1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/pci.h>
18 #include <linux/wait.h>
19 #include <linux/spi/spi.h>
20 #include <linux/interrupt.h>
21 #include <linux/sched.h>
22 #include <linux/spi/spidev.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/platform_device.h>
26 
27 #include <linux/dmaengine.h>
28 #include <linux/pch_dma.h>
29 
30 /* Register offsets */
31 #define PCH_SPCR		0x00	/* SPI control register */
32 #define PCH_SPBRR		0x04	/* SPI baud rate register */
33 #define PCH_SPSR		0x08	/* SPI status register */
34 #define PCH_SPDWR		0x0C	/* SPI write data register */
35 #define PCH_SPDRR		0x10	/* SPI read data register */
36 #define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
37 #define PCH_SRST		0x1C	/* SPI reset register */
38 #define PCH_ADDRESS_SIZE	0x20
39 
40 #define PCH_SPSR_TFD		0x000007C0
41 #define PCH_SPSR_RFD		0x0000F800
42 
43 #define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
44 #define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
45 
46 #define PCH_RX_THOLD		7
47 #define PCH_RX_THOLD_MAX	15
48 
49 #define PCH_TX_THOLD		2
50 
51 #define PCH_MAX_BAUDRATE	5000000
52 #define PCH_MAX_FIFO_DEPTH	16
53 
54 #define STATUS_RUNNING		1
55 #define STATUS_EXITING		2
56 #define PCH_SLEEP_TIME		10
57 
58 #define SSN_LOW			0x02U
59 #define SSN_HIGH		0x03U
60 #define SSN_NO_CONTROL		0x00U
61 #define PCH_MAX_CS		0xFF
62 #define PCI_DEVICE_ID_GE_SPI	0x8816
63 
64 #define SPCR_SPE_BIT		(1 << 0)
65 #define SPCR_MSTR_BIT		(1 << 1)
66 #define SPCR_LSBF_BIT		(1 << 4)
67 #define SPCR_CPHA_BIT		(1 << 5)
68 #define SPCR_CPOL_BIT		(1 << 6)
69 #define SPCR_TFIE_BIT		(1 << 8)
70 #define SPCR_RFIE_BIT		(1 << 9)
71 #define SPCR_FIE_BIT		(1 << 10)
72 #define SPCR_ORIE_BIT		(1 << 11)
73 #define SPCR_MDFIE_BIT		(1 << 12)
74 #define SPCR_FICLR_BIT		(1 << 24)
75 #define SPSR_TFI_BIT		(1 << 0)
76 #define SPSR_RFI_BIT		(1 << 1)
77 #define SPSR_FI_BIT		(1 << 2)
78 #define SPSR_ORF_BIT		(1 << 3)
79 #define SPBRR_SIZE_BIT		(1 << 10)
80 
81 #define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
82 				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
83 
84 #define SPCR_RFIC_FIELD		20
85 #define SPCR_TFIC_FIELD		16
86 
87 #define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
88 #define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
89 #define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
90 
91 #define PCH_CLOCK_HZ		50000000
92 #define PCH_MAX_SPBR		1023
93 
94 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
95 #define PCI_DEVICE_ID_ML7213_SPI	0x802c
96 #define PCI_DEVICE_ID_ML7223_SPI	0x800F
97 #define PCI_DEVICE_ID_ML7831_SPI	0x8816
98 
99 /*
100  * Set the number of SPI instance max
101  * Intel EG20T PCH :		1ch
102  * LAPIS Semiconductor ML7213 IOH :	2ch
103  * LAPIS Semiconductor ML7223 IOH :	1ch
104  * LAPIS Semiconductor ML7831 IOH :	1ch
105 */
106 #define PCH_SPI_MAX_DEV			2
107 
108 #define PCH_BUF_SIZE		4096
109 #define PCH_DMA_TRANS_SIZE	12
110 
111 static int use_dma = 1;
112 
113 struct pch_spi_dma_ctrl {
114 	struct dma_async_tx_descriptor	*desc_tx;
115 	struct dma_async_tx_descriptor	*desc_rx;
116 	struct pch_dma_slave		param_tx;
117 	struct pch_dma_slave		param_rx;
118 	struct dma_chan		*chan_tx;
119 	struct dma_chan		*chan_rx;
120 	struct scatterlist		*sg_tx_p;
121 	struct scatterlist		*sg_rx_p;
122 	struct scatterlist		sg_tx;
123 	struct scatterlist		sg_rx;
124 	int				nent;
125 	void				*tx_buf_virt;
126 	void				*rx_buf_virt;
127 	dma_addr_t			tx_buf_dma;
128 	dma_addr_t			rx_buf_dma;
129 };
130 /**
131  * struct pch_spi_data - Holds the SPI channel specific details
132  * @io_remap_addr:		The remapped PCI base address
133  * @master:			Pointer to the SPI master structure
134  * @work:			Reference to work queue handler
135  * @wait:			Wait queue for waking up upon receiving an
136  *				interrupt.
137  * @transfer_complete:		Status of SPI Transfer
138  * @bcurrent_msg_processing:	Status flag for message processing
139  * @lock:			Lock for protecting this structure
140  * @queue:			SPI Message queue
141  * @status:			Status of the SPI driver
142  * @bpw_len:			Length of data to be transferred in bits per
143  *				word
144  * @transfer_active:		Flag showing active transfer
145  * @tx_index:			Transmit data count; for bookkeeping during
146  *				transfer
147  * @rx_index:			Receive data count; for bookkeeping during
148  *				transfer
149  * @tx_buff:			Buffer for data to be transmitted
150  * @rx_index:			Buffer for Received data
151  * @n_curnt_chip:		The chip number that this SPI driver currently
152  *				operates on
153  * @current_chip:		Reference to the current chip that this SPI
154  *				driver currently operates on
155  * @current_msg:		The current message that this SPI driver is
156  *				handling
157  * @cur_trans:			The current transfer that this SPI driver is
158  *				handling
159  * @board_dat:			Reference to the SPI device data structure
160  * @plat_dev:			platform_device structure
161  * @ch:				SPI channel number
162  * @irq_reg_sts:		Status of IRQ registration
163  */
164 struct pch_spi_data {
165 	void __iomem *io_remap_addr;
166 	unsigned long io_base_addr;
167 	struct spi_master *master;
168 	struct work_struct work;
169 	wait_queue_head_t wait;
170 	u8 transfer_complete;
171 	u8 bcurrent_msg_processing;
172 	spinlock_t lock;
173 	struct list_head queue;
174 	u8 status;
175 	u32 bpw_len;
176 	u8 transfer_active;
177 	u32 tx_index;
178 	u32 rx_index;
179 	u16 *pkt_tx_buff;
180 	u16 *pkt_rx_buff;
181 	u8 n_curnt_chip;
182 	struct spi_device *current_chip;
183 	struct spi_message *current_msg;
184 	struct spi_transfer *cur_trans;
185 	struct pch_spi_board_data *board_dat;
186 	struct platform_device	*plat_dev;
187 	int ch;
188 	struct pch_spi_dma_ctrl dma;
189 	int use_dma;
190 	u8 irq_reg_sts;
191 	int save_total_len;
192 };
193 
194 /**
195  * struct pch_spi_board_data - Holds the SPI device specific details
196  * @pdev:		Pointer to the PCI device
197  * @suspend_sts:	Status of suspend
198  * @num:		The number of SPI device instance
199  */
200 struct pch_spi_board_data {
201 	struct pci_dev *pdev;
202 	u8 suspend_sts;
203 	int num;
204 };
205 
206 struct pch_pd_dev_save {
207 	int num;
208 	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
209 	struct pch_spi_board_data *board_dat;
210 };
211 
212 static const struct pci_device_id pch_spi_pcidev_id[] = {
213 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
214 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
215 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
216 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
217 	{ }
218 };
219 
220 /**
221  * pch_spi_writereg() - Performs  register writes
222  * @master:	Pointer to struct spi_master.
