1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SPI bus driver for the Topcliff PCH used by Intel SoCs 4 * 5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/pci.h> 10 #include <linux/wait.h> 11 #include <linux/spi/spi.h> 12 #include <linux/interrupt.h> 13 #include <linux/sched.h> 14 #include <linux/spi/spidev.h> 15 #include <linux/module.h> 16 #include <linux/device.h> 17 #include <linux/platform_device.h> 18 19 #include <linux/dmaengine.h> 20 #include <linux/pch_dma.h> 21 22 /* Register offsets */ 23 #define PCH_SPCR 0x00 /* SPI control register */ 24 #define PCH_SPBRR 0x04 /* SPI baud rate register */ 25 #define PCH_SPSR 0x08 /* SPI status register */ 26 #define PCH_SPDWR 0x0C /* SPI write data register */ 27 #define PCH_SPDRR 0x10 /* SPI read data register */ 28 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */ 29 #define PCH_SRST 0x1C /* SPI reset register */ 30 #define PCH_ADDRESS_SIZE 0x20 31 32 #define PCH_SPSR_TFD 0x000007C0 33 #define PCH_SPSR_RFD 0x0000F800 34 35 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11) 36 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6) 37 38 #define PCH_RX_THOLD 7 39 #define PCH_RX_THOLD_MAX 15 40 41 #define PCH_TX_THOLD 2 42 43 #define PCH_MAX_BAUDRATE 5000000 44 #define PCH_MAX_FIFO_DEPTH 16 45 46 #define STATUS_RUNNING 1 47 #define STATUS_EXITING 2 48 #define PCH_SLEEP_TIME 10 49 50 #define SSN_LOW 0x02U 51 #define SSN_HIGH 0x03U 52 #define SSN_NO_CONTROL 0x00U 53 #define PCH_MAX_CS 0xFF 54 #define PCI_DEVICE_ID_GE_SPI 0x8816 55 56 #define SPCR_SPE_BIT (1 << 0) 57 #define SPCR_MSTR_BIT (1 << 1) 58 #define SPCR_LSBF_BIT (1 << 4) 59 #define SPCR_CPHA_BIT (1 << 5) 60 #define SPCR_CPOL_BIT (1 << 6) 61 #define SPCR_TFIE_BIT (1 << 8) 62 #define SPCR_RFIE_BIT (1 << 9) 63 #define SPCR_FIE_BIT (1 << 10) 64 #define SPCR_ORIE_BIT (1 << 11) 65 #define SPCR_MDFIE_BIT (1 << 12) 66 #define SPCR_FICLR_BIT (1 << 24) 67 #define SPSR_TFI_BIT (1 << 0) 68 #define SPSR_RFI_BIT (1 << 1) 69 #define SPSR_FI_BIT (1 << 2) 70 #define SPSR_ORF_BIT (1 << 3) 71 #define SPBRR_SIZE_BIT (1 << 10) 72 73 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\ 74 SPCR_ORIE_BIT|SPCR_MDFIE_BIT) 75 76 #define SPCR_RFIC_FIELD 20 77 #define SPCR_TFIC_FIELD 16 78 79 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1) 80 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD) 81 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD) 82 83 #define PCH_CLOCK_HZ 50000000 84 #define PCH_MAX_SPBR 1023 85 86 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */ 87 #define PCI_DEVICE_ID_ML7213_SPI 0x802c 88 #define PCI_DEVICE_ID_ML7223_SPI 0x800F 89 #define PCI_DEVICE_ID_ML7831_SPI 0x8816 90 91 /* 92 * Set the number of SPI instance max 93 * Intel EG20T PCH : 1ch 94 * LAPIS Semiconductor ML7213 IOH : 2ch 95 * LAPIS Semiconductor ML7223 IOH : 1ch 96 * LAPIS Semiconductor ML7831 IOH : 1ch 97 */ 98 #define PCH_SPI_MAX_DEV 2 99 100 #define PCH_BUF_SIZE 4096 101 #define PCH_DMA_TRANS_SIZE 12 102 103 static int use_dma = 1; 104 105 struct pch_spi_dma_ctrl { 106 struct pci_dev *dma_dev; 107 struct dma_async_tx_descriptor *desc_tx; 108 struct dma_async_tx_descriptor *desc_rx; 109 struct pch_dma_slave param_tx; 110 struct pch_dma_slave param_rx; 111 struct dma_chan *chan_tx; 112 struct dma_chan *chan_rx; 113 struct scatterlist *sg_tx_p; 114 struct scatterlist *sg_rx_p; 115 struct scatterlist sg_tx; 116 struct scatterlist sg_rx; 117 int nent; 118 void *tx_buf_virt; 119 void *rx_buf_virt; 120 dma_addr_t tx_buf_dma; 121 dma_addr_t rx_buf_dma; 122 }; 123 /** 124 * struct pch_spi_data - Holds the SPI channel specific details 125 * @io_remap_addr: The remapped PCI base address 126 * @io_base_addr: Base address 127 * @master: Pointer to the SPI master structure 128 * @work: Reference to work queue handler 129 * @wait: Wait queue for waking up upon receiving an 130 * interrupt. 131 * @transfer_complete: Status of SPI Transfer 132 * @bcurrent_msg_processing: Status flag for message processing 133 * @lock: Lock for protecting this structure 134 * @queue: SPI Message queue 135 * @status: Status of the SPI driver 136 * @bpw_len: Length of data to be transferred in bits per 137 * word 138 * @transfer_active: Flag showing active transfer 139 * @tx_index: Transmit data count; for bookkeeping during 140 * transfer 141 * @rx_index: Receive data count; for bookkeeping during 142 * transfer 143 * @pkt_tx_buff: Buffer for data to be transmitted 144 * @pkt_rx_buff: Buffer for received data 145 * @n_curnt_chip: The chip number that this SPI driver currently 146 * operates on 147 * @current_chip: Reference to the current chip that this SPI 148 * driver currently operates on 149 * @current_msg: The current message that this SPI driver is 150 * handling 151 * @cur_trans: The current transfer that this SPI driver is 152 * handling 153 * @board_dat: Reference to the SPI device data structure 154 * @plat_dev: platform_device structure 155 * @ch: SPI channel number 156 * @dma: Local DMA information 157 * @use_dma: True if DMA is to be used 158 * @irq_reg_sts: Status of IRQ registration 159 * @save_total_len: Save length while data is being transferred 160 */ 161 struct pch_spi_data { 162 void __iomem *io_remap_addr; 163 unsigned long io_base_addr; 164 struct spi_master *master; 165 struct work_struct work; 166 wait_queue_head_t wait; 167 u8 transfer_complete; 168 u8 bcurrent_msg_processing; 169 spinlock_t lock; 170 struct list_head queue; 171 u8 status; 172 u32 bpw_len; 173 u8 transfer_active; 174 u32 tx_index; 175 u32 rx_index; 176 u16 *pkt_tx_buff; 177 u16 *pkt_rx_buff; 178 u8 n_curnt_chip; 179 struct spi_device *current_chip; 180 struct spi_message *current_msg; 181 struct spi_transfer *cur_trans; 182 struct pch_spi_board_data *board_dat; 183 struct platform_device *plat_dev; 184 int ch; 185 struct pch_spi_dma_ctrl dma; 186 int use_dma; 187 u8 irq_reg_sts; 188 int save_total_len; 