1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SPI bus driver for the Topcliff PCH used by Intel SoCs 4 * 5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/pci.h> 10 #include <linux/wait.h> 11 #include <linux/spi/spi.h> 12 #include <linux/interrupt.h> 13 #include <linux/sched.h> 14 #include <linux/spi/spidev.h> 15 #include <linux/module.h> 16 #include <linux/device.h> 17 #include <linux/platform_device.h> 18 19 #include <linux/dmaengine.h> 20 #include <linux/pch_dma.h> 21 22 /* Register offsets */ 23 #define PCH_SPCR 0x00 /* SPI control register */ 24 #define PCH_SPBRR 0x04 /* SPI baud rate register */ 25 #define PCH_SPSR 0x08 /* SPI status register */ 26 #define PCH_SPDWR 0x0C /* SPI write data register */ 27 #define PCH_SPDRR 0x10 /* SPI read data register */ 28 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */ 29 #define PCH_SRST 0x1C /* SPI reset register */ 30 #define PCH_ADDRESS_SIZE 0x20 31 32 #define PCH_SPSR_TFD 0x000007C0 33 #define PCH_SPSR_RFD 0x0000F800 34 35 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11) 36 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6) 37 38 #define PCH_RX_THOLD 7 39 #define PCH_RX_THOLD_MAX 15 40 41 #define PCH_TX_THOLD 2 42 43 #define PCH_MAX_BAUDRATE 5000000 44 #define PCH_MAX_FIFO_DEPTH 16 45 46 #define STATUS_RUNNING 1 47 #define STATUS_EXITING 2 48 #define PCH_SLEEP_TIME 10 49 50 #define SSN_LOW 0x02U 51 #define SSN_HIGH 0x03U 52 #define SSN_NO_CONTROL 0x00U 53 #define PCH_MAX_CS 0xFF 54 #define PCI_DEVICE_ID_GE_SPI 0x8816 55 56 #define SPCR_SPE_BIT (1 << 0) 57 #define SPCR_MSTR_BIT (1 << 1) 58 #define SPCR_LSBF_BIT (1 << 4) 59 #define SPCR_CPHA_BIT (1 << 5) 60 #define SPCR_CPOL_BIT (1 << 6) 61 #define SPCR_TFIE_BIT (1 << 8) 62 #define SPCR_RFIE_BIT (1 << 9) 63 #define SPCR_FIE_BIT (1 << 10) 64 #define SPCR_ORIE_BIT (1 << 11) 65 #define SPCR_MDFIE_BIT (1 << 12) 66 #define SPCR_FICLR_BIT (1 << 24) 67 #define SPSR_TFI_BIT (1 << 0) 68 #define SPSR_RFI_BIT (1 << 1) 69 #define SPSR_FI_BIT (1 << 2) 70 #define SPSR_ORF_BIT (1 << 3) 71 #define SPBRR_SIZE_BIT (1 << 10) 72 73 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\ 74 SPCR_ORIE_BIT|SPCR_MDFIE_BIT) 75 76 #define SPCR_RFIC_FIELD 20 77 #define SPCR_TFIC_FIELD 16 78 79 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1) 80 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD) 81 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD) 82 83 #define PCH_CLOCK_HZ 50000000 84 #define PCH_MAX_SPBR 1023 85 86 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */ 87 #define PCI_DEVICE_ID_ML7213_SPI 0x802c 88 #define PCI_DEVICE_ID_ML7223_SPI 0x800F 89 #define PCI_DEVICE_ID_ML7831_SPI 0x8816 90 91 /* 92 * Set the number of SPI instance max 93 * Intel EG20T PCH : 1ch 94 * LAPIS Semiconductor ML7213 IOH : 2ch 95 * LAPIS Semiconductor ML7223 IOH : 1ch 96 * LAPIS Semiconductor ML7831 IOH : 1ch 97 */ 98 #define PCH_SPI_MAX_DEV 2 99 100 #define PCH_BUF_SIZE 4096 101 #define PCH_DMA_TRANS_SIZE 12 102 103 static int use_dma = 1; 104 105 struct pch_spi_dma_ctrl { 106 struct dma_async_tx_descriptor *desc_tx; 107 struct dma_async_tx_descriptor *desc_rx; 108 struct pch_dma_slave param_tx; 109 struct pch_dma_slave param_rx; 110 struct dma_chan *chan_tx; 111 struct dma_chan *chan_rx; 112 struct scatterlist *sg_tx_p; 113 struct scatterlist *sg_rx_p; 114 struct scatterlist sg_tx; 115 struct scatterlist sg_rx; 116 int nent; 117 void *tx_buf_virt; 118 void *rx_buf_virt; 119 dma_addr_t tx_buf_dma; 120 dma_addr_t rx_buf_dma; 121 }; 122 /** 123 * struct pch_spi_data - Holds the SPI channel specific details 124 * @io_remap_addr: The remapped PCI base address 125 * @io_base_addr: Base address 126 * @master: Pointer to the SPI master structure 127 * @work: Reference to work queue handler 128 * @wait: Wait queue for waking up upon receiving an 129 * interrupt. 130 * @transfer_complete: Status of SPI Transfer 131 * @bcurrent_msg_processing: Status flag for message processing 132 * @lock: Lock for protecting this structure 133 * @queue: SPI Message queue 134 * @status: Status of the SPI driver 135 * @bpw_len: Length of data to be transferred in bits per 136 * word 137 * @transfer_active: Flag showing active transfer 138 * @tx_index: Transmit data count; for bookkeeping during 139 * transfer 140 * @rx_index: Receive data count; for bookkeeping during 141 * transfer 142 * @pkt_tx_buff: Buffer for data to be transmitted 143 * @pkt_rx_buff: Buffer for received data 144 * @n_curnt_chip: The chip number that this SPI driver currently 145 * operates on 146 * @current_chip: Reference to the current chip that this SPI 147 * driver currently operates on 148 * @current_msg: The current message that this SPI driver is 149 * handling 150 * @cur_trans: The current transfer that this SPI driver is 151 * handling 152 * @board_dat: Reference to the SPI device data structure 153 * @plat_dev: platform_device structure 154 * @ch: SPI channel number 155 * @dma: Local DMA information 156 * @use_dma: True if DMA is to be used 157 * @irq_reg_sts: Status of IRQ registration 158 * @save_total_len: Save length while data is being transferred 159 */ 160 struct pch_spi_data { 161 void __iomem *io_remap_addr; 162 unsigned long io_base_addr; 163 struct spi_master *master; 164 struct work_struct work; 165 wait_queue_head_t wait; 166 u8 transfer_complete; 167 u8 bcurrent_msg_processing; 168 spinlock_t lock; 169 struct list_head queue; 170 u8 status; 171 u32 bpw_len; 172 u8 transfer_active; 173 u32 tx_index; 174 u32 rx_index; 175 u16 *pkt_tx_buff; 176 u16 *pkt_rx_buff; 177 u8 n_curnt_chip; 178 struct spi_device *current_chip; 179 struct spi_message *current_msg; 180 struct spi_transfer *cur_trans; 181 struct pch_spi_board_data *board_dat; 182 struct platform_device *plat_dev; 183 int ch; 184 struct pch_spi_dma_ctrl dma; 185 int use_dma; 186 u8 irq_reg_sts; 187 int save_total_len; 188 }; 189 190 /** 191 * struct pch_spi_board_data - Holds the SPI device specific details 192 * @pdev: Pointer to the PCI device 193 * @suspend_sts: Status of suspend 194 * @num: The number of SPI device instance 195 */ 196 struct pch_spi_board_data { 197 struct pci_dev *pdev; 198 u8 suspend_sts; 199 int num; 200 }; 201 202 struct pch_pd_dev_save { 203 int num; 204 struct platform_device *pd_save[PCH_SPI_MAX_DEV]; 205 struct pch_spi_board_data *board_dat; 206 }; 207 208 static const struct pci_device_id pch_spi_pcidev_id[] = { 209 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, }, 210 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, }, 211 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, }, 212 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, }, 213 { } 214 }; 215 216 /** 217 * pch_spi_writereg() - Performs register writes 218 * @master: Pointer to struct spi_master. 