223  * @idx:	Register offset.
224  * @val:	Value to be written to register.
225  */
226 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
227 {
228 	struct pch_spi_data *data = spi_master_get_devdata(master);
229 	iowrite32(val, (data->io_remap_addr + idx));
230 }
231 
232 /**
233  * pch_spi_readreg() - Performs register reads
234  * @master:	Pointer to struct spi_master.
235  * @idx:	Register offset.
236  */
237 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
238 {
239 	struct pch_spi_data *data = spi_master_get_devdata(master);
240 	return ioread32(data->io_remap_addr + idx);
241 }
242 
243 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
244 				      u32 set, u32 clr)
245 {
246 	u32 tmp = pch_spi_readreg(master, idx);
247 	tmp = (tmp & ~clr) | set;
248 	pch_spi_writereg(master, idx, tmp);
249 }
250 
251 static void pch_spi_set_master_mode(struct spi_master *master)
252 {
253 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
254 }
255 
256 /**
257  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
258  * @master:	Pointer to struct spi_master.
259  */
260 static void pch_spi_clear_fifo(struct spi_master *master)
261 {
262 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
263 	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
264 }
265 
266 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
267 				void __iomem *io_remap_addr)
268 {
269 	u32 n_read, tx_index, rx_index, bpw_len;
270 	u16 *pkt_rx_buffer, *pkt_tx_buff;
271 	int read_cnt;
272 	u32 reg_spcr_val;
273 	void __iomem *spsr;
274 	void __iomem *spdrr;
275 	void __iomem *spdwr;
276 
277 	spsr = io_remap_addr + PCH_SPSR;
278 	iowrite32(reg_spsr_val, spsr);
279 
280 	if (data->transfer_active) {
281 		rx_index = data->rx_index;
282 		tx_index = data->tx_index;
283 		bpw_len = data->bpw_len;
284 		pkt_rx_buffer = data->pkt_rx_buff;
285 		pkt_tx_buff = data->pkt_tx_buff;
286 
287 		spdrr = io_remap_addr + PCH_SPDRR;
288 		spdwr = io_remap_addr + PCH_SPDWR;
289 
290 		n_read = PCH_READABLE(reg_spsr_val);
291 
292 		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
293 			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
294 			if (tx_index < bpw_len)
295 				iowrite32(pkt_tx_buff[tx_index++], spdwr);
296 		}
297 
298 		/* disable RFI if not needed */
299 		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
300 			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
301 			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
302 
303 			/* reset rx threshold */
304 			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
305 			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
306 
307 			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
308 		}
309 
310 		/* update counts */
311 		data->tx_index = tx_index;
312 		data->rx_index = rx_index;
313 
314 		/* if transfer complete interrupt */
315 		if (reg_spsr_val & SPSR_FI_BIT) {
316 			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
317 				/* disable interrupts */
318 				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
319 						   PCH_ALL);
320 
321 				/* transfer is completed;
322 				   inform pch_spi_process_messages */
323 				data->transfer_complete = true;
324 				data->transfer_active = false;
325 				wake_up(&data->wait);
326 			} else {
327 				dev_vdbg(&data->master->dev,
328 					"%s : Transfer is not completed",
329 					__func__);
330 			}
331 		}
332 	}
333 }
334 
335 /**
336  * pch_spi_handler() - Interrupt handler
337  * @irq:	The interrupt number.
338  * @dev_id:	Pointer to struct pch_spi_board_data.
339  */
340 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
341 {
342 	u32 reg_spsr_val;
343 	void __iomem *spsr;
344 	void __iomem *io_remap_addr;
345 	irqreturn_t ret = IRQ_NONE;
346 	struct pch_spi_data *data = dev_id;
347 	struct pch_spi_board_data *board_dat = data->board_dat;
348 
349 	if (board_dat->suspend_sts) {
350 		dev_dbg(&board_dat->pdev->dev,
351 			"%s returning due to suspend\n", __func__);
352 		return IRQ_NONE;
353 	}
354 
355 	io_remap_addr = data->io_remap_addr;
356 	spsr = io_remap_addr + PCH_SPSR;
357 
358 	reg_spsr_val = ioread32(spsr);
359 
360 	if (reg_spsr_val & SPSR_ORF_BIT) {
361 		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
362 		if (data->current_msg->complete) {
363 			data->transfer_complete = true;
364 			data->current_msg->status = -EIO;
365 			data->current_msg->complete(data->current_msg->context);
366 			data->bcurrent_msg_processing = false;
367 			data->current_msg = NULL;
368 			data->cur_trans = NULL;
369 		}
370 	}
371 
372 	if (data->use_dma)
373 		return IRQ_NONE;
374 
375 	/* Check if the interrupt is for SPI device */
376 	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
377 		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
378 		ret = IRQ_HANDLED;
379 	}
380 
381 	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
382 		__func__, ret);
383 
384 	return ret;
385 }
386 
387 /**
388  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
389  * @master:	Pointer to struct spi_master.
390  * @speed_hz:	Baud rate.
391  */
392 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
393 {
394 	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
395 
396 	/* if baud rate is less than we can support limit it */
397 	if (n_spbr > PCH_MAX_SPBR)
398 		n_spbr = PCH_MAX_SPBR;
399 
400 	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
401 }
402 
403 /**
404  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
405  * @master:		Pointer to struct spi_master.
406  * @bits_per_word:	Bits per word for SPI transfer.
407  */
408 static void pch_spi_set_bits_per_word(struct spi_master *master,
409 				      u8 bits_per_word)
410 {
411 	if (bits_per_word == 8)
412 		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
413 	else
414 		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
415 }
416 
417 /**
418  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
419  * @spi:	Pointer to struct spi_device.
420  */
421 static void pch_spi_setup_transfer(struct spi_device *spi)
422 {
423 	u32 flags = 0;
424 
425 	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
426 		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
427 		spi->max_speed_hz);
428 	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
429 
430 	/* set bits per word */
431 	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
432 
433 	if (!(spi->mode & SPI_LSB_FIRST))
434 		flags |= SPCR_LSBF_BIT;
435 	if (spi->mode & SPI_CPOL)
436 		flags |= SPCR_CPOL_BIT;
437 	if (spi->mode & SPI_CPHA)
438 		flags |= SPCR_CPHA_BIT;
439 	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
440 			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
441 
442 	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
443 	pch_spi_clear_fifo(spi->master);
444 }
445 
446 /**
447  * pch_spi_reset() - Clears SPI registers
448  * @master:	Pointer to struct spi_master.