189 }; 190 191 /** 192 * struct pch_spi_board_data - Holds the SPI device specific details 193 * @pdev: Pointer to the PCI device 194 * @suspend_sts: Status of suspend 195 * @num: The number of SPI device instance 196 */ 197 struct pch_spi_board_data { 198 struct pci_dev *pdev; 199 u8 suspend_sts; 200 int num; 201 }; 202 203 struct pch_pd_dev_save { 204 int num; 205 struct platform_device *pd_save[PCH_SPI_MAX_DEV]; 206 struct pch_spi_board_data *board_dat; 207 }; 208 209 static const struct pci_device_id pch_spi_pcidev_id[] = { 210 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, }, 211 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, }, 212 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, }, 213 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, }, 214 { } 215 }; 216 217 /** 218 * pch_spi_writereg() - Performs register writes 219 * @master: Pointer to struct spi_master. 220 * @idx: Register offset. 221 * @val: Value to be written to register. 222 */ 223 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val) 224 { 225 struct pch_spi_data *data = spi_master_get_devdata(master); 226 iowrite32(val, (data->io_remap_addr + idx)); 227 } 228 229 /** 230 * pch_spi_readreg() - Performs register reads 231 * @master: Pointer to struct spi_master. 232 * @idx: Register offset. 233 */ 234 static inline u32 pch_spi_readreg(struct spi_master *master, int idx) 235 { 236 struct pch_spi_data *data = spi_master_get_devdata(master); 237 return ioread32(data->io_remap_addr + idx); 238 } 239 240 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx, 241 u32 set, u32 clr) 242 { 243 u32 tmp = pch_spi_readreg(master, idx); 244 tmp = (tmp & ~clr) | set; 245 pch_spi_writereg(master, idx, tmp); 246 } 247 248 static void pch_spi_set_master_mode(struct spi_master *master) 249 { 250 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0); 251 } 252 253 /** 254 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs 255 * @master: Pointer to struct spi_master. 256 */ 257 static void pch_spi_clear_fifo(struct spi_master *master) 258 { 259 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0); 260 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT); 261 } 262 263 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val, 264 void __iomem *io_remap_addr) 265 { 266 u32 n_read, tx_index, rx_index, bpw_len; 267 u16 *pkt_rx_buffer, *pkt_tx_buff; 268 int read_cnt; 269 u32 reg_spcr_val; 270 void __iomem *spsr; 271 void __iomem *spdrr; 272 void __iomem *spdwr; 273 274 spsr = io_remap_addr + PCH_SPSR; 275 iowrite32(reg_spsr_val, spsr); 276 277 if (data->transfer_active) { 278 rx_index = data->rx_index; 279 tx_index = data->tx_index; 280 bpw_len = data->bpw_len; 281 pkt_rx_buffer = data->pkt_rx_buff; 282 pkt_tx_buff = data->pkt_tx_buff; 283 284 spdrr = io_remap_addr + PCH_SPDRR; 285 spdwr = io_remap_addr + PCH_SPDWR; 286 287 n_read = PCH_READABLE(reg_spsr_val); 288 289 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) { 290 pkt_rx_buffer[rx_index++] = ioread32(spdrr); 291 if (tx_index < bpw_len) 292 iowrite32(pkt_tx_buff[tx_index++], spdwr); 293 } 294 295 /* disable RFI if not needed */ 296 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) { 297 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR); 298 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */ 299 300 /* reset rx threshold */ 301 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS; 302 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD); 303 304 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR)); 305 } 306 307 /* update counts */ 308 data->tx_index = tx_index; 309 data->rx_index = rx_index; 310 311 /* if transfer complete interrupt */ 312 if (reg_spsr_val & SPSR_FI_BIT) { 313 if ((tx_index == bpw_len) && (rx_index == tx_index)) { 314 /* disable interrupts */ 315 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 316 PCH_ALL); 317 318 /* transfer is completed; 319 inform pch_spi_process_messages */ 320 data->transfer_complete = true; 321 data->transfer_active = false; 322 wake_up(&data->wait); 323 } else { 324 dev_vdbg(&data->master->dev, 325 "%s : Transfer is not completed", 326 __func__); 327 } 328 } 329 } 330 } 331 332 /** 333 * pch_spi_handler() - Interrupt handler 334 * @irq: The interrupt number. 335 * @dev_id: Pointer to struct pch_spi_board_data. 336 */ 337 static irqreturn_t pch_spi_handler(int irq, void *dev_id) 338 { 339 u32 reg_spsr_val; 340 void __iomem *spsr; 341 void __iomem *io_remap_addr; 342 irqreturn_t ret = IRQ_NONE; 343 struct pch_spi_data *data = dev_id; 344 struct pch_spi_board_data *board_dat = data->board_dat; 345 346 if (board_dat->suspend_sts) { 347 dev_dbg(&board_dat->pdev->dev, 348 "%s returning due to suspend\n", __func__); 349 return IRQ_NONE; 350 } 351 352 io_remap_addr = data->io_remap_addr; 353 spsr = io_remap_addr + PCH_SPSR; 354 355 reg_spsr_val = ioread32(spsr); 356 357 if (reg_spsr_val & SPSR_ORF_BIT) { 358 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__); 359 if (data->current_msg->complete) { 360 data->transfer_complete = true; 361 data->current_msg->status = -EIO; 362 data->current_msg->complete(data->current_msg->context); 363 data->bcurrent_msg_processing = false; 364 data->current_msg = NULL; 365 data->cur_trans = NULL; 366 } 367 } 368 369 if (data->use_dma) 370 return IRQ_NONE; 371 372 /* Check if the interrupt is for SPI device */ 373 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) { 374 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr); 375 ret = IRQ_HANDLED; 376 } 377 378 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n", 379 __func__, ret); 380 381 return ret; 382 } 383 384 /** 385 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR 386 * @master: Pointer to struct spi_master. 