219 * @idx: Register offset. 220 * @val: Value to be written to register. 221 */ 222 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val) 223 { 224 struct pch_spi_data *data = spi_master_get_devdata(master); 225 iowrite32(val, (data->io_remap_addr + idx)); 226 } 227 228 /** 229 * pch_spi_readreg() - Performs register reads 230 * @master: Pointer to struct spi_master. 231 * @idx: Register offset. 232 */ 233 static inline u32 pch_spi_readreg(struct spi_master *master, int idx) 234 { 235 struct pch_spi_data *data = spi_master_get_devdata(master); 236 return ioread32(data->io_remap_addr + idx); 237 } 238 239 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx, 240 u32 set, u32 clr) 241 { 242 u32 tmp = pch_spi_readreg(master, idx); 243 tmp = (tmp & ~clr) | set; 244 pch_spi_writereg(master, idx, tmp); 245 } 246 247 static void pch_spi_set_master_mode(struct spi_master *master) 248 { 249 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0); 250 } 251 252 /** 253 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs 254 * @master: Pointer to struct spi_master. 255 */ 256 static void pch_spi_clear_fifo(struct spi_master *master) 257 { 258 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0); 259 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT); 260 } 261 262 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val, 263 void __iomem *io_remap_addr) 264 { 265 u32 n_read, tx_index, rx_index, bpw_len; 266 u16 *pkt_rx_buffer, *pkt_tx_buff; 267 int read_cnt; 268 u32 reg_spcr_val; 269 void __iomem *spsr; 270 void __iomem *spdrr; 271 void __iomem *spdwr; 272 273 spsr = io_remap_addr + PCH_SPSR; 274 iowrite32(reg_spsr_val, spsr); 275 276 if (data->transfer_active) { 277 rx_index = data->rx_index; 278 tx_index = data->tx_index; 279 bpw_len = data->bpw_len; 280 pkt_rx_buffer = data->pkt_rx_buff; 281 pkt_tx_buff = data->pkt_tx_buff; 282 283 spdrr = io_remap_addr + PCH_SPDRR; 284 spdwr = io_remap_addr + PCH_SPDWR; 285 286 n_read = PCH_READABLE(reg_spsr_val); 287 288 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) { 289 pkt_rx_buffer[rx_index++] = ioread32(spdrr); 290 if (tx_index < bpw_len) 291 iowrite32(pkt_tx_buff[tx_index++], spdwr); 292 } 293 294 /* disable RFI if not needed */ 295 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) { 296 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR); 297 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */ 298 299 /* reset rx threshold */ 300 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS; 301 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD); 302 303 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR)); 304 } 305 306 /* update counts */ 307 data->tx_index = tx_index; 308 data->rx_index = rx_index; 309 310 /* if transfer complete interrupt */ 311 if (reg_spsr_val & SPSR_FI_BIT) { 312 if ((tx_index == bpw_len) && (rx_index == tx_index)) { 313 /* disable interrupts */ 314 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 315 PCH_ALL); 316 317 /* transfer is completed; 318 inform pch_spi_process_messages */ 319 data->transfer_complete = true; 320 data->transfer_active = false; 321 wake_up(&data->wait); 322 } else { 323 dev_vdbg(&data->master->dev, 324 "%s : Transfer is not completed", 325 __func__); 326 } 327 } 328 } 329 } 330 331 /** 332 * pch_spi_handler() - Interrupt handler 333 * @irq: The interrupt number. 334 * @dev_id: Pointer to struct pch_spi_board_data. 335 */ 336 static irqreturn_t pch_spi_handler(int irq, void *dev_id) 337 { 338 u32 reg_spsr_val; 339 void __iomem *spsr; 340 void __iomem *io_remap_addr; 341 irqreturn_t ret = IRQ_NONE; 342 struct pch_spi_data *data = dev_id; 343 struct pch_spi_board_data *board_dat = data->board_dat; 344 345 if (board_dat->suspend_sts) { 346 dev_dbg(&board_dat->pdev->dev, 347 "%s returning due to suspend\n", __func__); 348 return IRQ_NONE; 349 } 350 351 io_remap_addr = data->io_remap_addr; 352 spsr = io_remap_addr + PCH_SPSR; 353 354 reg_spsr_val = ioread32(spsr); 355 356 if (reg_spsr_val & SPSR_ORF_BIT) { 357 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__); 358 if (data->current_msg->complete) { 359 data->transfer_complete = true; 360 data->current_msg->status = -EIO; 361 data->current_msg->complete(data->current_msg->context); 362 data->bcurrent_msg_processing = false; 363 data->current_msg = NULL; 364 data->cur_trans = NULL; 365 } 366 } 367 368 if (data->use_dma) 369 return IRQ_NONE; 370 371 /* Check if the interrupt is for SPI device */ 372 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) { 373 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr); 374 ret = IRQ_HANDLED; 375 } 376 377 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n", 378 __func__, ret); 379 380 return ret; 381 } 382 383 /** 384 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR 385 * @master: Pointer to struct spi_master. 386 * @speed_hz: Baud rate. 387 */ 388 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz) 389 { 390 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2); 391 392 /* if baud rate is less than we can support limit it */ 393 if (n_spbr > PCH_MAX_SPBR) 394 n_spbr = PCH_MAX_SPBR; 395 396 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS); 397 } 398 399 /** 400 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR 401 * @master: Pointer to struct spi_master. 402 * @bits_per_word: Bits per word for SPI transfer. 403 */ 404 static void pch_spi_set_bits_per_word(struct spi_master *master, 405 u8 bits_per_word) 406 { 407 if (bits_per_word == 8) 408 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT); 409 else 410 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0); 411 } 412 413 /** 414 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer 415 * @spi: Pointer to struct spi_device. 