449  */
450 static void pch_spi_reset(struct spi_master *master)
451 {
452 	/* write 1 to reset SPI */
453 	pch_spi_writereg(master, PCH_SRST, 0x1);
454 
455 	/* clear reset */
456 	pch_spi_writereg(master, PCH_SRST, 0x0);
457 }
458 
459 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
460 {
461 
462 	struct spi_transfer *transfer;
463 	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
464 	int retval;
465 	unsigned long flags;
466 
467 	spin_lock_irqsave(&data->lock, flags);
468 	/* validate Tx/Rx buffers and Transfer length */
469 	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
470 		if (!transfer->tx_buf && !transfer->rx_buf) {
471 			dev_err(&pspi->dev,
472 				"%s Tx and Rx buffer NULL\n", __func__);
473 			retval = -EINVAL;
474 			goto err_return_spinlock;
475 		}
476 
477 		if (!transfer->len) {
478 			dev_err(&pspi->dev, "%s Transfer length invalid\n",
479 				__func__);
480 			retval = -EINVAL;
481 			goto err_return_spinlock;
482 		}
483 
484 		dev_dbg(&pspi->dev,
485 			"%s Tx/Rx buffer valid. Transfer length valid\n",
486 			__func__);
487 	}
488 	spin_unlock_irqrestore(&data->lock, flags);
489 
490 	/* We won't process any messages if we have been asked to terminate */
491 	if (data->status == STATUS_EXITING) {
492 		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
493 		retval = -ESHUTDOWN;
494 		goto err_out;
495 	}
496 
497 	/* If suspended ,return -EINVAL */
498 	if (data->board_dat->suspend_sts) {
499 		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
500 		retval = -EINVAL;
501 		goto err_out;
502 	}
503 
504 	/* set status of message */
505 	pmsg->actual_length = 0;
506 	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
507 
508 	pmsg->status = -EINPROGRESS;
509 	spin_lock_irqsave(&data->lock, flags);
510 	/* add message to queue */
511 	list_add_tail(&pmsg->queue, &data->queue);
512 	spin_unlock_irqrestore(&data->lock, flags);
513 
514 	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
515 
516 	schedule_work(&data->work);
517 	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
518 
519 	retval = 0;
520 
521 err_out:
522 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
523 	return retval;
524 err_return_spinlock:
525 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
526 	spin_unlock_irqrestore(&data->lock, flags);
527 	return retval;
528 }
529 
530 static inline void pch_spi_select_chip(struct pch_spi_data *data,
531 				       struct spi_device *pspi)
532 {
533 	if (data->current_chip != NULL) {
534 		if (pspi->chip_select != data->n_curnt_chip) {
535 			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
536 			data->current_chip = NULL;
537 		}
538 	}
539 
540 	data->current_chip = pspi;
541 
542 	data->n_curnt_chip = data->current_chip->chip_select;
543 
544 	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
545 	pch_spi_setup_transfer(pspi);
546 }
547 
548 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
549 {
550 	int size;
551 	u32 n_writes;
552 	int j;
553 	struct spi_message *pmsg, *tmp;
554 	const u8 *tx_buf;
555 	const u16 *tx_sbuf;
556 
557 	/* set baud rate if needed */
558 	if (data->cur_trans->speed_hz) {
559 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
560 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
561 	}
562 
563 	/* set bits per word if needed */
564 	if (data->cur_trans->bits_per_word &&
565 	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
566 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
567 		pch_spi_set_bits_per_word(data->master,
568 					  data->cur_trans->bits_per_word);
569 		*bpw = data->cur_trans->bits_per_word;
570 	} else {
571 		*bpw = data->current_msg->spi->bits_per_word;
572 	}
573 
574 	/* reset Tx/Rx index */
575 	data->tx_index = 0;
576 	data->rx_index = 0;
577 
578 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
579 
580 	/* find alloc size */
581 	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
582 
583 	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
584 	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
585 	if (data->pkt_tx_buff != NULL) {
586 		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
587 		if (!data->pkt_rx_buff)
588 			kfree(data->pkt_tx_buff);
589 	}
590 
591 	if (!data->pkt_rx_buff) {
592 		/* flush queue and set status of all transfers to -ENOMEM */
593 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
594 			pmsg->status = -ENOMEM;
595 
596 			if (pmsg->complete)
597 				pmsg->complete(pmsg->context);
598 
599 			/* delete from queue */
600 			list_del_init(&pmsg->queue);
601 		}
602 		return;
603 	}
604 
605 	/* copy Tx Data */
606 	if (data->cur_trans->tx_buf != NULL) {
607 		if (*bpw == 8) {
608 			tx_buf = data->cur_trans->tx_buf;
609 			for (j = 0; j < data->bpw_len; j++)
610 				data->pkt_tx_buff[j] = *tx_buf++;
611 		} else {
612 			tx_sbuf = data->cur_trans->tx_buf;
613 			for (j = 0; j < data->bpw_len; j++)
614 				data->pkt_tx_buff[j] = *tx_sbuf++;
615 		}
616 	}
617 
618 	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
619 	n_writes = data->bpw_len;
620 	if (n_writes > PCH_MAX_FIFO_DEPTH)
621 		n_writes = PCH_MAX_FIFO_DEPTH;
622 
623 	dev_dbg(&data->master->dev,
624 		"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
625 		__func__);
626 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
627 
628 	for (j = 0; j < n_writes; j++)
629 		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
630 
631 	/* update tx_index */
632 	data->tx_index = j;
633 
634 	/* reset transfer complete flag */
635 	data->transfer_complete = false;
636 	data->transfer_active = true;
637 }
638 
639 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
640 {
641 	struct spi_message *pmsg, *tmp;
642 	dev_dbg(&data->master->dev, "%s called\n", __func__);
643 	/* Invoke complete callback
644 	 * [To the spi core..indicating end of transfer] */
645 	data->current_msg->status = 0;
646 
647 	if (data->current_msg->complete) {
648 		dev_dbg(&data->master->dev,
649 			"%s:Invoking callback of SPI core\n", __func__);
650 		data->current_msg->complete(data->current_msg->context);
651 	}
652 
653 	/* update status in global variable */
654 	data->bcurrent_msg_processing = false;
655 
656 	dev_dbg(&data->master->dev,
657 		"%s:data->bcurrent_msg_processing = false\n", __func__);
658 
659 	data->current_msg = NULL;
660 	data->cur_trans = NULL;
661 
662 	/* check if we have items in list and not suspending
663 	 * return 1 if list empty */
664 	if ((list_empty(&data->queue) == 0) &&
665 	    (!data->board_dat->suspend_sts) &&
666 	    (data->status != STATUS_EXITING)) {
