554 	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
555 
556 	pmsg->status = -EINPROGRESS;
557 	spin_lock_irqsave(&data->lock, flags);
558 	/* add message to queue */
559 	list_add_tail(&pmsg->queue, &data->queue);
560 	spin_unlock_irqrestore(&data->lock, flags);
561 
562 	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
563 
564 	/* schedule work queue to run */
565 	queue_work(data->wk, &data->work);
566 	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
567 
568 	retval = 0;
569 
570 err_out:
571 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
572 	return retval;
573 err_return_spinlock:
574 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
575 	spin_unlock_irqrestore(&data->lock, flags);
576 	return retval;
577 }
578 
579 static inline void pch_spi_select_chip(struct pch_spi_data *data,
580 				       struct spi_device *pspi)
581 {
582 	if (data->current_chip != NULL) {
583 		if (pspi->chip_select != data->n_curnt_chip) {
584 			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
585 			data->current_chip = NULL;
586 		}
587 	}
588 
589 	data->current_chip = pspi;
590 
591 	data->n_curnt_chip = data->current_chip->chip_select;
592 
593 	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
594 	pch_spi_setup_transfer(pspi);
595 }
596 
597 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
598 {
599 	int size;
600 	u32 n_writes;
601 	int j;
602 	struct spi_message *pmsg, *tmp;
603 	const u8 *tx_buf;
604 	const u16 *tx_sbuf;
605 
606 	/* set baud rate if needed */
607 	if (data->cur_trans->speed_hz) {
608 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
609 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
610 	}
611 
612 	/* set bits per word if needed */
613 	if (data->cur_trans->bits_per_word &&
614 	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
615 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
616 		pch_spi_set_bits_per_word(data->master,
617 					  data->cur_trans->bits_per_word);
618 		*bpw = data->cur_trans->bits_per_word;
619 	} else {
620 		*bpw = data->current_msg->spi->bits_per_word;
621 	}
622 
623 	/* reset Tx/Rx index */
624 	data->tx_index = 0;
625 	data->rx_index = 0;
626 
627 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
628 
629 	/* find alloc size */
630 	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
631 
632 	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
633 	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
634 	if (data->pkt_tx_buff != NULL) {
635 		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
636 		if (!data->pkt_rx_buff)
637 			kfree(data->pkt_tx_buff);
638 	}
639 
640 	if (!data->pkt_rx_buff) {
641 		/* flush queue and set status of all transfers to -ENOMEM */
642 		dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
643 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
644 			pmsg->status = -ENOMEM;
645 
646 			if (pmsg->complete)
647 				pmsg->complete(pmsg->context);
648 
649 			/* delete from queue */
650 			list_del_init(&pmsg->queue);
651 		}
652 		return;
653 	}
654 
655 	/* copy Tx Data */
656 	if (data->cur_trans->tx_buf != NULL) {
657 		if (*bpw == 8) {
658 			tx_buf = data->cur_trans->tx_buf;
659 			for (j = 0; j < data->bpw_len; j++)
660 				data->pkt_tx_buff[j] = *tx_buf++;
661 		} else {
662 			tx_sbuf = data->cur_trans->tx_buf;
663 			for (j = 0; j < data->bpw_len; j++)
664 				data->pkt_tx_buff[j] = *tx_sbuf++;
665 		}
666 	}
667 
668 	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
669 	n_writes = data->bpw_len;
670 	if (n_writes > PCH_MAX_FIFO_DEPTH)
671 		n_writes = PCH_MAX_FIFO_DEPTH;
672 
673 	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
674 		"0x2 to SSNXCR\n", __func__);
675 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
676 
677 	for (j = 0; j < n_writes; j++)
678 		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
679 
680 	/* update tx_index */
681 	data->tx_index = j;
682 
683 	/* reset transfer complete flag */
684 	data->transfer_complete = false;
685 	data->transfer_active = true;
686 }
687 
688 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
689 {
690 	struct spi_message *pmsg, *tmp;
691 	dev_dbg(&data->master->dev, "%s called\n", __func__);
692 	/* Invoke complete callback
693 	 * [To the spi core..indicating end of transfer] */
694 	data->current_msg->status = 0;
695 
696 	if (data->current_msg->complete) {
697 		dev_dbg(&data->master->dev,
698 			"%s:Invoking callback of SPI core\n", __func__);
699 		data->current_msg->complete(data->current_msg->context);
700 	}
701 
702 	/* update status in global variable */
703 	data->bcurrent_msg_processing = false;
704 
705 	dev_dbg(&data->master->dev,
706 		"%s:data->bcurrent_msg_processing = false\n", __func__);
707 
708 	data->current_msg = NULL;
709 	data->cur_trans = NULL;
710 