387 * @speed_hz: Baud rate. 388 */ 389 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz) 390 { 391 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2); 392 393 /* if baud rate is less than we can support limit it */ 394 if (n_spbr > PCH_MAX_SPBR) 395 n_spbr = PCH_MAX_SPBR; 396 397 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS); 398 } 399 400 /** 401 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR 402 * @master: Pointer to struct spi_master. 403 * @bits_per_word: Bits per word for SPI transfer. 404 */ 405 static void pch_spi_set_bits_per_word(struct spi_master *master, 406 u8 bits_per_word) 407 { 408 if (bits_per_word == 8) 409 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT); 410 else 411 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0); 412 } 413 414 /** 415 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer 416 * @spi: Pointer to struct spi_device. 417 */ 418 static void pch_spi_setup_transfer(struct spi_device *spi) 419 { 420 u32 flags = 0; 421 422 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n", 423 __func__, pch_spi_readreg(spi->master, PCH_SPBRR), 424 spi->max_speed_hz); 425 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz); 426 427 /* set bits per word */ 428 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word); 429 430 if (!(spi->mode & SPI_LSB_FIRST)) 431 flags |= SPCR_LSBF_BIT; 432 if (spi->mode & SPI_CPOL) 433 flags |= SPCR_CPOL_BIT; 434 if (spi->mode & SPI_CPHA) 435 flags |= SPCR_CPHA_BIT; 436 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags, 437 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT)); 438 439 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */ 440 pch_spi_clear_fifo(spi->master); 441 } 442 443 /** 444 * pch_spi_reset() - Clears SPI registers 445 * @master: Pointer to struct spi_master. 446 */ 447 static void pch_spi_reset(struct spi_master *master) 448 { 449 /* write 1 to reset SPI */ 450 pch_spi_writereg(master, PCH_SRST, 0x1); 451 452 /* clear reset */ 453 pch_spi_writereg(master, PCH_SRST, 0x0); 454 } 455 456 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg) 457 { 458 struct pch_spi_data *data = spi_master_get_devdata(pspi->master); 459 int retval; 460 unsigned long flags; 461 462 /* We won't process any messages if we have been asked to terminate */ 463 if (data->status == STATUS_EXITING) { 464 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__); 465 retval = -ESHUTDOWN; 466 goto err_out; 467 } 468 469 /* If suspended ,return -EINVAL */ 470 if (data->board_dat->suspend_sts) { 471 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__); 472 retval = -EINVAL; 473 goto err_out; 474 } 475 476 /* set status of message */ 477 pmsg->actual_length = 0; 478 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status); 479 480 pmsg->status = -EINPROGRESS; 481 spin_lock_irqsave(&data->lock, flags); 482 /* add message to queue */ 483 list_add_tail(&pmsg->queue, &data->queue); 484 spin_unlock_irqrestore(&data->lock, flags); 485 486 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__); 487 488 schedule_work(&data->work); 489 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__); 490 491 retval = 0; 492 493 err_out: 494 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); 495 return retval; 496 } 497 498 static inline void pch_spi_select_chip(struct pch_spi_data *data, 499 struct spi_device *pspi) 500 { 501 if (data->current_chip != NULL) { 502 if (pspi->chip_select != data->n_curnt_chip) { 503 dev_dbg(&pspi->dev, "%s : different slave\n", __func__); 504 data->current_chip = NULL; 505 } 506 } 507 508 data->current_chip = pspi; 509 510 data->n_curnt_chip = data->current_chip->chip_select; 511 512 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__); 513 pch_spi_setup_transfer(pspi); 514 } 515 516 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw) 517 { 518 int size; 519 u32 n_writes; 520 int j; 521 struct spi_message *pmsg, *tmp; 522 const u8 *tx_buf; 523 const u16 *tx_sbuf; 524 525 /* set baud rate if needed */ 526 if (data->cur_trans->speed_hz) { 527 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 528 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 529 } 530 531 /* set bits per word if needed */ 532 if (data->cur_trans->bits_per_word && 533 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) { 534 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 535 pch_spi_set_bits_per_word(data->master, 536 data->cur_trans->bits_per_word); 537 *bpw = data->cur_trans->bits_per_word; 538 } else { 539 *bpw = data->current_msg->spi->bits_per_word; 540 } 541 542 /* reset Tx/Rx index */ 543 data->tx_index = 0; 544 data->rx_index = 0; 545 546 data->bpw_len = data->cur_trans->len / (*bpw / 8); 547 548 /* find alloc size */ 549 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff); 550 551 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */ 552 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL); 553 if (data->pkt_tx_buff != NULL) { 554 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL); 555 if (!data->pkt_rx_buff) { 556 kfree(data->pkt_tx_buff); 557 data->pkt_tx_buff = NULL; 558 } 559 } 560 561 if (!data->pkt_rx_buff) { 562 /* flush queue and set status of all transfers to -ENOMEM */ 563 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 564 pmsg->status = -ENOMEM; 565 566 if (pmsg->complete) 567 pmsg->complete(pmsg->context); 568 569 /* delete from queue */ 570 list_del_init(&pmsg->queue); 571 } 572 return; 573 } 574 575 /* copy Tx Data */ 576 if (data->cur_trans->tx_buf != NULL) { 577 if (*bpw == 8) { 578 tx_buf = data->cur_trans->tx_buf; 579 for (j = 0; j < data->bpw_len; j++) 580 data->pkt_tx_buff[j] = *tx_buf++; 581 } else { 582 tx_sbuf = data->cur_trans->tx_buf; 583 for (j = 0; j < data->bpw_len; j++) 584 data->pkt_tx_buff[j] = *tx_sbuf++; 585 } 586 } 587 588 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */ 589 n_writes = data->bpw_len; 590 if (n_writes > PCH_MAX_FIFO_DEPTH) 591 n_writes = PCH_MAX_FIFO_DEPTH; 592 593 dev_dbg(&data->master->dev, 594 