667 		/* We have some more work to do (either there is more tranint
668 		 * bpw;sfer requests in the current message or there are
669 		 *more messages)
670 		 */
671 		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
672 		schedule_work(&data->work);
673 	} else if (data->board_dat->suspend_sts ||
674 		   data->status == STATUS_EXITING) {
675 		dev_dbg(&data->master->dev,
676 			"%s suspend/remove initiated, flushing queue\n",
677 			__func__);
678 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
679 			pmsg->status = -EIO;
680 
681 			if (pmsg->complete)
682 				pmsg->complete(pmsg->context);
683 
684 			/* delete from queue */
685 			list_del_init(&pmsg->queue);
686 		}
687 	}
688 }
689 
690 static void pch_spi_set_ir(struct pch_spi_data *data)
691 {
692 	/* enable interrupts, set threshold, enable SPI */
693 	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
694 		/* set receive threshold to PCH_RX_THOLD */
695 		pch_spi_setclr_reg(data->master, PCH_SPCR,
696 				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
697 				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
698 				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
699 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
700 	else
701 		/* set receive threshold to maximum */
702 		pch_spi_setclr_reg(data->master, PCH_SPCR,
703 				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
704 				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
705 				   SPCR_SPE_BIT,
706 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
707 
708 	/* Wait until the transfer completes; go to sleep after
709 				 initiating the transfer. */
710 	dev_dbg(&data->master->dev,
711 		"%s:waiting for transfer to get over\n", __func__);
712 
713 	wait_event_interruptible(data->wait, data->transfer_complete);
714 
715 	/* clear all interrupts */
716 	pch_spi_writereg(data->master, PCH_SPSR,
717 			 pch_spi_readreg(data->master, PCH_SPSR));
718 	/* Disable interrupts and SPI transfer */
719 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
720 	/* clear FIFO */
721 	pch_spi_clear_fifo(data->master);
722 }
723 
724 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
725 {
726 	int j;
727 	u8 *rx_buf;
728 	u16 *rx_sbuf;
729 
730 	/* copy Rx Data */
731 	if (!data->cur_trans->rx_buf)
732 		return;
733 
734 	if (bpw == 8) {
735 		rx_buf = data->cur_trans->rx_buf;
736 		for (j = 0; j < data->bpw_len; j++)
737 			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
738 	} else {
739 		rx_sbuf = data->cur_trans->rx_buf;
740 		for (j = 0; j < data->bpw_len; j++)
741 			*rx_sbuf++ = data->pkt_rx_buff[j];
742 	}
743 }
744 
745 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
746 {
747 	int j;
748 	u8 *rx_buf;
749 	u16 *rx_sbuf;
750 	const u8 *rx_dma_buf;
751 	const u16 *rx_dma_sbuf;
752 
753 	/* copy Rx Data */
754 	if (!data->cur_trans->rx_buf)
755 		return;
756 
757 	if (bpw == 8) {
758 		rx_buf = data->cur_trans->rx_buf;
759 		rx_dma_buf = data->dma.rx_buf_virt;
760 		for (j = 0; j < data->bpw_len; j++)
761 			*rx_buf++ = *rx_dma_buf++ & 0xFF;
762 		data->cur_trans->rx_buf = rx_buf;
763 	} else {
764 		rx_sbuf = data->cur_trans->rx_buf;
765 		rx_dma_sbuf = data->dma.rx_buf_virt;
766 		for (j = 0; j < data->bpw_len; j++)
767 			*rx_sbuf++ = *rx_dma_sbuf++;
768 		data->cur_trans->rx_buf = rx_sbuf;
769 	}
770 }
771 
772 static int pch_spi_start_transfer(struct pch_spi_data *data)
773 {
774 	struct pch_spi_dma_ctrl *dma;
775 	unsigned long flags;
776 	int rtn;
777 
778 	dma = &data->dma;
779 
780 	spin_lock_irqsave(&data->lock, flags);
781 
782 	/* disable interrupts, SPI set enable */
783 	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
784 
785 	spin_unlock_irqrestore(&data->lock, flags);
786 
787 	/* Wait until the transfer completes; go to sleep after
788 				 initiating the transfer. */
789 	dev_dbg(&data->master->dev,
790 		"%s:waiting for transfer to get over\n", __func__);
791 	rtn = wait_event_interruptible_timeout(data->wait,
792 					       data->transfer_complete,
793 					       msecs_to_jiffies(2 * HZ));
794 	if (!rtn)
795 		dev_err(&data->master->dev,
796 			"%s wait-event timeout\n", __func__);
797 
798 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
799 			    DMA_FROM_DEVICE);
800 
801 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
802 			    DMA_FROM_DEVICE);
803 	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
804 
805 	async_tx_ack(dma->desc_rx);
806 	async_tx_ack(dma->desc_tx);
807 	kfree(dma->sg_tx_p);
808 	kfree(dma->sg_rx_p);
809 
810 	spin_lock_irqsave(&data->lock, flags);
811 
812 	/* clear fifo threshold, disable interrupts, disable SPI transfer */
813 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
814 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
815 			   SPCR_SPE_BIT);
816 	/* clear all interrupts */
817 	pch_spi_writereg(data->master, PCH_SPSR,
818 			 pch_spi_readreg(data->master, PCH_SPSR));
819 	/* clear FIFO */
820 	pch_spi_clear_fifo(data->master);
821 
822 	spin_unlock_irqrestore(&data->lock, flags);
823 
824 	return rtn;
825 }
826 
827 static void pch_dma_rx_complete(void *arg)
828 {
829 	struct pch_spi_data *data = arg;
830 
831 	/* transfer is completed;inform pch_spi_process_messages_dma */
832 	data->transfer_complete = true;
833 	wake_up_interruptible(&data->wait);
834 }
835 
836 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
837 {
838 	struct pch_dma_slave *param = slave;
839 
840 	if ((chan->chan_id == param->chan_id) &&
841 	    (param->dma_dev == chan->device->dev)) {
842 		chan->private = param;
843 		return true;
844 	} else {
845 		return false;
846 	}
847 }
848 
849 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
850 {
851 	dma_cap_mask_t mask;
852 	struct dma_chan *chan;
853 	struct pci_dev *dma_dev;
854 	struct pch_dma_slave *param;
855 	struct pch_spi_dma_ctrl *dma;
856 	unsigned int width;
857 
858 	if (bpw == 8)
859 		width = PCH_DMA_WIDTH_1_BYTE;
860 	else
861 		width = PCH_DMA_WIDTH_2_BYTES;
862 
863 	dma = &data->dma;
864 	dma_cap_zero(mask);
865 	dma_cap_set(DMA_SLAVE, mask);
866 
867 	/* Get DMA's dev information */
868 	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
869 			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
870 
871 	/* Set Tx DMA */
872 	param = &dma->param_tx;
873 	param->dma_dev = &dma_dev->dev;
874 	param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
875 	param->tx_reg = data->io_base_addr + PCH_SPDWR;
876 	param->width = width;
877 	chan = dma_request_channel(mask, pch_spi_filter, param);
878 	if (!chan) {
879 		dev_err(&data->master->dev,