416 */ 417 static void pch_spi_setup_transfer(struct spi_device *spi) 418 { 419 u32 flags = 0; 420 421 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n", 422 __func__, pch_spi_readreg(spi->master, PCH_SPBRR), 423 spi->max_speed_hz); 424 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz); 425 426 /* set bits per word */ 427 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word); 428 429 if (!(spi->mode & SPI_LSB_FIRST)) 430 flags |= SPCR_LSBF_BIT; 431 if (spi->mode & SPI_CPOL) 432 flags |= SPCR_CPOL_BIT; 433 if (spi->mode & SPI_CPHA) 434 flags |= SPCR_CPHA_BIT; 435 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags, 436 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT)); 437 438 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */ 439 pch_spi_clear_fifo(spi->master); 440 } 441 442 /** 443 * pch_spi_reset() - Clears SPI registers 444 * @master: Pointer to struct spi_master. 445 */ 446 static void pch_spi_reset(struct spi_master *master) 447 { 448 /* write 1 to reset SPI */ 449 pch_spi_writereg(master, PCH_SRST, 0x1); 450 451 /* clear reset */ 452 pch_spi_writereg(master, PCH_SRST, 0x0); 453 } 454 455 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg) 456 { 457 458 struct spi_transfer *transfer; 459 struct pch_spi_data *data = spi_master_get_devdata(pspi->master); 460 int retval; 461 unsigned long flags; 462 463 spin_lock_irqsave(&data->lock, flags); 464 /* validate Tx/Rx buffers and Transfer length */ 465 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) { 466 if (!transfer->tx_buf && !transfer->rx_buf) { 467 dev_err(&pspi->dev, 468 "%s Tx and Rx buffer NULL\n", __func__); 469 retval = -EINVAL; 470 goto err_return_spinlock; 471 } 472 473 if (!transfer->len) { 474 dev_err(&pspi->dev, "%s Transfer length invalid\n", 475 __func__); 476 retval = -EINVAL; 477 goto err_return_spinlock; 478 } 479 480 dev_dbg(&pspi->dev, 481 "%s Tx/Rx buffer valid. Transfer length valid\n", 482 __func__); 483 } 484 spin_unlock_irqrestore(&data->lock, flags); 485 486 /* We won't process any messages if we have been asked to terminate */ 487 if (data->status == STATUS_EXITING) { 488 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__); 489 retval = -ESHUTDOWN; 490 goto err_out; 491 } 492 493 /* If suspended ,return -EINVAL */ 494 if (data->board_dat->suspend_sts) { 495 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__); 496 retval = -EINVAL; 497 goto err_out; 498 } 499 500 /* set status of message */ 501 pmsg->actual_length = 0; 502 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status); 503 504 pmsg->status = -EINPROGRESS; 505 spin_lock_irqsave(&data->lock, flags); 506 /* add message to queue */ 507 list_add_tail(&pmsg->queue, &data->queue); 508 spin_unlock_irqrestore(&data->lock, flags); 509 510 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__); 511 512 schedule_work(&data->work); 513 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__); 514 515 retval = 0; 516 517 err_out: 518 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); 519 return retval; 520 err_return_spinlock: 521 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); 522 spin_unlock_irqrestore(&data->lock, flags); 523 return retval; 524 } 525 526 static inline void pch_spi_select_chip(struct pch_spi_data *data, 527 struct spi_device *pspi) 528 { 529 if (data->current_chip != NULL) { 530 if (pspi->chip_select != data->n_curnt_chip) { 531 dev_dbg(&pspi->dev, "%s : different slave\n", __func__); 532 data->current_chip = NULL; 533 } 534 } 535 536 data->current_chip = pspi; 537 538 data->n_curnt_chip = data->current_chip->chip_select; 539 540 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__); 541 pch_spi_setup_transfer(pspi); 542 } 543 544 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw) 545 { 546 int size; 547 u32 n_writes; 548 int j; 549 struct spi_message *pmsg, *tmp; 550 const u8 *tx_buf; 551 const u16 *tx_sbuf; 552 553 /* set baud rate if needed */ 554 if (data->cur_trans->speed_hz) { 555 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 556 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 557 } 558 559 /* set bits per word if needed */ 560 if (data->cur_trans->bits_per_word && 561 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) { 562 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 563 pch_spi_set_bits_per_word(data->master, 564 data->cur_trans->bits_per_word); 565 *bpw = data->cur_trans->bits_per_word; 566 } else { 567 *bpw = data->current_msg->spi->bits_per_word; 568 } 569 570 /* reset Tx/Rx index */ 571 data->tx_index = 0; 572 data->rx_index = 0; 573 574 data->bpw_len = data->cur_trans->len / (*bpw / 8); 575 576 /* find alloc size */ 577 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff); 578 579 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */ 580 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL); 581 if (data->pkt_tx_buff != NULL) { 582 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL); 583 if (!data->pkt_rx_buff) 584 kfree(data->pkt_tx_buff); 585 } 586 587 if (!data->pkt_rx_buff) { 588 /* flush queue and set status of all transfers to -ENOMEM */ 589 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 590 pmsg->status = -ENOMEM; 591 592 if (pmsg->complete) 593 pmsg->complete(pmsg->context); 594 595 /* delete from queue */ 596 list_del_init(&pmsg->queue); 597 } 598 return; 599 } 600 601 /* copy Tx Data */ 602 if (data->cur_trans->tx_buf != NULL) { 603 if (*bpw == 8) { 604 tx_buf = data->cur_trans->tx_buf; 605 for (j = 0; j < data->bpw_len; j++) 606 data->pkt_tx_buff[j] = *tx_buf++; 607 } else { 608 tx_sbuf = data->cur_trans->tx_buf; 609 for (j = 0; j < data->bpw_len; j++) 610 data->pkt_tx_buff[j] = *tx_sbuf++; 611 } 612 } 613 614 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */ 615 n_writes = data->bpw_len; 616 if (n_writes > PCH_MAX_FIFO_DEPTH) 617 n_writes = PCH_MAX_FIFO_DEPTH; 618 619 dev_dbg(&data->master->dev, 620 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", 621 __func__); 622 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 623 624 for (j = 0; j < n_writes; j++) 625 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]); 626 627 /* update tx_index */ 628 data->tx_index = j; 629 630 /* reset transfer complete flag */ 631 data->transfer_complete = false; 632 data->transfer_active = true; 633 } 634 635 static void pch_spi_nomore_transfer(struct pch_spi_data *data) 