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", 595 __func__); 596 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 597 598 for (j = 0; j < n_writes; j++) 599 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]); 600 601 /* update tx_index */ 602 data->tx_index = j; 603 604 /* reset transfer complete flag */ 605 data->transfer_complete = false; 606 data->transfer_active = true; 607 } 608 609 static void pch_spi_nomore_transfer(struct pch_spi_data *data) 610 { 611 struct spi_message *pmsg, *tmp; 612 dev_dbg(&data->master->dev, "%s called\n", __func__); 613 /* Invoke complete callback 614 * [To the spi core..indicating end of transfer] */ 615 data->current_msg->status = 0; 616 617 if (data->current_msg->complete) { 618 dev_dbg(&data->master->dev, 619 "%s:Invoking callback of SPI core\n", __func__); 620 data->current_msg->complete(data->current_msg->context); 621 } 622 623 /* update status in global variable */ 624 data->bcurrent_msg_processing = false; 625 626 dev_dbg(&data->master->dev, 627 "%s:data->bcurrent_msg_processing = false\n", __func__); 628 629 data->current_msg = NULL; 630 data->cur_trans = NULL; 631 632 /* check if we have items in list and not suspending 633 * return 1 if list empty */ 634 if ((list_empty(&data->queue) == 0) && 635 (!data->board_dat->suspend_sts) && 636 (data->status != STATUS_EXITING)) { 637 /* We have some more work to do (either there is more tranint 638 * bpw;sfer requests in the current message or there are 639 *more messages) 640 */ 641 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__); 642 schedule_work(&data->work); 643 } else if (data->board_dat->suspend_sts || 644 data->status == STATUS_EXITING) { 645 dev_dbg(&data->master->dev, 646 "%s suspend/remove initiated, flushing queue\n", 647 __func__); 648 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 649 pmsg->status = -EIO; 650 651 if (pmsg->complete) 652 pmsg->complete(pmsg->context); 653 654 /* delete from queue */ 655 list_del_init(&pmsg->queue); 656 } 657 } 658 } 659 660 static void pch_spi_set_ir(struct pch_spi_data *data) 661 { 662 /* enable interrupts, set threshold, enable SPI */ 663 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH) 664 /* set receive threshold to PCH_RX_THOLD */ 665 pch_spi_setclr_reg(data->master, PCH_SPCR, 666 PCH_RX_THOLD << SPCR_RFIC_FIELD | 667 SPCR_FIE_BIT | SPCR_RFIE_BIT | 668 SPCR_ORIE_BIT | SPCR_SPE_BIT, 669 MASK_RFIC_SPCR_BITS | PCH_ALL); 670 else 671 /* set receive threshold to maximum */ 672 pch_spi_setclr_reg(data->master, PCH_SPCR, 673 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD | 674 SPCR_FIE_BIT | SPCR_ORIE_BIT | 675 SPCR_SPE_BIT, 676 MASK_RFIC_SPCR_BITS | PCH_ALL); 677 678 /* Wait until the transfer completes; go to sleep after 679 initiating the transfer. */ 680 dev_dbg(&data->master->dev, 681 "%s:waiting for transfer to get over\n", __func__); 682 683 wait_event_interruptible(data->wait, data->transfer_complete); 684 685 /* clear all interrupts */ 686 pch_spi_writereg(data->master, PCH_SPSR, 687 pch_spi_readreg(data->master, PCH_SPSR)); 688 /* Disable interrupts and SPI transfer */ 689 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT); 690 /* clear FIFO */ 691 pch_spi_clear_fifo(data->master); 692 } 693 694 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw) 695 { 696 int j; 697 u8 *rx_buf; 698 u16 *rx_sbuf; 699 700 /* copy Rx Data */ 701 if (!data->cur_trans->rx_buf) 702 return; 703 704 if (bpw == 8) { 705 rx_buf = data->cur_trans->rx_buf; 706 for (j = 0; j < data->bpw_len; j++) 707 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF; 708 } else { 709 rx_sbuf = data->cur_trans->rx_buf; 710 for (j = 0; j < data->bpw_len; j++) 711 *rx_sbuf++ = data->pkt_rx_buff[j]; 712 } 713 } 714 715 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw) 716 { 717 int j; 718 u8 *rx_buf; 719 u16 *rx_sbuf; 720 const u8 *rx_dma_buf; 721 const u16 *rx_dma_sbuf; 722 723 /* copy Rx Data */ 724 if (!data->cur_trans->rx_buf) 725 return; 726 727 if (bpw == 8) { 728 rx_buf = data->cur_trans->rx_buf; 729 rx_dma_buf = data->dma.rx_buf_virt; 730 for (j = 0; j < data->bpw_len; j++) 731 *rx_buf++ = *rx_dma_buf++ & 0xFF; 732 data->cur_trans->rx_buf = rx_buf; 733 } else { 734 rx_sbuf = data->cur_trans->rx_buf; 735 rx_dma_sbuf = data->dma.rx_buf_virt; 736 for (j = 0; j < data->bpw_len; j++) 737 *rx_sbuf++ = *rx_dma_sbuf++; 738 data->cur_trans->rx_buf = rx_sbuf; 739 } 740 } 741 742 static int pch_spi_start_transfer(struct pch_spi_data *data) 743 { 744 struct pch_spi_dma_ctrl *dma; 745 unsigned long flags; 746 int rtn; 747 748 dma = &data->dma; 749 750 spin_lock_irqsave(&data->lock, flags); 751 752 /* disable interrupts, SPI set enable */ 753 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL); 754 755 spin_unlock_irqrestore(&data->lock, flags); 756 757 /* Wait until the transfer completes; go to sleep after 758 initiating the transfer. */ 759 dev_dbg(&data->master->dev, 760 "%s:waiting for transfer to get over\n", __func__); 761 rtn = wait_event_interruptible_timeout(data->wait, 762 data->transfer_complete, 763 msecs_to_jiffies(2 * HZ)); 764 if (!rtn) 765 dev_err(&data->master->dev, 766 "%s wait-event timeout\n", __func__); 767 768 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent, 769 DMA_FROM_DEVICE); 770 771 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent, 772 DMA_FROM_DEVICE); 773 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE); 774 775 async_tx_ack(dma->desc_rx); 776 async_tx_ack(dma->desc_tx); 777 kfree(dma->sg_tx_p); 778 kfree(dma->sg_rx_p); 779 780 spin_lock_irqsave(&data->lock, flags); 781 782 /* clear fifo threshold, disable interrupts, disable SPI transfer */ 783 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 784 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL | 785 SPCR_SPE_BIT); 786 /* clear all interrupts */ 787 pch_spi_writereg(data->master, PCH_SPSR, 788 pch_spi_readreg(data->master, PCH_SPSR)); 