880 			"ERROR: dma_request_channel FAILS(Tx)\n");
881 		data->use_dma = 0;
882 		return;
883 	}
884 	dma->chan_tx = chan;
885 
886 	/* Set Rx DMA */
887 	param = &dma->param_rx;
888 	param->dma_dev = &dma_dev->dev;
889 	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
890 	param->rx_reg = data->io_base_addr + PCH_SPDRR;
891 	param->width = width;
892 	chan = dma_request_channel(mask, pch_spi_filter, param);
893 	if (!chan) {
894 		dev_err(&data->master->dev,
895 			"ERROR: dma_request_channel FAILS(Rx)\n");
896 		dma_release_channel(dma->chan_tx);
897 		dma->chan_tx = NULL;
898 		data->use_dma = 0;
899 		return;
900 	}
901 	dma->chan_rx = chan;
902 }
903 
904 static void pch_spi_release_dma(struct pch_spi_data *data)
905 {
906 	struct pch_spi_dma_ctrl *dma;
907 
908 	dma = &data->dma;
909 	if (dma->chan_tx) {
910 		dma_release_channel(dma->chan_tx);
911 		dma->chan_tx = NULL;
912 	}
913 	if (dma->chan_rx) {
914 		dma_release_channel(dma->chan_rx);
915 		dma->chan_rx = NULL;
916 	}
917 }
918 
919 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
920 {
921 	const u8 *tx_buf;
922 	const u16 *tx_sbuf;
923 	u8 *tx_dma_buf;
924 	u16 *tx_dma_sbuf;
925 	struct scatterlist *sg;
926 	struct dma_async_tx_descriptor *desc_tx;
927 	struct dma_async_tx_descriptor *desc_rx;
928 	int num;
929 	int i;
930 	int size;
931 	int rem;
932 	int head;
933 	unsigned long flags;
934 	struct pch_spi_dma_ctrl *dma;
935 
936 	dma = &data->dma;
937 
938 	/* set baud rate if needed */
939 	if (data->cur_trans->speed_hz) {
940 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
941 		spin_lock_irqsave(&data->lock, flags);
942 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
943 		spin_unlock_irqrestore(&data->lock, flags);
944 	}
945 
946 	/* set bits per word if needed */
947 	if (data->cur_trans->bits_per_word &&
948 	    (data->current_msg->spi->bits_per_word !=
949 	     data->cur_trans->bits_per_word)) {
950 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
951 		spin_lock_irqsave(&data->lock, flags);
952 		pch_spi_set_bits_per_word(data->master,
953 					  data->cur_trans->bits_per_word);
954 		spin_unlock_irqrestore(&data->lock, flags);
955 		*bpw = data->cur_trans->bits_per_word;
956 	} else {
957 		*bpw = data->current_msg->spi->bits_per_word;
958 	}
959 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
960 
961 	if (data->bpw_len > PCH_BUF_SIZE) {
962 		data->bpw_len = PCH_BUF_SIZE;
963 		data->cur_trans->len -= PCH_BUF_SIZE;
964 	}
965 
966 	/* copy Tx Data */
967 	if (data->cur_trans->tx_buf != NULL) {
968 		if (*bpw == 8) {
969 			tx_buf = data->cur_trans->tx_buf;
970 			tx_dma_buf = dma->tx_buf_virt;
971 			for (i = 0; i < data->bpw_len; i++)
972 				*tx_dma_buf++ = *tx_buf++;
973 		} else {
974 			tx_sbuf = data->cur_trans->tx_buf;
975 			tx_dma_sbuf = dma->tx_buf_virt;
976 			for (i = 0; i < data->bpw_len; i++)
977 				*tx_dma_sbuf++ = *tx_sbuf++;
978 		}
979 	}
980 
981 	/* Calculate Rx parameter for DMA transmitting */
982 	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
983 		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
984 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
985 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
986 		} else {
987 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
988 			rem = PCH_DMA_TRANS_SIZE;
989 		}
990 		size = PCH_DMA_TRANS_SIZE;
991 	} else {
992 		num = 1;
993 		size = data->bpw_len;
994 		rem = data->bpw_len;
995 	}
996 	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
997 		__func__, num, size, rem);
998 	spin_lock_irqsave(&data->lock, flags);
999 
1000 	/* set receive fifo threshold and transmit fifo threshold */
1001 	pch_spi_setclr_reg(data->master, PCH_SPCR,
1002 			   ((size - 1) << SPCR_RFIC_FIELD) |
1003 			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1004 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1005 
1006 	spin_unlock_irqrestore(&data->lock, flags);
1007 
1008 	/* RX */
1009 	dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1010 	if (!dma->sg_rx_p)
1011 		return;
1012 
1013 	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1014 	/* offset, length setting */
1015 	sg = dma->sg_rx_p;
1016 	for (i = 0; i < num; i++, sg++) {
1017 		if (i == (num - 2)) {
1018 			sg->offset = size * i;
1019 			sg->offset = sg->offset * (*bpw / 8);
1020 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1021 				    sg->offset);
1022 			sg_dma_len(sg) = rem;
1023 		} else if (i == (num - 1)) {
1024 			sg->offset = size * (i - 1) + rem;
1025 			sg->offset = sg->offset * (*bpw / 8);
1026 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1027 				    sg->offset);
1028 			sg_dma_len(sg) = size;
1029 		} else {
1030 			sg->offset = size * i;
1031 			sg->offset = sg->offset * (*bpw / 8);
1032 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1033 				    sg->offset);
1034 			sg_dma_len(sg) = size;
1035 		}
1036 		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1037 	}
1038 	sg = dma->sg_rx_p;
1039 	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1040 					num, DMA_DEV_TO_MEM,
1041 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1042 	if (!desc_rx) {
1043 		dev_err(&data->master->dev,
1044 			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1045 		return;
1046 	}
1047 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1048 	desc_rx->callback = pch_dma_rx_complete;
1049 	desc_rx->callback_param = data;
1050 	dma->nent = num;
1051 	dma->desc_rx = desc_rx;
1052 
1053 	/* Calculate Tx parameter for DMA transmitting */
1054 	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1055 		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1056 		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1057 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1058 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1059 		} else {
1060 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1061 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1062 			      PCH_DMA_TRANS_SIZE - head;
1063 		}
1064 		size = PCH_DMA_TRANS_SIZE;
1065 	} else {
1066 		num = 1;
1067 		size = data->bpw_len;
1068 		rem = data->bpw_len;
1069 		head = 0;
1070 	}
1071 
1072 	dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1073 	if (!dma->sg_tx_p)
1074 		return;
1075 
1076 	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1077 	/* offset, length setting */
1078 	sg = dma->sg_tx_p;
1079 	for (i = 0; i < num; i++, sg++) {
1080 		if (i == 0) {
1081 			sg->offset = 0;
1082 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1083 				    sg->offset);
1084 			sg_dma_len(sg) = size + head;