636 { 637 struct spi_message *pmsg, *tmp; 638 dev_dbg(&data->master->dev, "%s called\n", __func__); 639 /* Invoke complete callback 640 * [To the spi core..indicating end of transfer] */ 641 data->current_msg->status = 0; 642 643 if (data->current_msg->complete) { 644 dev_dbg(&data->master->dev, 645 "%s:Invoking callback of SPI core\n", __func__); 646 data->current_msg->complete(data->current_msg->context); 647 } 648 649 /* update status in global variable */ 650 data->bcurrent_msg_processing = false; 651 652 dev_dbg(&data->master->dev, 653 "%s:data->bcurrent_msg_processing = false\n", __func__); 654 655 data->current_msg = NULL; 656 data->cur_trans = NULL; 657 658 /* check if we have items in list and not suspending 659 * return 1 if list empty */ 660 if ((list_empty(&data->queue) == 0) && 661 (!data->board_dat->suspend_sts) && 662 (data->status != STATUS_EXITING)) { 663 /* We have some more work to do (either there is more tranint 664 * bpw;sfer requests in the current message or there are 665 *more messages) 666 */ 667 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__); 668 schedule_work(&data->work); 669 } else if (data->board_dat->suspend_sts || 670 data->status == STATUS_EXITING) { 671 dev_dbg(&data->master->dev, 672 "%s suspend/remove initiated, flushing queue\n", 673 __func__); 674 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 675 pmsg->status = -EIO; 676 677 if (pmsg->complete) 678 pmsg->complete(pmsg->context); 679 680 /* delete from queue */ 681 list_del_init(&pmsg->queue); 682 } 683 } 684 } 685 686 static void pch_spi_set_ir(struct pch_spi_data *data) 687 { 688 /* enable interrupts, set threshold, enable SPI */ 689 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH) 690 /* set receive threshold to PCH_RX_THOLD */ 691 pch_spi_setclr_reg(data->master, PCH_SPCR, 692 PCH_RX_THOLD << SPCR_RFIC_FIELD | 693 SPCR_FIE_BIT | SPCR_RFIE_BIT | 694 SPCR_ORIE_BIT | SPCR_SPE_BIT, 695 MASK_RFIC_SPCR_BITS | PCH_ALL); 696 else 697 /* set receive threshold to maximum */ 698 pch_spi_setclr_reg(data->master, PCH_SPCR, 699 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD | 700 SPCR_FIE_BIT | SPCR_ORIE_BIT | 701 SPCR_SPE_BIT, 702 MASK_RFIC_SPCR_BITS | PCH_ALL); 703 704 /* Wait until the transfer completes; go to sleep after 705 initiating the transfer. */ 706 dev_dbg(&data->master->dev, 707 "%s:waiting for transfer to get over\n", __func__); 708 709 wait_event_interruptible(data->wait, data->transfer_complete); 710 711 /* clear all interrupts */ 712 pch_spi_writereg(data->master, PCH_SPSR, 713 pch_spi_readreg(data->master, PCH_SPSR)); 714 /* Disable interrupts and SPI transfer */ 715 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT); 716 /* clear FIFO */ 717 pch_spi_clear_fifo(data->master); 718 } 719 720 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw) 721 { 722 int j; 723 u8 *rx_buf; 724 u16 *rx_sbuf; 725 726 /* copy Rx Data */ 727 if (!data->cur_trans->rx_buf) 728 return; 729 730 if (bpw == 8) { 731 rx_buf = data->cur_trans->rx_buf; 732 for (j = 0; j < data->bpw_len; j++) 733 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF; 734 } else { 735 rx_sbuf = data->cur_trans->rx_buf; 736 for (j = 0; j < data->bpw_len; j++) 737 *rx_sbuf++ = data->pkt_rx_buff[j]; 738 } 739 } 740 741 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw) 742 { 743 int j; 744 u8 *rx_buf; 745 u16 *rx_sbuf; 746 const u8 *rx_dma_buf; 747 const u16 *rx_dma_sbuf; 748 749 /* copy Rx Data */ 750 if (!data->cur_trans->rx_buf) 751 return; 752 753 if (bpw == 8) { 754 rx_buf = data->cur_trans->rx_buf; 755 rx_dma_buf = data->dma.rx_buf_virt; 756 for (j = 0; j < data->bpw_len; j++) 757 *rx_buf++ = *rx_dma_buf++ & 0xFF; 758 data->cur_trans->rx_buf = rx_buf; 759 } else { 760 rx_sbuf = data->cur_trans->rx_buf; 761 rx_dma_sbuf = data->dma.rx_buf_virt; 762 for (j = 0; j < data->bpw_len; j++) 763 *rx_sbuf++ = *rx_dma_sbuf++; 764 data->cur_trans->rx_buf = rx_sbuf; 765 } 766 } 767 768 static int pch_spi_start_transfer(struct pch_spi_data *data) 769 { 770 struct pch_spi_dma_ctrl *dma; 771 unsigned long flags; 772 int rtn; 773 774 dma = &data->dma; 775 776 spin_lock_irqsave(&data->lock, flags); 777 778 /* disable interrupts, SPI set enable */ 779 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL); 780 781 spin_unlock_irqrestore(&data->lock, flags); 782 783 /* Wait until the transfer completes; go to sleep after 784 initiating the transfer. */ 785 dev_dbg(&data->master->dev, 786 "%s:waiting for transfer to get over\n", __func__); 787 rtn = wait_event_interruptible_timeout(data->wait, 788 data->transfer_complete, 789 msecs_to_jiffies(2 * HZ)); 790 if (!rtn) 791 dev_err(&data->master->dev, 792 "%s wait-event timeout\n", __func__); 793 794 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent, 795 DMA_FROM_DEVICE); 796 797 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent, 798 DMA_FROM_DEVICE); 799 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE); 800 801 async_tx_ack(dma->desc_rx); 802 async_tx_ack(dma->desc_tx); 803 kfree(dma->sg_tx_p); 804 kfree(dma->sg_rx_p); 805 806 spin_lock_irqsave(&data->lock, flags); 807 808 /* clear fifo threshold, disable interrupts, disable SPI transfer */ 809 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 810 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL | 811 SPCR_SPE_BIT); 812 /* clear all interrupts */ 813 pch_spi_writereg(data->master, PCH_SPSR, 814 pch_spi_readreg(data->master, PCH_SPSR)); 815 /* clear FIFO */ 816 pch_spi_clear_fifo(data->master); 817 818 spin_unlock_irqrestore(&data->lock, flags); 819 820 return rtn; 821 } 822 823 static void pch_dma_rx_complete(void *arg) 824 { 825 struct pch_spi_data *data = arg; 826 827 /* transfer is completed;inform pch_spi_process_messages_dma */ 828 data->transfer_complete = true; 829 wake_up_interruptible(&data->wait); 830 } 831 832 static bool pch_spi_filter(struct dma_chan *chan, void *slave) 833 { 834 struct pch_dma_slave *param = slave; 835 836 if ((chan->chan_id == param->chan_id) && 837 (param->dma_dev == chan->device->dev)) { 838 chan->private = param; 839 return true; 840 } else { 841 return false; 842 } 843 } 844 845 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw) 846 { 847 dma_cap_mask_t mask; 848 struct dma_chan *chan; 849 struct pci_dev *dma_dev; 850 struct