711 	/* check if we have items in list and not suspending
712 	 * return 1 if list empty */
713 	if ((list_empty(&data->queue) == 0) &&
714 	    (!data->board_dat->suspend_sts) &&
715 	    (data->status != STATUS_EXITING)) {
716 		/* We have some more work to do (either there is more tranint
717 		 * bpw;sfer requests in the current message or there are
718 		 *more messages)
719 		 */
720 		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
721 		queue_work(data->wk, &data->work);
722 	} else if (data->board_dat->suspend_sts ||
723 		   data->status == STATUS_EXITING) {
724 		dev_dbg(&data->master->dev,
725 			"%s suspend/remove initiated, flushing queue\n",
726 			__func__);
727 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
728 			pmsg->status = -EIO;
729 
730 			if (pmsg->complete)
731 				pmsg->complete(pmsg->context);
732 
733 			/* delete from queue */
734 			list_del_init(&pmsg->queue);
735 		}
736 	}
737 }
738 
739 static void pch_spi_set_ir(struct pch_spi_data *data)
740 {
741 	/* enable interrupts, set threshold, enable SPI */
742 	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
743 		/* set receive threshold to PCH_RX_THOLD */
744 		pch_spi_setclr_reg(data->master, PCH_SPCR,
745 				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
746 				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
747 				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
748 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
749 	else
750 		/* set receive threshold to maximum */
751 		pch_spi_setclr_reg(data->master, PCH_SPCR,
752 				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
753 				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
754 				   SPCR_SPE_BIT,
755 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
756 
757 	/* Wait until the transfer completes; go to sleep after
758 				 initiating the transfer. */
759 	dev_dbg(&data->master->dev,
760 		"%s:waiting for transfer to get over\n", __func__);
761 
762 	wait_event_interruptible(data->wait, data->transfer_complete);
763 
764 	/* clear all interrupts */
765 	pch_spi_writereg(data->master, PCH_SPSR,
766 			 pch_spi_readreg(data->master, PCH_SPSR));
767 	/* Disable interrupts and SPI transfer */
768 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
769 	/* clear FIFO */
770 	pch_spi_clear_fifo(data->master);
771 }
772 
773 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
774 {
775 	int j;
776 	u8 *rx_buf;
777 	u16 *rx_sbuf;
778 
779 	/* copy Rx Data */
780 	if (!data->cur_trans->rx_buf)
781 		return;
782 
783 	if (bpw == 8) {
784 		rx_buf = data->cur_trans->rx_buf;
785 		for (j = 0; j < data->bpw_len; j++)
786 			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
787 	} else {
788 		rx_sbuf = data->cur_trans->rx_buf;
789 		for (j = 0; j < data->bpw_len; j++)
790 			*rx_sbuf++ = data->pkt_rx_buff[j];
791 	}
792 }
793 
794 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
795 {
796 	int j;
797 	u8 *rx_buf;
798 	u16 *rx_sbuf;
799 	const u8 *rx_dma_buf;
800 	const u16 *rx_dma_sbuf;
801 
802 	/* copy Rx Data */
803 	if (!data->cur_trans->rx_buf)
804 		return;
805 
806 	if (bpw == 8) {
807 		rx_buf = data->cur_trans->rx_buf;
808 		rx_dma_buf = data->dma.rx_buf_virt;
809 		for (j = 0; j < data->bpw_len; j++)
810 			*rx_buf++ = *rx_dma_buf++ & 0xFF;
811 		data->cur_trans->rx_buf = rx_buf;
812 	} else {
813 		rx_sbuf = data->cur_trans->rx_buf;
814 		rx_dma_sbuf = data->dma.rx_buf_virt;
815 		for (j = 0; j < data->bpw_len; j++)
816 			*rx_sbuf++ = *rx_dma_sbuf++;
817 		data->cur_trans->rx_buf = rx_sbuf;
818 	}
819 }
820 
821 static int pch_spi_start_transfer(struct pch_spi_data *data)
822 {
823 	struct pch_spi_dma_ctrl *dma;
824 	unsigned long flags;
825 	int rtn;
826 
827 	dma = &data->dma;
828 
829 	spin_lock_irqsave(&data->lock, flags);
830 
831 	/* disable interrupts, SPI set enable */
832 	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
833 
834 	spin_unlock_irqrestore(&data->lock, flags);
835 
836 	/* Wait until the transfer completes; go to sleep after
837 				 initiating the transfer. */
838 	dev_dbg(&data->master->dev,
839 		"%s:waiting for transfer to get over\n", __func__);
840 	rtn = wait_event_interruptible_timeout(data->wait,
841 					       data->transfer_complete,
842 					       msecs_to_jiffies(2 * HZ));
843 	if (!rtn)
844 		dev_err(&data->master->dev,
845 			"%s wait-event timeout\n", __func__);
846 
847 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
848 			    DMA_FROM_DEVICE);
849 
850 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
851 			    DMA_FROM_DEVICE);
852 	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
853 
854 	async_tx_ack(dma->desc_rx);
855 	async_tx_ack(dma->desc_tx);
856 	kfree(dma->sg_tx_p);
857 	kfree(dma->sg_rx_p);
858 
859 	spin_lock_irqsave(&data->lock, flags);
860 