1085 		} else if (i == (num - 1)) {
1086 			sg->offset = head + size * i;
1087 			sg->offset = sg->offset * (*bpw / 8);
1088 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1089 				    sg->offset);
1090 			sg_dma_len(sg) = rem;
1091 		} else {
1092 			sg->offset = head + size * i;
1093 			sg->offset = sg->offset * (*bpw / 8);
1094 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1095 				    sg->offset);
1096 			sg_dma_len(sg) = size;
1097 		}
1098 		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1099 	}
1100 	sg = dma->sg_tx_p;
1101 	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1102 					sg, num, DMA_MEM_TO_DEV,
1103 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1104 	if (!desc_tx) {
1105 		dev_err(&data->master->dev,
1106 			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1107 		return;
1108 	}
1109 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1110 	desc_tx->callback = NULL;
1111 	desc_tx->callback_param = data;
1112 	dma->nent = num;
1113 	dma->desc_tx = desc_tx;
1114 
1115 	dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1116 
1117 	spin_lock_irqsave(&data->lock, flags);
1118 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1119 	desc_rx->tx_submit(desc_rx);
1120 	desc_tx->tx_submit(desc_tx);
1121 	spin_unlock_irqrestore(&data->lock, flags);
1122 
1123 	/* reset transfer complete flag */
1124 	data->transfer_complete = false;
1125 }
1126 
1127 static void pch_spi_process_messages(struct work_struct *pwork)
1128 {
1129 	struct spi_message *pmsg, *tmp;
1130 	struct pch_spi_data *data;
1131 	int bpw;
1132 
1133 	data = container_of(pwork, struct pch_spi_data, work);
1134 	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1135 
1136 	spin_lock(&data->lock);
1137 	/* check if suspend has been initiated;if yes flush queue */
1138 	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1139 		dev_dbg(&data->master->dev,
1140 			"%s suspend/remove initiated, flushing queue\n", __func__);
1141 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1142 			pmsg->status = -EIO;
1143 
1144 			if (pmsg->complete) {
1145 				spin_unlock(&data->lock);
1146 				pmsg->complete(pmsg->context);
1147 				spin_lock(&data->lock);
1148 			}
1149 
1150 			/* delete from queue */
1151 			list_del_init(&pmsg->queue);
1152 		}
1153 
1154 		spin_unlock(&data->lock);
1155 		return;
1156 	}
1157 
1158 	data->bcurrent_msg_processing = true;
1159 	dev_dbg(&data->master->dev,
1160 		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1161 
1162 	/* Get the message from the queue and delete it from there. */
1163 	data->current_msg = list_entry(data->queue.next, struct spi_message,
1164 					queue);
1165 
1166 	list_del_init(&data->current_msg->queue);
1167 
1168 	data->current_msg->status = 0;
1169 
1170 	pch_spi_select_chip(data, data->current_msg->spi);
1171 
1172 	spin_unlock(&data->lock);
1173 
1174 	if (data->use_dma)
1175 		pch_spi_request_dma(data,
1176 				    data->current_msg->spi->bits_per_word);
1177 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1178 	do {
1179 		int cnt;
1180 		/* If we are already processing a message get the next
1181 		transfer structure from the message otherwise retrieve
1182 		the 1st transfer request from the message. */
1183 		spin_lock(&data->lock);
1184 		if (data->cur_trans == NULL) {
1185 			data->cur_trans =
1186 				list_entry(data->current_msg->transfers.next,
1187 					   struct spi_transfer, transfer_list);
1188 			dev_dbg(&data->master->dev,
1189 				"%s :Getting 1st transfer message\n",
1190 				__func__);
1191 		} else {
1192 			data->cur_trans =
1193 				list_entry(data->cur_trans->transfer_list.next,
1194 					   struct spi_transfer, transfer_list);
1195 			dev_dbg(&data->master->dev,
1196 				"%s :Getting next transfer message\n",
1197 				__func__);
1198 		}
1199 		spin_unlock(&data->lock);
1200 
1201 		if (!data->cur_trans->len)
1202 			goto out;
1203 		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1204 		data->save_total_len = data->cur_trans->len;
1205 		if (data->use_dma) {
1206 			int i;
1207 			char *save_rx_buf = data->cur_trans->rx_buf;
1208 			for (i = 0; i < cnt; i ++) {
1209 				pch_spi_handle_dma(data, &bpw);
1210 				if (!pch_spi_start_transfer(data)) {
1211 					data->transfer_complete = true;
1212 					data->current_msg->status = -EIO;
1213 					data->current_msg->complete
1214 						   (data->current_msg->context);
1215 					data->bcurrent_msg_processing = false;
1216 					data->current_msg = NULL;
1217 					data->cur_trans = NULL;
1218 					goto out;
1219 				}
1220 				pch_spi_copy_rx_data_for_dma(data, bpw);
1221 			}
1222 			data->cur_trans->rx_buf = save_rx_buf;
1223 		} else {
1224 			pch_spi_set_tx(data, &bpw);
1225 			pch_spi_set_ir(data);
1226 			pch_spi_copy_rx_data(data, bpw);
1227 			kfree(data->pkt_rx_buff);
1228 			data->pkt_rx_buff = NULL;
1229 			kfree(data->pkt_tx_buff);
1230 			data->pkt_tx_buff = NULL;
1231 		}
1232 		/* increment message count */
1233 		data->cur_trans->len = data->save_total_len;
1234 		data->current_msg->actual_length += data->cur_trans->len;
1235 
1236 		dev_dbg(&data->master->dev,
1237 			"%s:data->current_msg->actual_length=%d\n",
1238 			__func__, data->current_msg->actual_length);
1239 
1240 		/* check for delay */
1241 		if (data->cur_trans->delay_usecs) {
1242 			dev_dbg(&data->master->dev, "%s:delay in usec=%d\n",
1243 				__func__, data->cur_trans->delay_usecs);
1244 			udelay(data->cur_trans->delay_usecs);
1245 		}
1246 
1247 		spin_lock(&data->lock);
1248 
1249 		/* No more transfer in this message. */
1250 		if ((data->cur_trans->transfer_list.next) ==
1251 		    &(data->current_msg->transfers)) {
1252 			pch_spi_nomore_transfer(data);
1253 		}
1254 
1255 		spin_unlock(&data->lock);
1256 
1257 	} while (data->cur_trans != NULL);
1258 
1259 out:
1260 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1261 	if (data->use_dma)
1262 		pch_spi_release_dma(data);
1263 }
1264 
1265 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1266 				   struct pch_spi_data *data)
1267 {
1268 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1269 
1270 	flush_work(&data->work);
1271 }
1272 
1273 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1274 				 struct pch_spi_data *data)
1275 {
1276 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1277 
1278 	/* reset PCH SPI h/w */
1279 	pch_spi_reset(data->master);
1280 	dev_dbg(&board_dat->pdev->dev,
1281 		"%s pch_spi_reset invoked successfully\n", __func__);
1282 
1283 	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1284 
1285 	return 0;
1286 }