pch_dma_slave *param; 851 struct pch_spi_dma_ctrl *dma; 852 unsigned int width; 853 854 if (bpw == 8) 855 width = PCH_DMA_WIDTH_1_BYTE; 856 else 857 width = PCH_DMA_WIDTH_2_BYTES; 858 859 dma = &data->dma; 860 dma_cap_zero(mask); 861 dma_cap_set(DMA_SLAVE, mask); 862 863 /* Get DMA's dev information */ 864 dma_dev = pci_get_slot(data->board_dat->pdev->bus, 865 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0)); 866 867 /* Set Tx DMA */ 868 param = &dma->param_tx; 869 param->dma_dev = &dma_dev->dev; 870 param->chan_id = data->ch * 2; /* Tx = 0, 2 */ 871 param->tx_reg = data->io_base_addr + PCH_SPDWR; 872 param->width = width; 873 chan = dma_request_channel(mask, pch_spi_filter, param); 874 if (!chan) { 875 dev_err(&data->master->dev, 876 "ERROR: dma_request_channel FAILS(Tx)\n"); 877 data->use_dma = 0; 878 return; 879 } 880 dma->chan_tx = chan; 881 882 /* Set Rx DMA */ 883 param = &dma->param_rx; 884 param->dma_dev = &dma_dev->dev; 885 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */ 886 param->rx_reg = data->io_base_addr + PCH_SPDRR; 887 param->width = width; 888 chan = dma_request_channel(mask, pch_spi_filter, param); 889 if (!chan) { 890 dev_err(&data->master->dev, 891 "ERROR: dma_request_channel FAILS(Rx)\n"); 892 dma_release_channel(dma->chan_tx); 893 dma->chan_tx = NULL; 894 data->use_dma = 0; 895 return; 896 } 897 dma->chan_rx = chan; 898 } 899 900 static void pch_spi_release_dma(struct pch_spi_data *data) 901 { 902 struct pch_spi_dma_ctrl *dma; 903 904 dma = &data->dma; 905 if (dma->chan_tx) { 906 dma_release_channel(dma->chan_tx); 907 dma->chan_tx = NULL; 908 } 909 if (dma->chan_rx) { 910 dma_release_channel(dma->chan_rx); 911 dma->chan_rx = NULL; 912 } 913 } 914 915 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw) 916 { 917 const u8 *tx_buf; 918 const u16 *tx_sbuf; 919 u8 *tx_dma_buf; 920 u16 *tx_dma_sbuf; 921 struct scatterlist *sg; 922 struct dma_async_tx_descriptor *desc_tx; 923 struct dma_async_tx_descriptor *desc_rx; 924 int num; 925 int i; 926 int size; 927 int rem; 928 int head; 929 unsigned long flags; 930 struct pch_spi_dma_ctrl *dma; 931 932 dma = &data->dma; 933 934 /* set baud rate if needed */ 935 if (data->cur_trans->speed_hz) { 936 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 937 spin_lock_irqsave(&data->lock, flags); 938 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 939 spin_unlock_irqrestore(&data->lock, flags); 940 } 941 942 /* set bits per word if needed */ 943 if (data->cur_trans->bits_per_word && 944 (data->current_msg->spi->bits_per_word != 945 data->cur_trans->bits_per_word)) { 946 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 947 spin_lock_irqsave(&data->lock, flags); 948 pch_spi_set_bits_per_word(data->master, 949 data->cur_trans->bits_per_word); 950 spin_unlock_irqrestore(&data->lock, flags); 951 *bpw = data->cur_trans->bits_per_word; 952 } else { 953 *bpw = data->current_msg->spi->bits_per_word; 954 } 955 data->bpw_len = data->cur_trans->len / (*bpw / 8); 956 957 if (data->bpw_len > PCH_BUF_SIZE) { 958 data->bpw_len = PCH_BUF_SIZE; 959 data->cur_trans->len -= PCH_BUF_SIZE; 960 } 961 962 /* copy Tx Data */ 963 if (data->cur_trans->tx_buf != NULL) { 964 if (*bpw == 8) { 965 tx_buf = data->cur_trans->tx_buf; 966 tx_dma_buf = dma->tx_buf_virt; 967 for (i = 0; i < data->bpw_len; i++) 968 *tx_dma_buf++ = *tx_buf++; 969 } else { 970 tx_sbuf = data->cur_trans->tx_buf; 971 tx_dma_sbuf = dma->tx_buf_virt; 972 for (i = 0; i < data->bpw_len; i++) 973 *tx_dma_sbuf++ = *tx_sbuf++; 974 } 975 } 976 977 /* Calculate Rx parameter for DMA transmitting */ 978 if (data->bpw_len > PCH_DMA_TRANS_SIZE) { 979 if (data->bpw_len % PCH_DMA_TRANS_SIZE) { 980 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 981 rem = data->bpw_len % PCH_DMA_TRANS_SIZE; 982 } else { 983 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 984 rem = PCH_DMA_TRANS_SIZE; 985 } 986 size = PCH_DMA_TRANS_SIZE; 987 } else { 988 num = 1; 989 size = data->bpw_len; 990 rem = data->bpw_len; 991 } 992 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n", 993 __func__, num, size, rem); 994 spin_lock_irqsave(&data->lock, flags); 995 996 /* set receive fifo threshold and transmit fifo threshold */ 997 pch_spi_setclr_reg(data->master, PCH_SPCR, 998 ((size - 1) << SPCR_RFIC_FIELD) | 999 (PCH_TX_THOLD << SPCR_TFIC_FIELD), 1000 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS); 1001 1002 spin_unlock_irqrestore(&data->lock, flags); 1003 1004 /* RX */ 1005 dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC); 1006 if (!dma->sg_rx_p) 1007 return; 1008 1009 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */ 1010 /* offset, length setting */ 1011 sg = dma->sg_rx_p; 1012 for (i = 0; i < num; i++, sg++) { 1013 if (i == (num - 2)) { 1014 sg->offset = size * i; 1015 sg->offset = sg->offset * (*bpw / 8); 1016 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem, 1017 sg->offset); 1018 sg_dma_len(sg) = rem; 1019 } else if (i == (num - 1)) { 1020 sg->offset = size * (i - 1) + rem; 1021 sg->offset = sg->offset * (*bpw / 8); 1022 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1023 sg->offset); 1024 sg_dma_len(sg) = size; 1025 } else { 1026 sg->offset = size * i; 1027 sg->offset = sg->offset * (*bpw / 8); 1028 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1029 sg->offset); 1030 sg_dma_len(sg) = size; 1031 } 1032 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset; 1033 } 1034 sg = dma->sg_rx_p; 1035 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg, 1036 num, DMA_DEV_TO_MEM, 1037 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1038 if (!desc_rx) { 1039 dev_err(&data->master->dev, 1040 "%s:dmaengine_prep_slave_sg Failed\n", __func__); 1041 return; 1042 } 1043 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE); 1044 desc_rx->callback = pch_dma_rx_complete; 1045 desc_rx->callback_param = data; 1046 dma->nent = num; 1047 dma->desc_rx = desc_rx; 1048 1049 /* Calculate Tx parameter for DMA transmitting */ 1050 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) { 1051 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE; 1052 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) { 1053 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 1054 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head; 1055 } else { 1056 