861 	/* clear fifo threshold, disable interrupts, disable SPI transfer */
862 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
863 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
864 			   SPCR_SPE_BIT);
865 	/* clear all interrupts */
866 	pch_spi_writereg(data->master, PCH_SPSR,
867 			 pch_spi_readreg(data->master, PCH_SPSR));
868 	/* clear FIFO */
869 	pch_spi_clear_fifo(data->master);
870 
871 	spin_unlock_irqrestore(&data->lock, flags);
872 
873 	return rtn;
874 }
875 
876 static void pch_dma_rx_complete(void *arg)
877 {
878 	struct pch_spi_data *data = arg;
879 
880 	/* transfer is completed;inform pch_spi_process_messages_dma */
881 	data->transfer_complete = true;
882 	wake_up_interruptible(&data->wait);
883 }
884 
885 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
886 {
887 	struct pch_dma_slave *param = slave;
888 
889 	if ((chan->chan_id == param->chan_id) &&
890 	    (param->dma_dev == chan->device->dev)) {
891 		chan->private = param;
892 		return true;
893 	} else {
894 		return false;
895 	}
896 }
897 
898 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
899 {
900 	dma_cap_mask_t mask;
901 	struct dma_chan *chan;
902 	struct pci_dev *dma_dev;
903 	struct pch_dma_slave *param;
904 	struct pch_spi_dma_ctrl *dma;
905 	unsigned int width;
906 
907 	if (bpw == 8)
908 		width = PCH_DMA_WIDTH_1_BYTE;
909 	else
910 		width = PCH_DMA_WIDTH_2_BYTES;
911 
912 	dma = &data->dma;
913 	dma_cap_zero(mask);
914 	dma_cap_set(DMA_SLAVE, mask);
915 
916 	/* Get DMA's dev information */
917 	dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
918 				       PCI_DEVFN(12, 0));
919 
920 	/* Set Tx DMA */
921 	param = &dma->param_tx;
922 	param->dma_dev = &dma_dev->dev;
923 	param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
924 	param->tx_reg = data->io_base_addr + PCH_SPDWR;
925 	param->width = width;
926 	chan = dma_request_channel(mask, pch_spi_filter, param);
927 	if (!chan) {
928 		dev_err(&data->master->dev,
929 			"ERROR: dma_request_channel FAILS(Tx)\n");
930 		data->use_dma = 0;
931 		return;
932 	}
933 	dma->chan_tx = chan;
934 
935 	/* Set Rx DMA */
936 	param = &dma->param_rx;
937 	param->dma_dev = &dma_dev->dev;
938 	param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
939 	param->rx_reg = data->io_base_addr + PCH_SPDRR;
940 	param->width = width;
941 	chan = dma_request_channel(mask, pch_spi_filter, param);
942 	if (!chan) {
943 		dev_err(&data->master->dev,
944 			"ERROR: dma_request_channel FAILS(Rx)\n");
945 		dma_release_channel(dma->chan_tx);
946 		dma->chan_tx = NULL;
947 		data->use_dma = 0;
948 		return;
949 	}
950 	dma->chan_rx = chan;
951 }
952 
953 static void pch_spi_release_dma(struct pch_spi_data *data)
954 {
955 	struct pch_spi_dma_ctrl *dma;
956 
957 	dma = &data->dma;
958 	if (dma->chan_tx) {
959 		dma_release_channel(dma->chan_tx);
960 		dma->chan_tx = NULL;
961 	}
962 	if (dma->chan_rx) {
963 		dma_release_channel(dma->chan_rx);
964 		dma->chan_rx = NULL;
965 	}
966 	return;
967 }
968 
969 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
970 {
971 	const u8 *tx_buf;
972 	const u16 *tx_sbuf;
973 	u8 *tx_dma_buf;
974 	u16 *tx_dma_sbuf;
975 	struct scatterlist *sg;
976 	struct dma_async_tx_descriptor *desc_tx;
977 	struct dma_async_tx_descriptor *desc_rx;
978 	int num;
979 	int i;
980 	int size;
981 	int rem;
982 	int head;
983 	unsigned long flags;
984 	struct pch_spi_dma_ctrl *dma;
985 
986 	dma = &data->dma;
987 
988 	/* set baud rate if needed */
989 	if (data->cur_trans->speed_hz) {
990 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
991 		spin_lock_irqsave(&data->lock, flags);
992 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
993 		spin_unlock_irqrestore(&data->lock, flags);
994 	}
995 
996 	/* set bits per word if needed */
997 	if (data->cur_trans->bits_per_word &&
998 	    (data->current_msg->spi->bits_per_word !=
999 	     data->cur_trans->bits_per_word)) {
1000 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1001 		spin_lock_irqsave(&data->lock, flags);
1002 		pch_spi_set_bits_per_word(data->master,
1003 					  data->cur_trans->bits_per_word);
1004 		spin_unlock_irqrestore(&data->lock, flags);
1005 		*bpw = data->cur_trans->bits_per_word;
1006 	} else {
1007 		*bpw = data->current_msg->spi->bits_per_word;
1008 	}
1009 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
1010 
1011 	if (data->bpw_len > PCH_BUF_SIZE) {
1012 		data->bpw_len = PCH_BUF_SIZE;
1013 		data->cur_trans->len -= PCH_BUF_SIZE;
1014 	}
1015 
1016 	/* copy Tx Data */
1017 	if (data->cur_trans->tx_buf != NULL) {
1018 		if (*bpw == 8) {
1019 			tx_buf = data->cur_trans->tx_buf;
1020 			tx_dma_buf = dma->tx_buf_virt;
1021 			for (i = 0; i < data->bpw_len; i++)
1022 				*tx_dma_buf++ = *tx_buf++;
1023 		} else {
1024 			tx_sbuf = data->cur_trans->tx_buf;
1025 			tx_dma_sbuf = dma->tx_buf_virt;