1287 
1288 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1289 			     struct pch_spi_data *data)
1290 {
1291 	struct pch_spi_dma_ctrl *dma;
1292 
1293 	dma = &data->dma;
1294 	if (dma->tx_buf_dma)
1295 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1296 				  dma->tx_buf_virt, dma->tx_buf_dma);
1297 	if (dma->rx_buf_dma)
1298 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1299 				  dma->rx_buf_virt, dma->rx_buf_dma);
1300 }
1301 
1302 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1303 			      struct pch_spi_data *data)
1304 {
1305 	struct pch_spi_dma_ctrl *dma;
1306 	int ret;
1307 
1308 	dma = &data->dma;
1309 	ret = 0;
1310 	/* Get Consistent memory for Tx DMA */
1311 	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1312 				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1313 	if (!dma->tx_buf_virt)
1314 		ret = -ENOMEM;
1315 
1316 	/* Get Consistent memory for Rx DMA */
1317 	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1318 				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1319 	if (!dma->rx_buf_virt)
1320 		ret = -ENOMEM;
1321 
1322 	return ret;
1323 }
1324 
1325 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1326 {
1327 	int ret;
1328 	struct spi_master *master;
1329 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1330 	struct pch_spi_data *data;
1331 
1332 	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1333 
1334 	master = spi_alloc_master(&board_dat->pdev->dev,
1335 				  sizeof(struct pch_spi_data));
1336 	if (!master) {
1337 		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1338 			plat_dev->id);
1339 		return -ENOMEM;
1340 	}
1341 
1342 	data = spi_master_get_devdata(master);
1343 	data->master = master;
1344 
1345 	platform_set_drvdata(plat_dev, data);
1346 
1347 	/* baseaddress + address offset) */
1348 	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1349 					 PCH_ADDRESS_SIZE * plat_dev->id;
1350 	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1351 	if (!data->io_remap_addr) {
1352 		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1353 		ret = -ENOMEM;
1354 		goto err_pci_iomap;
1355 	}
1356 	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1357 
1358 	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1359 		plat_dev->id, data->io_remap_addr);
1360 
1361 	/* initialize members of SPI master */
1362 	master->num_chipselect = PCH_MAX_CS;
1363 	master->transfer = pch_spi_transfer;
1364 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1365 	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1366 	master->max_speed_hz = PCH_MAX_BAUDRATE;
1367 
1368 	data->board_dat = board_dat;
1369 	data->plat_dev = plat_dev;
1370 	data->n_curnt_chip = 255;
1371 	data->status = STATUS_RUNNING;
1372 	data->ch = plat_dev->id;
1373 	data->use_dma = use_dma;
1374 
1375 	INIT_LIST_HEAD(&data->queue);
1376 	spin_lock_init(&data->lock);
1377 	INIT_WORK(&data->work, pch_spi_process_messages);
1378 	init_waitqueue_head(&data->wait);
1379 
1380 	ret = pch_spi_get_resources(board_dat, data);
1381 	if (ret) {
1382 		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1383 		goto err_spi_get_resources;
1384 	}
1385 
1386 	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1387 			  IRQF_SHARED, KBUILD_MODNAME, data);
1388 	if (ret) {
1389 		dev_err(&plat_dev->dev,
1390 			"%s request_irq failed\n", __func__);
1391 		goto err_request_irq;
1392 	}
1393 	data->irq_reg_sts = true;
1394 
1395 	pch_spi_set_master_mode(master);
1396 
1397 	if (use_dma) {
1398 		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1399 		ret = pch_alloc_dma_buf(board_dat, data);
1400 		if (ret)
1401 			goto err_spi_register_master;
1402 	}
1403 
1404 	ret = spi_register_master(master);
1405 	if (ret != 0) {
1406 		dev_err(&plat_dev->dev,
1407 			"%s spi_register_master FAILED\n", __func__);
1408 		goto err_spi_register_master;
1409 	}
1410 
1411 	return 0;
1412 
1413 err_spi_register_master:
1414 	pch_free_dma_buf(board_dat, data);
1415 	free_irq(board_dat->pdev->irq, data);
1416 err_request_irq:
1417 	pch_spi_free_resources(board_dat, data);
1418 err_spi_get_resources:
1419 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1420 err_pci_iomap:
1421 	spi_master_put(master);
1422 
1423 	return ret;
1424 }
1425 
1426 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1427 {
1428 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1429 	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1430 	int count;
1431 	unsigned long flags;
1432 
1433 	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1434 		__func__, plat_dev->id, board_dat->pdev->irq);
1435 
1436 	if (use_dma)
1437 		pch_free_dma_buf(board_dat, data);
1438 
1439 	/* check for any pending messages; no action is taken if the queue
1440 	 * is still full; but at least we tried.  Unload anyway */
1441 	count = 500;
1442 	spin_lock_irqsave(&data->lock, flags);
1443 	data->status = STATUS_EXITING;
1444 	while ((list_empty(&data->queue) == 0) && --count) {
1445 		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1446 			__func__);
1447 		spin_unlock_irqrestore(&data->lock, flags);
1448 		msleep(PCH_SLEEP_TIME);
1449 		spin_lock_irqsave(&data->lock, flags);
1450 	}
1451 	spin_unlock_irqrestore(&data->lock, flags);
1452 
1453 	pch_spi_free_resources(board_dat, data);
1454 	/* disable interrupts & free IRQ */
1455 	if (data->irq_reg_sts) {
1456 		/* disable interrupts */
1457 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1458 		data->irq_reg_sts = false;
1459 		free_irq(board_dat->pdev->irq, data);
1460 	}
1461 
1462 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1463 	spi_unregister_master(data->master);
1464 
1465 	return 0;
1466 }
1467 #ifdef CONFIG_PM
1468 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1469 			      pm_message_t state)
1470 {
1471 	u8 count;
1472 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1473 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1474 
1475 	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1476 
1477 	if (!board_dat) {
1478 		dev_err(&pd_dev->dev,
1479 			"%s pci_get_drvdata returned NULL\n", __func__);
1480 		return -EFAULT;
1481 	}
1482 
1483 	/* check if the current message is processed:
1484 	   Only after thats done the transfer will be suspended */
1485 	count = 255;
1486 	while ((--count) > 0) {
1487 		if (!(data->bcurrent_msg_processing))
1488 			break;
1489 		msleep(PCH_SLEEP_TIME);
1490 	}
1491 
1492 	/* Free IRQ */
1493 	if (data->irq_reg_sts) {
1494 		/* disable all interrupts */
1495 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1496 		pch_spi_reset(data->master);