789 /* clear FIFO */ 790 pch_spi_clear_fifo(data->master); 791 792 spin_unlock_irqrestore(&data->lock, flags); 793 794 return rtn; 795 } 796 797 static void pch_dma_rx_complete(void *arg) 798 { 799 struct pch_spi_data *data = arg; 800 801 /* transfer is completed;inform pch_spi_process_messages_dma */ 802 data->transfer_complete = true; 803 wake_up_interruptible(&data->wait); 804 } 805 806 static bool pch_spi_filter(struct dma_chan *chan, void *slave) 807 { 808 struct pch_dma_slave *param = slave; 809 810 if ((chan->chan_id == param->chan_id) && 811 (param->dma_dev == chan->device->dev)) { 812 chan->private = param; 813 return true; 814 } else { 815 return false; 816 } 817 } 818 819 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw) 820 { 821 dma_cap_mask_t mask; 822 struct dma_chan *chan; 823 struct pci_dev *dma_dev; 824 struct pch_dma_slave *param; 825 struct pch_spi_dma_ctrl *dma; 826 unsigned int width; 827 828 if (bpw == 8) 829 width = PCH_DMA_WIDTH_1_BYTE; 830 else 831 width = PCH_DMA_WIDTH_2_BYTES; 832 833 dma = &data->dma; 834 dma_cap_zero(mask); 835 dma_cap_set(DMA_SLAVE, mask); 836 837 /* Get DMA's dev information */ 838 dma_dev = pci_get_slot(data->board_dat->pdev->bus, 839 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0)); 840 841 /* Set Tx DMA */ 842 param = &dma->param_tx; 843 param->dma_dev = &dma_dev->dev; 844 param->chan_id = data->ch * 2; /* Tx = 0, 2 */ 845 param->tx_reg = data->io_base_addr + PCH_SPDWR; 846 param->width = width; 847 chan = dma_request_channel(mask, pch_spi_filter, param); 848 if (!chan) { 849 dev_err(&data->master->dev, 850 "ERROR: dma_request_channel FAILS(Tx)\n"); 851 goto out; 852 } 853 dma->chan_tx = chan; 854 855 /* Set Rx DMA */ 856 param = &dma->param_rx; 857 param->dma_dev = &dma_dev->dev; 858 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */ 859 param->rx_reg = data->io_base_addr + PCH_SPDRR; 860 param->width = width; 861 chan = dma_request_channel(mask, pch_spi_filter, param); 862 if (!chan) { 863 dev_err(&data->master->dev, 864 "ERROR: dma_request_channel FAILS(Rx)\n"); 865 dma_release_channel(dma->chan_tx); 866 dma->chan_tx = NULL; 867 goto out; 868 } 869 dma->chan_rx = chan; 870 871 dma->dma_dev = dma_dev; 872 return; 873 out: 874 pci_dev_put(dma_dev); 875 data->use_dma = 0; 876 } 877 878 static void pch_spi_release_dma(struct pch_spi_data *data) 879 { 880 struct pch_spi_dma_ctrl *dma; 881 882 dma = &data->dma; 883 if (dma->chan_tx) { 884 dma_release_channel(dma->chan_tx); 885 dma->chan_tx = NULL; 886 } 887 if (dma->chan_rx) { 888 dma_release_channel(dma->chan_rx); 889 dma->chan_rx = NULL; 890 } 891 892 pci_dev_put(dma->dma_dev); 893 } 894 895 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw) 896 { 897 const u8 *tx_buf; 898 const u16 *tx_sbuf; 899 u8 *tx_dma_buf; 900 u16 *tx_dma_sbuf; 901 struct scatterlist *sg; 902 struct dma_async_tx_descriptor *desc_tx; 903 struct dma_async_tx_descriptor *desc_rx; 904 int num; 905 int i; 906 int size; 907 int rem; 908 int head; 909 unsigned long flags; 910 struct pch_spi_dma_ctrl *dma; 911 912 dma = &data->dma; 913 914 /* set baud rate if needed */ 915 if (data->cur_trans->speed_hz) { 916 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 917 spin_lock_irqsave(&data->lock, flags); 918 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 919 spin_unlock_irqrestore(&data->lock, flags); 920 } 921 922 /* set bits per word if needed */ 923 if (data->cur_trans->bits_per_word && 924 (data->current_msg->spi->bits_per_word != 925 data->cur_trans->bits_per_word)) { 926 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 927 spin_lock_irqsave(&data->lock, flags); 928 pch_spi_set_bits_per_word(data->master, 929 data->cur_trans->bits_per_word); 930 spin_unlock_irqrestore(&data->lock, flags); 931 *bpw = data->cur_trans->bits_per_word; 932 } else { 933 *bpw = data->current_msg->spi->bits_per_word; 934 } 935 data->bpw_len = data->cur_trans->len / (*bpw / 8); 936 937 if (data->bpw_len > PCH_BUF_SIZE) { 938 data->bpw_len = PCH_BUF_SIZE; 939 data->cur_trans->len -= PCH_BUF_SIZE; 940 } 941 942 /* copy Tx Data */ 943 if (data->cur_trans->tx_buf != NULL) { 944 if (*bpw == 8) { 945 tx_buf = data->cur_trans->tx_buf; 946 tx_dma_buf = dma->tx_buf_virt; 947 for (i = 0; i < data->bpw_len; i++) 948 *tx_dma_buf++ = *tx_buf++; 949 } else { 950 tx_sbuf = data->cur_trans->tx_buf; 951 tx_dma_sbuf = dma->tx_buf_virt; 952 for (i = 0; i < data->bpw_len; i++) 953 *tx_dma_sbuf++ = *tx_sbuf++; 954 } 955 } 956 957 /* Calculate Rx parameter for DMA transmitting */ 958 if (data->bpw_len > PCH_DMA_TRANS_SIZE) { 959 if (data->bpw_len % PCH_DMA_TRANS_SIZE) { 960 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 961 rem = data->bpw_len % PCH_DMA_TRANS_SIZE; 962 } else { 963 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 964 rem = PCH_DMA_TRANS_SIZE; 965 } 966 size = PCH_DMA_TRANS_SIZE; 967 } else { 968 num = 1; 969 size = data->bpw_len; 970 rem = data->bpw_len; 971 } 972 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n", 973 __func__, num, size, rem); 974 spin_lock_irqsave(&data->lock, flags); 975 976 /* set receive fifo threshold and transmit fifo threshold */ 977 pch_spi_setclr_reg(data->master, PCH_SPCR, 978 ((size - 1) << SPCR_RFIC_FIELD) | 979 (PCH_TX_THOLD << SPCR_TFIC_FIELD), 980 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS); 981 982 spin_unlock_irqrestore(&data->lock, flags); 983 984 /* RX */ 985 dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC); 986 if (!dma->sg_rx_p) 987 return; 988 989 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */ 990 /* offset, length setting */ 991 sg = dma->sg_rx_p; 992 for (i = 0; i < num; i++, sg++) { 993 if (i == (num - 2)) { 994 sg->offset = size * i; 995 sg->offset = sg->offset * (*bpw / 8); 996 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem, 997 sg->offset); 998 sg_dma_len(sg) = rem; 999 } else if (i == (num - 1)) { 1000 sg->offset = size * (i - 1) + rem; 1001 sg->offset = sg->offset * (*bpw / 8); 1002 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1003 sg->offset); 1004 sg_dma_len(sg) = size; 1005 } else { 1006 sg->offset = size * i; 1007 sg->offset = sg->offset * (*bpw / 8); 1008 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1009 sg->offset); 1010 sg_dma_len(sg) = size; 1011 } 1012 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset; 1013 } 1014 sg = dma->sg_rx_p; 1015 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg, 1016 num, DMA_DEV_TO_MEM, 1017 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1018 if (!desc_rx) { 1019 dev_err(&data->master->dev, 1020 "%s:dmaengine_prep_slave_sg Failed\n", __func__); 1021 return; 1022 } 1023 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE); 1024 desc_rx->callback = pch_dma_rx_complete; 1025 desc_rx->callback_param = data; 1026 dma->nent = num; 1027 dma->desc_rx = desc_rx; 1028 1029 /* Calculate Tx parameter for DMA transmitting */ 1030 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) { 1031 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE; 1032 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) { 1033 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 1034 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head; 1035 } else { 1036 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 1037 rem = data->bpw_len % PCH_DMA_TRANS_SIZE + 1038 PCH_DMA_TRANS_SIZE - head; 1039 } 1040 size = PCH_DMA_TRANS_SIZE; 1041 } else { 1042 num = 1; 1043 size = data->bpw_len; 1044 rem = data->bpw_len; 1045 head = 0; 1046 } 1047 1048 dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC); 1049 if (!dma->sg_tx_p) 1050 return; 1051 1052 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */ 1053 /* offset, length setting */ 1054 sg = dma->sg_tx_p; 1055 for (i = 0; i < num; i++, sg++) { 1056 if (i == 0) { 1057 sg->offset = 0; 1058 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head, 1059 sg->offset); 1060 sg_dma_len(sg) = size + head; 1061 } else if (i == (num - 1)) { 1062 sg->offset = head + size * i; 1063 sg->offset = sg->offset * (*bpw / 8); 1064 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem, 1065 sg->offset); 1066 sg_dma_len(sg) = rem; 1067 } else { 1068 sg->offset = head + size * i; 1069 sg->offset = sg->offset * (*bpw / 8); 1070 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size, 1071 sg->offset); 1072 sg_dma_len(sg) = size; 1073 } 1074 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset; 1075 } 1076 sg = dma->sg_tx_p; 1077 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx, 1078 sg, num, DMA_MEM_TO_DEV, 1079 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1080 if (!desc_tx) { 1081 dev_err(&data->master->dev, 1082 "%s:dmaengine_prep_slave_sg Failed\n", __func__); 1083 return; 1084 } 1085 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE); 1086 desc_tx->callback = NULL; 1087 desc_tx->callback_param = data; 1088 dma->nent = num; 1089 dma->desc_tx = desc_tx; 1090 1091 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__); 1092 1093 spin_lock_irqsave(&data->lock, flags); 1094 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 1095 desc_rx->tx_submit(desc_rx); 1096 desc_tx->tx_submit(desc_tx); 1097 spin_unlock_irqrestore(&data->lock, flags); 1098 1099 /* reset transfer complete flag */ 1100 data->transfer_complete = false; 1101 } 1102 1103 static void pch_spi_process_messages(struct work_struct *pwork) 1104 { 1105 struct spi_message *pmsg, *tmp; 1106 struct pch_spi_data *data; 1107 int bpw; 1108 1109 data = container_of(pwork, struct pch_spi_data, work); 1110 dev_dbg(&data->master->dev, "%s data initialized\n", __func__); 1111 1112 spin_lock(&data->lock); 1113 /* check if suspend has been initiated;if yes flush queue */ 1114 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) { 1115 dev_dbg(&data->master->dev, 1116 "%s suspend/remove initiated, flushing queue\n", __func__); 1117 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 1118 pmsg->status = -EIO; 1119 1120 if (pmsg->complete) { 1121 spin_unlock(&data->lock); 1122 pmsg->complete(pmsg->context); 1123 spin_lock(&data->lock); 1124 } 1125 1126 /* delete from queue */ 1127 list_del_init(&pmsg->queue); 1128 } 1129 1130 spin_unlock(&data->lock); 1131 return; 1132 } 1133 1134 data->bcurrent_msg_processing = true; 1135 dev_dbg(&data->master->dev, 1136 "%s Set data->bcurrent_msg_processing= true\n", __func__); 1137 1138 /* Get the message from the queue and delete it from there. */ 1139 data->current_msg = list_entry(data->queue.next, struct spi_message, 1140 queue); 1141 1142 list_del_init(&data->current_msg->queue); 1143 1144 data->current_msg->status = 0; 1145 1146 pch_spi_select_chip(data, data->current_msg->spi); 1147 1148 spin_unlock(&data->lock); 1149 1150 if (data->use_dma) 1151 pch_spi_request_dma(data, 1152 data->current_msg->spi->bits_per_word); 1153 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL); 1154 do { 1155 int cnt; 1156 /* If we are already processing a message get the next 1157 transfer structure from the message otherwise retrieve 1158 the 1st transfer request from the message. */ 1159 spin_lock(&data->lock); 1160 if (data->cur_trans == NULL) { 1161 data->cur_trans = 1162 list_entry(data->current_msg->transfers.next, 1163 struct spi_transfer, transfer_list); 1164 dev_dbg(&data->master->dev, 1165 "%s :Getting 1st transfer message\n", 1166 __func__); 1167 } else { 1168 data->cur_trans = 1169 list_entry(data->cur_trans->transfer_list.next, 1170 struct spi_transfer, transfer_list); 1171 dev_dbg(&data->master->dev, 1172 "%s :Getting next transfer message\n", 1173 __func__); 1174 } 1175 spin_unlock(&data->lock); 1176 1177 if (!data->cur_trans->len) 1178 goto out; 1179 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1; 1180 data->save_total_len = data->cur_trans->len; 1181 