1026 			for (i = 0; i < data->bpw_len; i++)
1027 				*tx_dma_sbuf++ = *tx_sbuf++;
1028 		}
1029 	}
1030 
1031 	/* Calculate Rx parameter for DMA transmitting */
1032 	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1033 		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
1034 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1035 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1036 		} else {
1037 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1038 			rem = PCH_DMA_TRANS_SIZE;
1039 		}
1040 		size = PCH_DMA_TRANS_SIZE;
1041 	} else {
1042 		num = 1;
1043 		size = data->bpw_len;
1044 		rem = data->bpw_len;
1045 	}
1046 	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1047 		__func__, num, size, rem);
1048 	spin_lock_irqsave(&data->lock, flags);
1049 
1050 	/* set receive fifo threshold and transmit fifo threshold */
1051 	pch_spi_setclr_reg(data->master, PCH_SPCR,
1052 			   ((size - 1) << SPCR_RFIC_FIELD) |
1053 			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1054 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1055 
1056 	spin_unlock_irqrestore(&data->lock, flags);
1057 
1058 	/* RX */
1059 	dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1060 	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1061 	/* offset, length setting */
1062 	sg = dma->sg_rx_p;
1063 	for (i = 0; i < num; i++, sg++) {
1064 		if (i == (num - 2)) {
1065 			sg->offset = size * i;
1066 			sg->offset = sg->offset * (*bpw / 8);
1067 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1068 				    sg->offset);
1069 			sg_dma_len(sg) = rem;
1070 		} else if (i == (num - 1)) {
1071 			sg->offset = size * (i - 1) + rem;
1072 			sg->offset = sg->offset * (*bpw / 8);
1073 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1074 				    sg->offset);
1075 			sg_dma_len(sg) = size;
1076 		} else {
1077 			sg->offset = size * i;
1078 			sg->offset = sg->offset * (*bpw / 8);
1079 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1080 				    sg->offset);
1081 			sg_dma_len(sg) = size;
1082 		}
1083 		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1084 	}
1085 	sg = dma->sg_rx_p;
1086 	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1087 					num, DMA_DEV_TO_MEM,
1088 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1089 	if (!desc_rx) {
1090 		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1091 			__func__);
1092 		return;
1093 	}
1094 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1095 	desc_rx->callback = pch_dma_rx_complete;
1096 	desc_rx->callback_param = data;
1097 	dma->nent = num;
1098 	dma->desc_rx = desc_rx;
1099 
1100 	/* Calculate Tx parameter for DMA transmitting */
1101 	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1102 		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1103 		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1104 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1105 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1106 		} else {
1107 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1108 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1109 			      PCH_DMA_TRANS_SIZE - head;
1110 		}
1111 		size = PCH_DMA_TRANS_SIZE;
1112 	} else {
1113 		num = 1;
1114 		size = data->bpw_len;
1115 		rem = data->bpw_len;
1116 		head = 0;
1117 	}
1118 
1119 	dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1120 	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1121 	/* offset, length setting */
1122 	sg = dma->sg_tx_p;
1123 	for (i = 0; i < num; i++, sg++) {
1124 		if (i == 0) {
1125 			sg->offset = 0;
1126 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1127 				    sg->offset);
1128 			sg_dma_len(sg) = size + head;
1129 		} else if (i == (num - 1)) {
1130 			sg->offset = head + size * i;
1131 			sg->offset = sg->offset * (*bpw / 8);
1132 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1133 				    sg->offset);
1134 			sg_dma_len(sg) = rem;
1135 		} else {
1136 			sg->offset = head + size * i;
1137 			sg->offset = sg->offset * (*bpw / 8);
1138 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1139 				    sg->offset);
1140 			sg_dma_len(sg) = size;
1141 		}
1142 		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1143 	}
1144 	sg = dma->sg_tx_p;
1145 	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1146 					sg, num, DMA_MEM_TO_DEV,
1147 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1148 	if (!desc_tx) {
1149 		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1150 			__func__);
1151 		return;
1152 	}
1153 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1154 	desc_tx->callback = NULL;
1155 	desc_tx->callback_param = data;
1156 	dma->nent = num;
1157 	dma->desc_tx = desc_tx;
1158 
1159 	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1160 		"0x2 to SSNXCR\n", __func__);
1161 