1497 		free_irq(board_dat->pdev->irq, data);
1498 
1499 		data->irq_reg_sts = false;
1500 		dev_dbg(&pd_dev->dev,
1501 			"%s free_irq invoked successfully.\n", __func__);
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1508 {
1509 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1510 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1511 	int retval;
1512 
1513 	if (!board_dat) {
1514 		dev_err(&pd_dev->dev,
1515 			"%s pci_get_drvdata returned NULL\n", __func__);
1516 		return -EFAULT;
1517 	}
1518 
1519 	if (!data->irq_reg_sts) {
1520 		/* register IRQ */
1521 		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1522 				     IRQF_SHARED, KBUILD_MODNAME, data);
1523 		if (retval < 0) {
1524 			dev_err(&pd_dev->dev,
1525 				"%s request_irq failed\n", __func__);
1526 			return retval;
1527 		}
1528 
1529 		/* reset PCH SPI h/w */
1530 		pch_spi_reset(data->master);
1531 		pch_spi_set_master_mode(data->master);
1532 		data->irq_reg_sts = true;
1533 	}
1534 	return 0;
1535 }
1536 #else
1537 #define pch_spi_pd_suspend NULL
1538 #define pch_spi_pd_resume NULL
1539 #endif
1540 
1541 static struct platform_driver pch_spi_pd_driver = {
1542 	.driver = {
1543 		.name = "pch-spi",
1544 	},
1545 	.probe = pch_spi_pd_probe,
1546 	.remove = pch_spi_pd_remove,
1547 	.suspend = pch_spi_pd_suspend,
1548 	.resume = pch_spi_pd_resume
1549 };
1550 
1551 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1552 {
1553 	struct pch_spi_board_data *board_dat;
1554 	struct platform_device *pd_dev = NULL;
1555 	int retval;
1556 	int i;
1557 	struct pch_pd_dev_save *pd_dev_save;
1558 
1559 	pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1560 	if (!pd_dev_save)
1561 		return -ENOMEM;
1562 
1563 	board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1564 	if (!board_dat) {
1565 		retval = -ENOMEM;
1566 		goto err_no_mem;
1567 	}
1568 
1569 	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1570 	if (retval) {
1571 		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1572 		goto pci_request_regions;
1573 	}
1574 
1575 	board_dat->pdev = pdev;
1576 	board_dat->num = id->driver_data;
1577 	pd_dev_save->num = id->driver_data;
1578 	pd_dev_save->board_dat = board_dat;
1579 
1580 	retval = pci_enable_device(pdev);
1581 	if (retval) {
1582 		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1583 		goto pci_enable_device;
1584 	}
1585 
1586 	for (i = 0; i < board_dat->num; i++) {
1587 		pd_dev = platform_device_alloc("pch-spi", i);
1588 		if (!pd_dev) {
1589 			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1590 			retval = -ENOMEM;
1591 			goto err_platform_device;
1592 		}
1593 		pd_dev_save->pd_save[i] = pd_dev;
1594 		pd_dev->dev.parent = &pdev->dev;
1595 
1596 		retval = platform_device_add_data(pd_dev, board_dat,
1597 						  sizeof(*board_dat));
1598 		if (retval) {
1599 			dev_err(&pdev->dev,
1600 				"platform_device_add_data failed\n");
1601 			platform_device_put(pd_dev);
1602 			goto err_platform_device;
1603 		}
1604 
1605 		retval = platform_device_add(pd_dev);
1606 		if (retval) {
1607 			dev_err(&pdev->dev, "platform_device_add failed\n");
1608 			platform_device_put(pd_dev);
1609 			goto err_platform_device;
1610 		}
1611 	}
1612 
1613 	pci_set_drvdata(pdev, pd_dev_save);
1614 
1615 	return 0;
1616 
1617 err_platform_device:
1618 	while (--i >= 0)
1619 		platform_device_unregister(pd_dev_save->pd_save[i]);
1620 	pci_disable_device(pdev);
1621 pci_enable_device:
1622 	pci_release_regions(pdev);
1623 pci_request_regions:
1624 	kfree(board_dat);
1625 err_no_mem:
1626 	kfree(pd_dev_save);
1627 
1628 	return retval;
1629 }
1630 
1631 static void pch_spi_remove(struct pci_dev *pdev)
1632 {
1633 	int i;
1634 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1635 
1636 	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1637 
1638 	for (i = 0; i < pd_dev_save->num; i++)
1639 		platform_device_unregister(pd_dev_save->pd_save[i]);
1640 
1641 	pci_disable_device(pdev);
1642 	pci_release_regions(pdev);
1643 	kfree(pd_dev_save->board_dat);
1644 	kfree(pd_dev_save);
1645 }
1646 
1647 #ifdef CONFIG_PM
1648 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1649 {
1650 	int retval;
1651 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1652 
1653 	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1654 
1655 	pd_dev_save->board_dat->suspend_sts = true;
1656 
1657 	/* save config space */
1658 	retval = pci_save_state(pdev);
1659 	if (retval == 0) {
1660 		pci_enable_wake(pdev, PCI_D3hot, 0);
1661 		pci_disable_device(pdev);
1662 		pci_set_power_state(pdev, PCI_D3hot);
1663 	} else {
1664 		dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1665 	}
1666 
1667 	return retval;
1668 }
1669 
1670 static int pch_spi_resume(struct pci_dev *pdev)
1671 {
1672 	int retval;
1673 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1674 	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1675 
1676 	pci_set_power_state(pdev, PCI_D0);
1677 	pci_restore_state(pdev);
1678 
1679 	retval = pci_enable_device(pdev);
1680 	if (retval < 0) {
1681 		dev_err(&pdev->dev,
1682 			"%s pci_enable_device failed\n", __func__);
1683 	} else {
1684 		pci_enable_wake(pdev, PCI_D3hot, 0);
1685 
1686 		/* set suspend status to false */
1687 		pd_dev_save->board_dat->suspend_sts = false;
1688 	}
1689 
1690 	return retval;
1691 }
1692 #else
1693 #define pch_spi_suspend NULL
1694 #define pch_spi_resume NULL
1695 
1696 #endif
1697 
1698 static struct pci_driver pch_spi_pcidev_driver = {
1699 	.name = "pch_spi",
1700 	.id_table = pch_spi_pcidev_id,
1701 	.probe = pch_spi_probe,
1702 	.remove = pch_spi_remove,
1703 	.suspend = pch_spi_suspend,
1704 	.resume = pch_spi_resume,
1705 };
1706 
1707 static int __init pch_spi_init(void)
1708 {
1709 	int ret;
1710 	ret = platform_driver_register(&pch_spi_pd_driver);
1711 	if (ret)
1712 		return ret;
1713 
1714 	ret = pci_register_driver(&pch_spi_pcidev_driver);
1715 	if (ret) {
1716 		platform_driver_unregister(&pch_spi_pd_driver);
1717 		return ret;
1718 	}
1719 
1720 	return 0;
1721 }
1722 module_init(pch_spi_init);
1723 
1724 static void __exit pch_spi_exit(void)
1725 {
1726 	pci_unregister_driver(&pch_spi_pcidev_driver);
1727 	platform_driver_unregister(&pch_spi_pd_driver);
1728 }
1729 module_exit(pch_spi_exit);
1730 
1731 module_param(use_dma, int, 0644);
1732 MODULE_PARM_DESC(use_dma,
1733 		 "to use DMA for data transfers pass 1 else 0; default 1");
1734 
1735 MODULE_LICENSE("GPL");
1736 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1737 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1738 
1739