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 1057 rem = data->bpw_len % PCH_DMA_TRANS_SIZE + 1058 PCH_DMA_TRANS_SIZE - head; 1059 } 1060 size = PCH_DMA_TRANS_SIZE; 1061 } else { 1062 num = 1; 1063 size = data->bpw_len; 1064 rem = data->bpw_len; 1065 head = 0; 1066 } 1067 1068 dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC); 1069 if (!dma->sg_tx_p) 1070 return; 1071 1072 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */ 1073 /* offset, length setting */ 1074 sg = dma->sg_tx_p; 1075 for (i = 0; i < num; i++, sg++) { 1076 if (i == 0) { 1077 sg->offset = 0; 1078 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head, 1079 sg->offset); 1080 sg_dma_len(sg) = size + head; 1081 } else if (i == (num - 1)) { 1082 sg->offset = head + size * i; 1083 sg->offset = sg->offset * (*bpw / 8); 1084 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem, 1085 sg->offset); 1086 sg_dma_len(sg) = rem; 1087 } else { 1088 sg->offset = head + size * i; 1089 sg->offset = sg->offset * (*bpw / 8); 1090 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size, 1091 sg->offset); 1092 sg_dma_len(sg) = size; 1093 } 1094 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset; 1095 } 1096 sg = dma->sg_tx_p; 1097 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx, 1098 sg, num, DMA_MEM_TO_DEV, 1099 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1100 if (!desc_tx) { 1101 dev_err(&data->master->dev, 1102 "%s:dmaengine_prep_slave_sg Failed\n", __func__); 1103 return; 1104 } 1105 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE); 1106 desc_tx->callback = NULL; 1107 desc_tx->callback_param = data; 1108 dma->nent = num; 1109 dma->desc_tx = desc_tx; 1110 1111 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__); 1112 1113 spin_lock_irqsave(&data->lock, flags); 1114 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 1115 desc_rx->tx_submit(desc_rx); 1116 desc_tx->tx_submit(desc_tx); 1117 spin_unlock_irqrestore(&data->lock, flags); 1118 1119 /* reset transfer complete flag */ 1120 data->transfer_complete = false; 1121 } 1122 1123 static void pch_spi_process_messages(struct work_struct *pwork) 1124 { 1125 struct spi_message *pmsg, *tmp; 1126 struct pch_spi_data *data; 1127 int bpw; 1128 1129 data = container_of(pwork, struct pch_spi_data, work); 1130 dev_dbg(&data->master->dev, "%s data initialized\n", __func__); 1131 1132 spin_lock(&data->lock); 1133 /* check if suspend has been initiated;if yes flush queue */ 1134 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) { 1135 dev_dbg(&data->master->dev, 1136 "%s suspend/remove initiated, flushing queue\n", __func__); 1137 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 1138 pmsg->status = -EIO; 1139 1140 if (pmsg->complete) { 1141 spin_unlock(&data->lock); 1142 pmsg->complete(pmsg->context); 1143 spin_lock(&data->lock); 1144 } 1145 1146 /* delete from queue */ 1147 list_del_init(&pmsg->queue); 1148 } 1149 1150 spin_unlock(&data->lock); 1151 return; 1152 } 1153 1154 data->bcurrent_msg_processing = true; 1155 dev_dbg(&data->master->dev, 1156 "%s Set data->bcurrent_msg_processing= true\n", __func__); 1157 1158 /* Get the message from the queue and delete it from there. */ 1159 data->current_msg = list_entry(data->queue.next, struct spi_message, 1160 queue); 1161 1162 list_del_init(&data->current_msg->queue); 1163 1164 data->current_msg->status = 0; 1165 1166 pch_spi_select_chip(data, data->current_msg->spi); 1167 1168 spin_unlock(&data->lock); 1169 1170 if (data->use_dma) 1171 pch_spi_request_dma(data, 1172 data->current_msg->spi->bits_per_word); 1173 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL); 1174 do { 1175 int cnt; 1176 /* If we are already processing a message get the next 1177 transfer structure from the message otherwise retrieve 1178 the 1st transfer request from the message. */ 1179 spin_lock(&data->lock); 1180 if (data->cur_trans == NULL) { 1181 data->cur_trans = 1182 list_entry(data->current_msg->transfers.next, 1183 struct spi_transfer, transfer_list); 1184 dev_dbg(&data->master->dev, 1185 "%s :Getting 1st transfer message\n", 1186 __func__); 1187 } else { 1188 data->cur_trans = 1189 list_entry(data->cur_trans->transfer_list.next, 1190 struct spi_transfer, transfer_list); 1191 dev_dbg(&data->master->dev, 1192 "%s :Getting next transfer message\n", 1193 __func__); 1194 } 1195 spin_unlock(&data->lock); 1196 1197 if (!data->cur_trans->len) 1198 goto out; 1199 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1; 1200 data->save_total_len = data->cur_trans->len; 1201 if (data->use_dma) { 1202 int i; 1203 char *save_rx_buf = data->cur_trans->rx_buf; 1204 for (i = 0; i < cnt; i ++) { 1205 pch_spi_handle_dma(data, &bpw); 1206 if (!pch_spi_start_transfer(data)) { 1207 data->transfer_complete = true; 1208 data->current_msg->status = -EIO; 1209 data->current_msg->complete 1210 (data->current_msg->context); 1211 data->bcurrent_msg_processing = false; 1212 data->current_msg = NULL; 1213 data->cur_trans = NULL; 1214 goto out; 1215 } 1216 pch_spi_copy_rx_data_for_dma(data, bpw); 1217 } 1218 data->cur_trans->rx_buf = save_rx_buf; 1219 } else { 1220 pch_spi_set_tx(data, &bpw); 1221 pch_spi_set_ir(data); 1222 pch_spi_copy_rx_data(data, bpw); 1223 kfree(data->pkt_rx_buff); 1224 data->pkt_rx_buff = NULL; 1225 kfree(data->pkt_tx_buff); 1226 data->pkt_tx_buff = NULL; 1227 } 1228 /* increment message count */ 1229 data->cur_trans->len = data->save_total_len; 1230 data->current_msg->actual_length += data->cur_trans->len; 1231 1232 dev_dbg(&data->master->dev, 1233 "%s:data->current_msg->actual_length=%d\n", 1234 __func__, data->current_msg->actual_length); 1235 1236 spi_transfer_delay_exec(data->cur_trans); 1237 1238 spin_lock(&data->lock); 1239 1240 /* No more transfer in this message. */ 1241 if ((data->cur_trans->transfer_list.next) == 1242 &(data->current_msg->transfers)) { 1243 pch_spi_nomore_transfer(data); 1244 } 1245 1246 spin_unlock(&data->lock); 1247 1248 } while (data->cur_trans != NULL); 1249 1250 out: 1251 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH); 1252 if (data->use_dma) 1253 pch_spi_release_dma(data); 1254 } 1255 1256 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat, 1257 struct pch_spi_data *data) 1258 { 1259 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1260 1261 