1162 	spin_lock_irqsave(&data->lock, flags);
1163 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1164 	desc_rx->tx_submit(desc_rx);
1165 	desc_tx->tx_submit(desc_tx);
1166 	spin_unlock_irqrestore(&data->lock, flags);
1167 
1168 	/* reset transfer complete flag */
1169 	data->transfer_complete = false;
1170 }
1171 
1172 static void pch_spi_process_messages(struct work_struct *pwork)
1173 {
1174 	struct spi_message *pmsg, *tmp;
1175 	struct pch_spi_data *data;
1176 	int bpw;
1177 
1178 	data = container_of(pwork, struct pch_spi_data, work);
1179 	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1180 
1181 	spin_lock(&data->lock);
1182 	/* check if suspend has been initiated;if yes flush queue */
1183 	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1184 		dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1185 			"flushing queue\n", __func__);
1186 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1187 			pmsg->status = -EIO;
1188 
1189 			if (pmsg->complete) {
1190 				spin_unlock(&data->lock);
1191 				pmsg->complete(pmsg->context);
1192 				spin_lock(&data->lock);
1193 			}
1194 
1195 			/* delete from queue */
1196 			list_del_init(&pmsg->queue);
1197 		}
1198 
1199 		spin_unlock(&data->lock);
1200 		return;
1201 	}
1202 
1203 	data->bcurrent_msg_processing = true;
1204 	dev_dbg(&data->master->dev,
1205 		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1206 
1207 	/* Get the message from the queue and delete it from there. */
1208 	data->current_msg = list_entry(data->queue.next, struct spi_message,
1209 					queue);
1210 
1211 	list_del_init(&data->current_msg->queue);
1212 
1213 	data->current_msg->status = 0;
1214 
1215 	pch_spi_select_chip(data, data->current_msg->spi);
1216 
1217 	spin_unlock(&data->lock);
1218 
1219 	if (data->use_dma)
1220 		pch_spi_request_dma(data,
1221 				    data->current_msg->spi->bits_per_word);
1222 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1223 	do {
1224 		int cnt;
1225 		/* If we are already processing a message get the next
1226 		transfer structure from the message otherwise retrieve
1227 		the 1st transfer request from the message. */
1228 		spin_lock(&data->lock);
1229 		if (data->cur_trans == NULL) {
1230 			data->cur_trans =
1231 				list_entry(data->current_msg->transfers.next,
1232 					   struct spi_transfer, transfer_list);
1233 			dev_dbg(&data->master->dev, "%s "
1234 				":Getting 1st transfer message\n", __func__);
1235 		} else {
1236 			data->cur_trans =
1237 				list_entry(data->cur_trans->transfer_list.next,
1238 					   struct spi_transfer, transfer_list);
1239 			dev_dbg(&data->master->dev, "%s "
1240 				":Getting next transfer message\n", __func__);
1241 		}
1242 		spin_unlock(&data->lock);
1243 
1244 		if (!data->cur_trans->len)
1245 			goto out;
1246 		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1247 		data->save_total_len = data->cur_trans->len;
1248 		if (data->use_dma) {
1249 			int i;
1250 			char *save_rx_buf = data->cur_trans->rx_buf;
1251 			for (i = 0; i < cnt; i ++) {
1252 				pch_spi_handle_dma(data, &bpw);
1253 				if (!pch_spi_start_transfer(data)) {
1254 					data->transfer_complete = true;
1255 					data->current_msg->status = -EIO;
1256 					data->current_msg->complete
1257 						   (data->current_msg->context);
1258 					data->bcurrent_msg_processing = false;
1259 					data->current_msg = NULL;
1260 					data->cur_trans = NULL;
1261 					goto out;
1262 				}
1263 				pch_spi_copy_rx_data_for_dma(data, bpw);
1264 			}
1265 			data->cur_trans->rx_buf = save_rx_buf;
1266 		} else {
1267 			pch_spi_set_tx(data, &bpw);
1268 			pch_spi_set_ir(data);
1269 			pch_spi_copy_rx_data(data, bpw);
1270 			kfree(data->pkt_rx_buff);
1271 			data->pkt_rx_buff = NULL;
1272 			kfree(data->pkt_tx_buff);
1273 			data->pkt_tx_buff = NULL;
1274 		}
1275 		/* increment message count */
1276 		data->cur_trans->len = data->save_total_len;
1277 		data->current_msg->actual_length += data->cur_trans->len;
1278 
1279 		dev_dbg(&data->master->dev,
1280 			"%s:data->current_msg->actual_length=%d\n",
1281 			__func__, data->current_msg->actual_length);
1282 
1283 		/* check for delay */
1284 		if (data->cur_trans->delay_usecs) {
1285 			dev_dbg(&data->master->dev, "%s:"
1286 				"delay in usec=%d\n", __func__,
1287 				data->cur_trans->delay_usecs);
1288 			udelay(data->cur_trans->delay_usecs);
1289 		}
1290 
1291 		spin_lock(&data->lock);
1292 
1293 		/* No more transfer in this message. */
1294 		if ((data->cur_trans->transfer_list.next) ==
1295 		    &(data->current_msg->transfers)) {
1296 			pch_spi_nomore_transfer(data);
1297 		}
1298 
1299 		spin_unlock(&data->lock);
1300 
1301 	} while (data->cur_trans != NULL);
1302 
1303 out:
1304 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1305 	if (data->use_dma)
1306 		pch_spi_release_dma(data);
1307 }
1308 
1309 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1310 				   struct pch_spi_data *data)
1311 {
1312 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1313 
1314 	/* free workqueue */
1315 	if (data->wk != NULL) {
1316 		destroy_workqueue(data->wk);
1317 		data->wk = NULL;
1318 		dev_dbg(&board_dat->pdev->dev,
1319 			"%s destroy_workqueue invoked successfully\n",
1320 			__func__);
1321 	}
1322 }
1323 
1324 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1325 				 struct pch_spi_data *data)
1326 {
1327 	int retval = 0;
1328 
1329 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1330 
1331 	/* create workqueue */
1332 	data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1333 	if (!data->wk) {
1334 		dev_err(&board_dat->pdev->dev,
1335 			"%s create_singlet hread_workqueue failed\n", __func__);
1336 		retval = -EBUSY;
1337 		goto err_return;
1338 	}
1339 
1340 	/* reset PCH SPI h/w */
1341 	pch_spi_reset(data->master);
1342 	dev_dbg(&board_dat->pdev->dev,
1343 		"%s pch_spi_reset invoked successfully\n", __func__);
1344 
1345 	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1346 
1347 err_return:
1348 	if (retval != 0) {
1349 		dev_err(&board_dat->pdev->dev,
1350 			"%s FAIL:invoking pch_spi_free_resources\n", __func__);
1351 		pch_spi_free_resources(board_dat, data);
1352 	}
1353 
1354 	dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1355 
1356 	return retval;
1357 }
1358 
1359 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1360 			     struct pch_spi_data *data)
1361 {
1362 	struct pch_spi_dma_ctrl *dma;
1363 
1364 	dma = &data->dma;
1365 	if (dma->tx_buf_dma)
1366 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1367 				  dma->tx_buf_virt, dma->tx_buf_dma);
1368 	if (dma->rx_buf_dma)
1369 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1370 				  dma->rx_buf_virt, dma->rx_buf_dma);
1371 	return;
1372 }
1373 
1374 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1375 			      struct pch_spi_data *data)
1376 {
1377 	struct pch_spi_dma_ctrl *dma;
1378 
1379 	dma = &data->dma;
1380 	/* Get Consistent memory for Tx DMA */
1381 	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1382 				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1383 	/* Get Consistent memory for Rx DMA */
1384 	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1385 				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1386 }
1387 
1388 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1389 {
1390 	int ret;
1391 	struct spi_master *master;
1392 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1393 	struct pch_spi_data *data;
1394 
1395 	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1396 
1397 	master = spi_alloc_master(&board_dat->pdev->dev,
1398 				  sizeof(struct pch_spi_data));
1399 	if (!master) {
1400 		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1401 			plat_dev->id);
1402 		return -ENOMEM;
1403 	}
1404 
1405 	data = spi_master_get_devdata(master);
1406 	data->master = master;
1407 
1408 	platform_set_drvdata(plat_dev, data);
1409 
1410 	/* baseaddress + address offset) */
1411 	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1412 					 PCH_ADDRESS_SIZE * plat_dev->id;
1413 	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1414 					 PCH_ADDRESS_SIZE * plat_dev->id;
1415 	if (!data->io_remap_addr) {
1416 		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1417 		ret = -ENOMEM;
1418 		goto err_pci_iomap;
1419 	}
1420 
1421 	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1422 		plat_dev->id, data->io_remap_addr);
1423 
1424 	/* initialize members of SPI master */
1425 	master->num_chipselect = PCH_MAX_CS;
1426 	master->setup = pch_spi_setup;
1427 	master->transfer = pch_spi_transfer;
1428 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1429 	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1430 
1431 	data->board_dat = board_dat;
1432 	data->plat_dev = plat_dev;
1433 	data->n_curnt_chip = 255;
1434 	data->status = STATUS_RUNNING;
1435 	data->ch = plat_dev->id;
1436 	data->use_dma = use_dma;
1437 
1438 	INIT_LIST_HEAD(&data->queue);
1439 	spin_lock_init(&data->lock);
1440 	INIT_WORK(&data->work, pch_spi_process_messages);
1441 	init_waitqueue_head(&data->wait);
1442 
1443 	ret = pch_spi_get_resources(board_dat, data);
1444 	if (ret) {
1445 		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1446 		goto err_spi_get_resources;
1447 	}
1448 
1449 	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1450 			  IRQF_SHARED, KBUILD_MODNAME, data);
1451 	if (ret) {
1452 		dev_err(&plat_dev->dev,
1453 			"%s request_irq failed\n", __func__);
1454 		goto err_request_irq;
1455 	}
1456 	data->irq_reg_sts = true;
1457 
1458 	pch_spi_set_master_mode(master);
1459 
1460 	ret = spi_register_master(master);
1461 	if (ret != 0) {