flush_work(&data->work); 1262 } 1263 1264 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat, 1265 struct pch_spi_data *data) 1266 { 1267 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1268 1269 /* reset PCH SPI h/w */ 1270 pch_spi_reset(data->master); 1271 dev_dbg(&board_dat->pdev->dev, 1272 "%s pch_spi_reset invoked successfully\n", __func__); 1273 1274 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__); 1275 1276 return 0; 1277 } 1278 1279 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat, 1280 struct pch_spi_data *data) 1281 { 1282 struct pch_spi_dma_ctrl *dma; 1283 1284 dma = &data->dma; 1285 if (dma->tx_buf_dma) 1286 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1287 dma->tx_buf_virt, dma->tx_buf_dma); 1288 if (dma->rx_buf_dma) 1289 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1290 dma->rx_buf_virt, dma->rx_buf_dma); 1291 } 1292 1293 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat, 1294 struct pch_spi_data *data) 1295 { 1296 struct pch_spi_dma_ctrl *dma; 1297 int ret; 1298 1299 dma = &data->dma; 1300 ret = 0; 1301 /* Get Consistent memory for Tx DMA */ 1302 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1303 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL); 1304 if (!dma->tx_buf_virt) 1305 ret = -ENOMEM; 1306 1307 /* Get Consistent memory for Rx DMA */ 1308 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1309 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL); 1310 if (!dma->rx_buf_virt) 1311 ret = -ENOMEM; 1312 1313 return ret; 1314 } 1315 1316 static int pch_spi_pd_probe(struct platform_device *plat_dev) 1317 { 1318 int ret; 1319 struct spi_master *master; 1320 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1321 struct pch_spi_data *data; 1322 1323 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__); 1324 1325 master = spi_alloc_master(&board_dat->pdev->dev, 1326 sizeof(struct pch_spi_data)); 1327 if (!master) { 1328 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n", 1329 plat_dev->id); 1330 return -ENOMEM; 1331 } 1332 1333 data = spi_master_get_devdata(master); 1334 data->master = master; 1335 1336 platform_set_drvdata(plat_dev, data); 1337 1338 /* baseaddress + address offset) */ 1339 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) + 1340 PCH_ADDRESS_SIZE * plat_dev->id; 1341 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0); 1342 if (!data->io_remap_addr) { 1343 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__); 1344 ret = -ENOMEM; 1345 goto err_pci_iomap; 1346 } 1347 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id; 1348 1349 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n", 1350 plat_dev->id, data->io_remap_addr); 1351 1352 /* initialize members of SPI master */ 1353 master->num_chipselect = PCH_MAX_CS; 1354 master->transfer = pch_spi_transfer; 1355 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; 1356 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 1357 master->max_speed_hz = PCH_MAX_BAUDRATE; 1358 1359 data->board_dat = board_dat; 1360 data->plat_dev = plat_dev; 1361 data->n_curnt_chip = 255; 1362 data->status = STATUS_RUNNING; 1363 data->ch = plat_dev->id; 1364 data->use_dma = use_dma; 1365 1366 INIT_LIST_HEAD(&data->queue); 1367 spin_lock_init(&data->lock); 1368 INIT_WORK(&data->work, pch_spi_process_messages); 1369 init_waitqueue_head(&data->wait); 1370 1371 ret = pch_spi_get_resources(board_dat, data); 1372 if (ret) { 1373 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret); 1374 goto err_spi_get_resources; 1375 } 1376 1377 ret = request_irq(board_dat->pdev->irq, pch_spi_handler, 1378 IRQF_SHARED, KBUILD_MODNAME, data); 1379 if (ret) { 1380 dev_err(&plat_dev->dev, 1381 "%s request_irq failed\n", __func__); 1382 goto err_request_irq; 1383 } 1384 data->irq_reg_sts = true; 1385 1386 pch_spi_set_master_mode(master); 1387 1388 if (use_dma) { 1389 dev_info(&plat_dev->dev, "Use DMA for data transfers\n"); 1390 ret = pch_alloc_dma_buf(board_dat, data); 1391 if (ret) 1392 goto err_spi_register_master; 1393 } 1394 1395 ret = spi_register_master(master); 1396 if (ret != 0) { 1397 dev_err(&plat_dev->dev, 1398 "%s spi_register_master FAILED\n", __func__); 1399 goto err_spi_register_master; 1400 } 1401 1402 return 0; 1403 1404 err_spi_register_master: 1405 pch_free_dma_buf(board_dat, data); 1406 free_irq(board_dat->pdev->irq, data); 1407 err_request_irq: 1408 pch_spi_free_resources(board_dat, data); 1409 err_spi_get_resources: 1410 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1411 err_pci_iomap: 1412 spi_master_put(master); 1413 1414 return ret; 1415 } 1416 1417 static int pch_spi_pd_remove(struct platform_device *plat_dev) 1418 { 1419 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1420 struct pch_spi_data *data = platform_get_drvdata(plat_dev); 1421 int count; 1422 unsigned long flags; 1423 1424 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n", 1425 __func__, plat_dev->id, board_dat->pdev->irq); 1426 1427 if (use_dma) 1428 pch_free_dma_buf(board_dat, data); 1429 1430 /* check for any pending messages; no action is taken if the queue 1431 * is still full; but at least we tried. Unload anyway */ 1432 count = 500; 1433 spin_lock_irqsave(&data->lock, flags); 1434 data->status = STATUS_EXITING; 1435 while ((list_empty(&data->queue) == 0) && --count) { 1436 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n", 1437 __func__); 1438 spin_unlock_irqrestore(&data->lock, flags); 1439 msleep(PCH_SLEEP_TIME); 1440 spin_lock_irqsave(&data->lock, flags); 1441 } 1442 spin_unlock_irqrestore(&data->lock, flags); 1443 1444 pch_spi_free_resources(board_dat, data); 1445 /* disable interrupts & free IRQ */ 1446 if (data->irq_reg_sts) { 1447 /* disable interrupts */ 1448 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1449 data->irq_reg_sts = false; 1450 free_irq(board_dat->pdev->irq, data); 1451 } 1452 1453 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1454 spi_unregister_master(data->master); 1455 1456 return 0; 1457 } 1458 #ifdef CONFIG_PM 1459 static int pch_spi_pd_suspend(struct platform_device *pd_dev, 1460 pm_message_t state) 1461 { 1462 u8 count; 1463 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1464 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1465 1466 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__); 1467 1468 if (!board_dat) { 1469 dev_err(&pd_dev->dev, 1470 "%s pci_get_drvdata returned NULL\n", __func__); 1471 return -EFAULT; 1472 } 1473 1474 /* check if the current message is processed: 1475 Only after thats done the transfer will be suspended */ 1476 count = 255; 1477 while ((--count) > 0) { 1478 if (!