1462 		dev_err(&plat_dev->dev,
1463 			"%s spi_register_master FAILED\n", __func__);
1464 		goto err_spi_register_master;
1465 	}
1466 
1467 	if (use_dma) {
1468 		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1469 		pch_alloc_dma_buf(board_dat, data);
1470 	}
1471 
1472 	return 0;
1473 
1474 err_spi_register_master:
1475 	free_irq(board_dat->pdev->irq, data);
1476 err_request_irq:
1477 	pch_spi_free_resources(board_dat, data);
1478 err_spi_get_resources:
1479 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1480 err_pci_iomap:
1481 	spi_master_put(master);
1482 
1483 	return ret;
1484 }
1485 
1486 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1487 {
1488 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1489 	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1490 	int count;
1491 	unsigned long flags;
1492 
1493 	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1494 		__func__, plat_dev->id, board_dat->pdev->irq);
1495 
1496 	if (use_dma)
1497 		pch_free_dma_buf(board_dat, data);
1498 
1499 	/* check for any pending messages; no action is taken if the queue
1500 	 * is still full; but at least we tried.  Unload anyway */
1501 	count = 500;
1502 	spin_lock_irqsave(&data->lock, flags);
1503 	data->status = STATUS_EXITING;
1504 	while ((list_empty(&data->queue) == 0) && --count) {
1505 		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1506 			__func__);
1507 		spin_unlock_irqrestore(&data->lock, flags);
1508 		msleep(PCH_SLEEP_TIME);
1509 		spin_lock_irqsave(&data->lock, flags);
1510 	}
1511 	spin_unlock_irqrestore(&data->lock, flags);
1512 
1513 	pch_spi_free_resources(board_dat, data);
1514 	/* disable interrupts & free IRQ */
1515 	if (data->irq_reg_sts) {
1516 		/* disable interrupts */
1517 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1518 		data->irq_reg_sts = false;
1519 		free_irq(board_dat->pdev->irq, data);
1520 	}
1521 
1522 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1523 	spi_unregister_master(data->master);
1524 
1525 	return 0;
1526 }
1527 #ifdef CONFIG_PM
1528 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1529 			      pm_message_t state)
1530 {
1531 	u8 count;
1532 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1533 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1534 
1535 	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1536 
1537 	if (!board_dat) {
1538 		dev_err(&pd_dev->dev,
1539 			"%s pci_get_drvdata returned NULL\n", __func__);
1540 		return -EFAULT;
1541 	}
1542 
1543 	/* check if the current message is processed:
1544 	   Only after thats done the transfer will be suspended */
1545 	count = 255;
1546 	while ((--count) > 0) {
1547 		if (!(data->bcurrent_msg_processing))
1548 			break;
1549 		msleep(PCH_SLEEP_TIME);
1550 	}
1551 
1552 	/* Free IRQ */
1553 	if (data->irq_reg_sts) {
1554 		/* disable all interrupts */
1555 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1556 		pch_spi_reset(data->master);
1557 		free_irq(board_dat->pdev->irq, data);
1558 
1559 		data->irq_reg_sts = false;
1560 		dev_dbg(&pd_dev->dev,
1561 			"%s free_irq invoked successfully.\n", __func__);
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1568 {
1569 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1570 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1571 	int retval;
1572 
1573 	if (!board_dat) {
1574 		dev_err(&pd_dev->dev,
1575 			"%s pci_get_drvdata returned NULL\n", __func__);
1576 		return -EFAULT;
1577 	}
1578 
1579 	if (!data->irq_reg_sts) {
1580 		/* register IRQ */
1581 		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1582 				     IRQF_SHARED, KBUILD_MODNAME, data);
1583 		if (retval < 0) {
1584 			dev_err(&pd_dev->dev,
1585 				"%s request_irq failed\n", __func__);
1586 			return retval;
1587 		}
1588 
1589 		/* reset PCH SPI h/w */
1590 		pch_spi_reset(data->master);
1591 		pch_spi_set_master_mode(data->master);
1592 		data->irq_reg_sts = true;
1593 	}
1594 	return 0;
1595 }
1596 #else
1597 #define pch_spi_pd_suspend NULL
1598 #define pch_spi_pd_resume NULL
1599 #endif
1600 
1601 static struct platform_driver pch_spi_pd_driver = {
1602 	.driver = {
1603 		.name = "pch-spi",
1604 		.owner = THIS_MODULE,
1605 	},
1606 	.probe = pch_spi_pd_probe,
1607 	.remove = pch_spi_pd_remove,
1608 	.suspend = pch_spi_pd_suspend,
1609 	.resume = pch_spi_pd_resume
1610 };
1611 
1612 static int pch_spi_probe(struct pci_dev *pdev,
1613 				   const struct pci_device_id *id)
1614 {
1615 	struct pch_spi_board_data *board_dat;
1616 	struct platform_device *pd_dev = NULL;
1617 	int retval;
1618 	int i;
1619 	struct pch_pd_dev_save *pd_dev_save;
1620 
1621 	pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1622 	if (!pd_dev_save) {
1623 		dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1624 		return -ENOMEM;
1625 	}
1626 
1627 	board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1628 	if (!board_dat) {
1629 		dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1630 		retval = -ENOMEM;
1631 		goto err_no_mem;
1632 	}
1633 
1634 	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1635 	if (retval) {
1636 		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1637 		goto pci_request_regions;
1638 	}
1639 
1640 	board_dat->pdev = pdev;
1641 	board_dat->num = id->driver_data;
1642 	pd_dev_save->num = id->driver_data;
1643 	pd_dev_save->board_dat = board_dat;
1644 
1645 	retval = pci_enable_device(pdev);
1646 	if (retval) {
1647 		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1648 		goto pci_enable_device;
1649 	}
1650 
1651 	for (i = 0; i < board_dat->num; i++) {
1652 		pd_dev = platform_device_alloc("pch-spi", i);
1653 		if (!pd_dev) {
1654 			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1655 			retval = -ENOMEM;
1656 			goto err_platform_device;
1657 		}
1658 		pd_dev_save->pd_save[i] = pd_dev;
1659 		pd_dev->dev.parent = &pdev->dev;
1660 
1661 		retval = platform_device_add_data(pd_dev, board_dat,
1662 						  sizeof(*board_dat));
1663 		if (retval) {
1664 			dev_err(&pdev->dev,
1665 				"platform_device_add_data failed\n");
1666 			platform_device_put(pd_dev);
1667 			goto err_platform_device;
1668 		}
1669 
1670 		retval = platform_device_add(pd_dev);
1671 		if (retval) {
1672 			dev_err(&pdev->dev, "platform_device_add failed\n");
1673 			platform_device_put(pd_dev);
1674 			goto err_platform_device;
1675 		}
1676 	}
1677 
1678 	pci_set_drvdata(pdev, pd_dev_save);
1679 
1680 	return 0;
1681 
1682 err_platform_device:
1683 	pci_disable_device(pdev);
1684 pci_enable_device:
1685 	pci_release_regions(pdev);
1686 pci_request_regions:
1687 	kfree(board_dat);
1688 err_no_mem:
1689 	kfree(pd_dev_save);
1690 
1691 	return retval;
1692 }
1693 
1694 static void pch_spi_remove(struct pci_dev *pdev)
1695 {
1696 	int i;
1697 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1698 
1699 	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1700 
1701 	for (i = 0; i < pd_dev_save->num; i++)
1702 		platform_device_unregister(pd_dev_save->pd_save[i]);
1703 
1704 	pci_disable_device(pdev);
1705 	pci_release_regions(pdev);
1706 	kfree(pd_dev_save->board_dat);
1707 	kfree(pd_dev_save);
1708 }
1709 
1710 #ifdef CONFIG_PM
1711 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1712 {
1713 	int retval;
1714 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1715 
1716 	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1717 
1718 	pd_dev_save->board_dat->suspend_sts = true;
1719 
1720 	/* save config space */
1721 	retval = pci_save_state(pdev);
1722 	if (retval == 0) {
1723 		pci_enable_wake(pdev, PCI_D3hot, 0);
1724 		pci_disable_device(pdev);
1725 		pci_set_power_state(pdev, PCI_D3hot);
1726 	} else {
1727 		dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1728 	}
1729 
1730 	return retval;
1731 }
1732 
1733 static int pch_spi_resume(struct pci_dev *pdev)
1734 {
1735 	int retval;
1736 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1737 	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1738 
1739 	pci_set_power_state(pdev, PCI_D0);
1740 	pci_restore_state(pdev);
1741 
1742 	retval = pci_enable_device(pdev);
1743 	if (retval < 0) {
1744 		dev_err(&pdev->dev,
1745 			"%s pci_enable_device failed\n", __func__);
1746 	} else {
1747 		pci_enable_wake(pdev, PCI_D3hot, 0);
1748 
1749 		/* set suspend status to false */
1750 		pd_dev_save->board_dat->suspend_sts = false;
1751 	}
1752 
1753 	return retval;
1754 }
1755 #else
1756 #define pch_spi_suspend NULL
1757 #define pch_spi_resume NULL
1758 
1759 #endif
1760 
1761 static struct pci_driver pch_spi_pcidev_driver = {
1762 	.name = "pch_spi",
1763 	.id_table = pch_spi_pcidev_id,
1764 	.probe = pch_spi_probe,
1765 	.remove = pch_spi_remove,
1766 	.suspend = pch_spi_suspend,
1767 	.resume = pch_spi_resume,
1768 };
1769 
1770 static int __init pch_spi_init(void)
1771 {
1772 	int ret;
1773 	ret = platform_driver_register(&pch_spi_pd_driver);
1774 	if (ret)
1775 		return ret;
1776 
1777 	ret = pci_register_driver(&pch_spi_pcidev_driver);
1778 	if (ret) {
1779 		platform_driver_unregister(&pch_spi_pd_driver);
1780 		return ret;
1781 	}
1782 
1783 	return 0;
1784 }
1785 module_init(pch_spi_init);
1786 
1787 static void __exit pch_spi_exit(void)
1788 {
1789 	pci_unregister_driver(&pch_spi_pcidev_driver);
1790 	platform_driver_unregister(&pch_spi_pd_driver);
1791 }
1792 module_exit(pch_spi_exit);
1793 
1794 module_param(use_dma, int, 0644);
1795 MODULE_PARM_DESC(use_dma,
1796 		 "to use DMA for data transfers pass 1 else 0; default 1");
1797 
1798 MODULE_LICENSE("GPL");
1799 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1800 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1801 
1802