(data->bcurrent_msg_processing)) 1479 break; 1480 msleep(PCH_SLEEP_TIME); 1481 } 1482 1483 /* Free IRQ */ 1484 if (data->irq_reg_sts) { 1485 /* disable all interrupts */ 1486 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1487 pch_spi_reset(data->master); 1488 free_irq(board_dat->pdev->irq, data); 1489 1490 data->irq_reg_sts = false; 1491 dev_dbg(&pd_dev->dev, 1492 "%s free_irq invoked successfully.\n", __func__); 1493 } 1494 1495 return 0; 1496 } 1497 1498 static int pch_spi_pd_resume(struct platform_device *pd_dev) 1499 { 1500 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1501 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1502 int retval; 1503 1504 if (!board_dat) { 1505 dev_err(&pd_dev->dev, 1506 "%s pci_get_drvdata returned NULL\n", __func__); 1507 return -EFAULT; 1508 } 1509 1510 if (!data->irq_reg_sts) { 1511 /* register IRQ */ 1512 retval = request_irq(board_dat->pdev->irq, pch_spi_handler, 1513 IRQF_SHARED, KBUILD_MODNAME, data); 1514 if (retval < 0) { 1515 dev_err(&pd_dev->dev, 1516 "%s request_irq failed\n", __func__); 1517 return retval; 1518 } 1519 1520 /* reset PCH SPI h/w */ 1521 pch_spi_reset(data->master); 1522 pch_spi_set_master_mode(data->master); 1523 data->irq_reg_sts = true; 1524 } 1525 return 0; 1526 } 1527 #else 1528 #define pch_spi_pd_suspend NULL 1529 #define pch_spi_pd_resume NULL 1530 #endif 1531 1532 static struct platform_driver pch_spi_pd_driver = { 1533 .driver = { 1534 .name = "pch-spi", 1535 }, 1536 .probe = pch_spi_pd_probe, 1537 .remove = pch_spi_pd_remove, 1538 .suspend = pch_spi_pd_suspend, 1539 .resume = pch_spi_pd_resume 1540 }; 1541 1542 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1543 { 1544 struct pch_spi_board_data *board_dat; 1545 struct platform_device *pd_dev = NULL; 1546 int retval; 1547 int i; 1548 struct pch_pd_dev_save *pd_dev_save; 1549 1550 pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL); 1551 if (!pd_dev_save) 1552 return -ENOMEM; 1553 1554 board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL); 1555 if (!board_dat) { 1556 retval = -ENOMEM; 1557 goto err_no_mem; 1558 } 1559 1560 retval = pci_request_regions(pdev, KBUILD_MODNAME); 1561 if (retval) { 1562 dev_err(&pdev->dev, "%s request_region failed\n", __func__); 1563 goto pci_request_regions; 1564 } 1565 1566 board_dat->pdev = pdev; 1567 board_dat->num = id->driver_data; 1568 pd_dev_save->num = id->driver_data; 1569 pd_dev_save->board_dat = board_dat; 1570 1571 retval = pci_enable_device(pdev); 1572 if (retval) { 1573 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__); 1574 goto pci_enable_device; 1575 } 1576 1577 for (i = 0; i < board_dat->num; i++) { 1578 pd_dev = platform_device_alloc("pch-spi", i); 1579 if (!pd_dev) { 1580 dev_err(&pdev->dev, "platform_device_alloc failed\n"); 1581 retval = -ENOMEM; 1582 goto err_platform_device; 1583 } 1584 pd_dev_save->pd_save[i] = pd_dev; 1585 pd_dev->dev.parent = &pdev->dev; 1586 1587 retval = platform_device_add_data(pd_dev, board_dat, 1588 sizeof(*board_dat)); 1589 if (retval) { 1590 dev_err(&pdev->dev, 1591 "platform_device_add_data failed\n"); 1592 platform_device_put(pd_dev); 1593 goto err_platform_device; 1594 } 1595 1596 retval = platform_device_add(pd_dev); 1597 if (retval) { 1598 dev_err(&pdev->dev, "platform_device_add failed\n"); 1599 platform_device_put(pd_dev); 1600 goto err_platform_device; 1601 } 1602 } 1603 1604 pci_set_drvdata(pdev, pd_dev_save); 1605 1606 return 0; 1607 1608 err_platform_device: 1609 while (--i >= 0) 1610 platform_device_unregister(pd_dev_save->pd_save[i]); 1611 pci_disable_device(pdev); 1612 pci_enable_device: 1613 pci_release_regions(pdev); 1614 pci_request_regions: 1615 kfree(board_dat); 1616 err_no_mem: 1617 kfree(pd_dev_save); 1618 1619 return retval; 1620 } 1621 1622 static void pch_spi_remove(struct pci_dev *pdev) 1623 { 1624 int i; 1625 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1626 1627 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev); 1628 1629 for (i = 0; i < pd_dev_save->num; i++) 1630 platform_device_unregister(pd_dev_save->pd_save[i]); 1631 1632 pci_disable_device(pdev); 1633 pci_release_regions(pdev); 1634 kfree(pd_dev_save->board_dat); 1635 kfree(pd_dev_save); 1636 } 1637 1638 static int __maybe_unused pch_spi_suspend(struct device *dev) 1639 { 1640 struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev); 1641 1642 dev_dbg(dev, "%s ENTRY\n", __func__); 1643 1644 pd_dev_save->board_dat->suspend_sts = true; 1645 1646 return 0; 1647 } 1648 1649 static int __maybe_unused pch_spi_resume(struct device *dev) 1650 { 1651 struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev); 1652 1653 dev_dbg(dev, "%s ENTRY\n", __func__); 1654 1655 /* set suspend status to false */ 1656 pd_dev_save->board_dat->suspend_sts = false; 1657 1658 return 0; 1659 } 1660 1661 static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume); 1662 1663 static struct pci_driver pch_spi_pcidev_driver = { 1664 .name = "pch_spi", 1665 .id_table = pch_spi_pcidev_id, 1666 .probe = pch_spi_probe, 1667 .remove = pch_spi_remove, 1668 .driver.pm = &pch_spi_pm_ops, 1669 }; 1670 1671 static int __init pch_spi_init(void) 1672 { 1673 int ret; 1674 ret = platform_driver_register(&pch_spi_pd_driver); 1675 if (ret) 1676 return ret; 1677 1678 ret = pci_register_driver(&pch_spi_pcidev_driver); 1679 if (ret) { 1680 platform_driver_unregister(&pch_spi_pd_driver); 1681 return ret; 1682 } 1683 1684 return 0; 1685 } 1686 module_init(pch_spi_init); 1687 1688 static void __exit pch_spi_exit(void) 1689 { 1690 pci_unregister_driver(&pch_spi_pcidev_driver); 1691 platform_driver_unregister(&pch_spi_pd_driver); 1692 } 1693 module_exit(pch_spi_exit); 1694 1695 module_param(use_dma, int, 0644); 1696 MODULE_PARM_DESC(use_dma, 1697 "to use DMA for data transfers pass 1 else 0; default 1"); 1698 1699 MODULE_LICENSE("GPL"); 1700 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver"); 1701 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id); 1702 1703