if (data->use_dma) { 1182 int i; 1183 char *save_rx_buf = data->cur_trans->rx_buf; 1184 1185 for (i = 0; i < cnt; i++) { 1186 pch_spi_handle_dma(data, &bpw); 1187 if (!pch_spi_start_transfer(data)) { 1188 data->transfer_complete = true; 1189 data->current_msg->status = -EIO; 1190 data->current_msg->complete 1191 (data->current_msg->context); 1192 data->bcurrent_msg_processing = false; 1193 data->current_msg = NULL; 1194 data->cur_trans = NULL; 1195 goto out; 1196 } 1197 pch_spi_copy_rx_data_for_dma(data, bpw); 1198 } 1199 data->cur_trans->rx_buf = save_rx_buf; 1200 } else { 1201 pch_spi_set_tx(data, &bpw); 1202 pch_spi_set_ir(data); 1203 pch_spi_copy_rx_data(data, bpw); 1204 kfree(data->pkt_rx_buff); 1205 data->pkt_rx_buff = NULL; 1206 kfree(data->pkt_tx_buff); 1207 data->pkt_tx_buff = NULL; 1208 } 1209 /* increment message count */ 1210 data->cur_trans->len = data->save_total_len; 1211 data->current_msg->actual_length += data->cur_trans->len; 1212 1213 dev_dbg(&data->master->dev, 1214 "%s:data->current_msg->actual_length=%d\n", 1215 __func__, data->current_msg->actual_length); 1216 1217 spi_transfer_delay_exec(data->cur_trans); 1218 1219 spin_lock(&data->lock); 1220 1221 /* No more transfer in this message. */ 1222 if ((data->cur_trans->transfer_list.next) == 1223 &(data->current_msg->transfers)) { 1224 pch_spi_nomore_transfer(data); 1225 } 1226 1227 spin_unlock(&data->lock); 1228 1229 } while (data->cur_trans != NULL); 1230 1231 out: 1232 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH); 1233 if (data->use_dma) 1234 pch_spi_release_dma(data); 1235 } 1236 1237 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat, 1238 struct pch_spi_data *data) 1239 { 1240 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1241 1242 flush_work(&data->work); 1243 } 1244 1245 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat, 1246 struct pch_spi_data *data) 1247 { 1248 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1249 1250 /* reset PCH SPI h/w */ 1251 pch_spi_reset(data->master); 1252 dev_dbg(&board_dat->pdev->dev, 1253 "%s pch_spi_reset invoked successfully\n", __func__); 1254 1255 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__); 1256 1257 return 0; 1258 } 1259 1260 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat, 1261 struct pch_spi_data *data) 1262 { 1263 struct pch_spi_dma_ctrl *dma; 1264 1265 dma = &data->dma; 1266 if (dma->tx_buf_dma) 1267 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1268 dma->tx_buf_virt, dma->tx_buf_dma); 1269 if (dma->rx_buf_dma) 1270 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1271 dma->rx_buf_virt, dma->rx_buf_dma); 1272 } 1273 1274 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat, 1275 struct pch_spi_data *data) 1276 { 1277 struct pch_spi_dma_ctrl *dma; 1278 int ret; 1279 1280 dma = &data->dma; 1281 ret = 0; 1282 /* Get Consistent memory for Tx DMA */ 1283 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1284 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL); 1285 if (!dma->tx_buf_virt) 1286 ret = -ENOMEM; 1287 1288 /* Get Consistent memory for Rx DMA */ 1289 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1290 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL); 1291 if (!dma->rx_buf_virt) 1292 ret = -ENOMEM; 1293 1294 return ret; 1295 } 1296 1297 static int pch_spi_pd_probe(struct platform_device *plat_dev) 1298 { 1299 int ret; 1300 struct spi_master *master; 1301 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1302 struct pch_spi_data *data; 1303 1304 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__); 1305 1306 master = spi_alloc_master(&board_dat->pdev->dev, 1307 sizeof(struct pch_spi_data)); 1308 if (!master) { 1309 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n", 1310 plat_dev->id); 1311 return -ENOMEM; 1312 } 1313 1314 data = spi_master_get_devdata(master); 1315 data->master = master; 1316 1317 platform_set_drvdata(plat_dev, data); 1318 1319 /* baseaddress + address offset) */ 1320 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) + 1321 PCH_ADDRESS_SIZE * plat_dev->id; 1322 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0); 1323 if (!data->io_remap_addr) { 1324 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__); 1325 ret = -ENOMEM; 1326 goto err_pci_iomap; 1327 } 1328 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id; 1329 1330 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n", 1331 plat_dev->id, data->io_remap_addr); 1332 1333 /* initialize members of SPI master */ 1334 master->num_chipselect = PCH_MAX_CS; 1335 master->transfer = pch_spi_transfer; 1336 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; 1337 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 1338 master->max_speed_hz = PCH_MAX_BAUDRATE; 1339 master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; 1340 1341 data->board_dat = board_dat; 1342 data->plat_dev = plat_dev; 1343 data->n_curnt_chip = 255; 1344 data->status = STATUS_RUNNING; 1345 data->ch = plat_dev->id; 1346 data->use_dma = use_dma; 1347 1348 INIT_LIST_HEAD(&data->queue); 1349 spin_lock_init(&data->lock); 1350 INIT_WORK(&data->work, pch_spi_process_messages); 1351 init_waitqueue_head(&data->wait); 1352 1353 ret = pch_spi_get_resources(board_dat, data); 1354 if (ret) { 1355 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret); 1356 goto err_spi_get_resources; 1357 } 1358 1359 ret = request_irq(board_dat->pdev->irq, pch_spi_handler, 1360 IRQF_SHARED, KBUILD_MODNAME, data); 1361 if (ret) { 1362 dev_err(&plat_dev->dev, 1363 "%s request_irq failed\n", __func__); 1364 goto err_request_irq; 1365 } 1366 data->irq_reg_sts = true; 1367 1368 pch_spi_set_master_mode(master); 1369 1370 if (use_dma) { 1371 dev_info(&plat_dev->dev, "Use DMA for data transfers\n"); 1372 ret = pch_alloc_dma_buf(board_dat, data); 1373 if (ret) 1374 goto err_spi_register_master; 1375 } 1376 1377 ret = spi_register_master(master); 1378 if (ret != 0) { 1379 dev_err(&plat_dev->dev, 1380 "%s spi_register_master FAILED\n", __func__); 1381 goto err_spi_register_master; 1382 } 1383 1384 return 0; 1385 1386 err_spi_register_master: 1387 pch_free_dma_buf(board_dat, data); 1388 free_irq(board_dat->pdev->irq, data); 1389 err_request_irq: 1390 pch_spi_free_resources(board_dat, data); 1391 err_spi_get_resources: 1392 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1393 err_pci_iomap: 1394 spi_master_put(master); 1395 1396 return ret; 1397 } 1398 1399 static int pch_spi_pd_remove(struct platform_device *plat_dev) 1400 { 1401 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1402 struct pch_spi_data *data = platform_get_drvdata(plat_dev); 1403 int count; 1404 unsigned long flags; 1405 1406 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n", 1407 __func__, plat_dev->id, board_dat->pdev->irq); 1408 1409 if (use_dma) 1410 pch_free_dma_buf(board_dat, data); 1411 1412 /* check for any pending messages; no action is taken if the queue 1413 * is still full; but at least we tried. Unload anyway */ 1414 count = 500; 1415 spin_lock_irqsave(&data->lock, flags); 1416 data->status = STATUS_EXITING; 1417 while ((list_empty(&data->queue) == 0) && --count) { 1418 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n", 1419 __func__); 1420 spin_unlock_irqrestore(&data->lock, flags); 1421 msleep(PCH_SLEEP_TIME); 1422 spin_lock_irqsave(&data->lock, flags); 1423 } 1424 spin_unlock_irqrestore(&data->lock, flags); 1425 1426 pch_spi_free_resources(board_dat, data); 1427 /* disable interrupts & free IRQ */ 1428 if (data->irq_reg_sts) { 1429 /* disable interrupts */ 1430 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1431 data->irq_reg_sts = false; 1432 free_irq(board_dat->pdev->irq, data); 1433 } 1434 1435 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1436 spi_unregister_master(data->master); 1437 1438 return 0; 1439 } 1440 #ifdef CONFIG_PM 1441 static int pch_spi_pd_suspend(struct platform_device *pd_dev, 1442 pm_message_t state) 1443 { 1444 u8 count; 1445 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1446 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1447 1448 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__); 1449 1450 if (!board_dat) { 1451 dev_err(&pd_dev->dev, 1452 "%s pci_get_drvdata returned NULL\n", __func__); 1453 return -EFAULT; 1454 } 1455 1456 /* check if the current message is processed: 1457 Only after thats done the transfer will be suspended */ 1458 count = 255; 1459 while ((--count) > 0) { 1460 if (!(data->bcurrent_msg_processing)) 1461 break; 1462 msleep(PCH_SLEEP_TIME); 1463 } 1464 1465 /* Free IRQ */ 1466 if (data->irq_reg_sts) { 1467 /* disable all interrupts */ 1468 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1469 pch_spi_reset(data->master); 1470 free_irq(board_dat->pdev->irq, data); 1471 1472 data->irq_reg_sts = false; 1473 dev_dbg(&pd_dev->dev, 1474 "%s free_irq invoked successfully.\n", __func__); 1475 } 1476 1477 return 0; 1478 } 1479 1480 static int pch_spi_pd_resume(struct platform_device *pd_dev) 1481 { 1482 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1483 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1484 int retval; 1485 1486 if (!board_dat) { 1487 dev_err(&pd_dev->dev, 1488 "%s pci_get_drvdata returned NULL\n", __func__); 1489 return -EFAULT; 1490 } 1491 1492 if (!data->irq_reg_sts) { 1493 /* register IRQ */ 1494 retval = request_irq(board_dat->pdev->irq, pch_spi_handler, 1495 IRQF_SHARED, KBUILD_MODNAME, data); 1496 if (retval < 0) { 1497 dev_err(&pd_dev->dev, 1498 "%s request_irq failed\n", __func__); 1499 return retval; 1500 } 1501 1502 /* reset PCH SPI h/w */ 1503 pch_spi_reset(data->master); 1504 pch_spi_set_master_mode(data->master); 1505 data->irq_reg_sts = true; 1506 } 1507 return 0; 1508 } 1509 #else 1510 #define pch_spi_pd_suspend NULL 1511 #define pch_spi_pd_resume NULL 1512 #endif 1513 1514 static struct platform_driver pch_spi_pd_driver = { 1515 .driver = { 1516 .name = "pch-spi", 1517 }, 1518 .probe = pch_spi_pd_probe, 1519 .remove = pch_spi_pd_remove, 1520 .suspend = pch_spi_pd_suspend, 1521 .resume = pch_spi_pd_resume 1522 }; 1523 1524 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1525 { 1526 struct pch_spi_board_data *board_dat; 1527 struct platform_device *pd_dev = NULL; 1528 int retval; 1529 int i; 1530 struct pch_pd_dev_save *pd_dev_save; 1531 1532 pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL); 1533 if (!pd_dev_save) 1534 return -ENOMEM; 1535 1536 board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL); 1537 if (!board_dat) { 1538 retval = -ENOMEM; 1539 goto err_no_mem; 1540 } 1541 1542 retval = pci_request_regions(pdev, KBUILD_MODNAME); 1543 if (retval) { 1544 dev_err(&pdev->dev, "%s request_region failed\n", __func__); 1545 goto pci_request_regions; 1546 } 1547 1548 board_dat->pdev = pdev; 1549 board_dat->num = id->driver_data; 1550 pd_dev_save->num = id->driver_data; 1551 pd_dev_save->board_dat = board_dat; 1552 1553 retval = pci_enable_device(pdev); 1554 if (retval) { 1555 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__); 1556 goto pci_enable_device; 1557 } 1558 1559 for (i = 0; i < board_dat->num; i++) { 1560 pd_dev = platform_device_alloc("pch-spi", i); 1561 if (!pd_dev) { 1562 dev_err(&pdev->dev, "platform_device_alloc failed\n"); 1563 retval = -ENOMEM; 1564 goto err_platform_device; 1565 } 1566 pd_dev_save->pd_save[i] = pd_dev; 1567 pd_dev->dev.parent = &pdev->dev; 1568 1569 retval = platform_device_add_data(pd_dev, board_dat, 1570 sizeof(*board_dat)); 1571 if (retval) { 1572 dev_err(&pdev->dev, 1573 "platform_device_add_data failed\n"); 1574 platform_device_put(pd_dev); 1575 goto err_platform_device; 1576 } 1577 1578 retval = platform_device_add(pd_dev); 1579 if (retval) { 1580 dev_err(&pdev->dev, "platform_device_add failed\n"); 1581 platform_device_put(pd_dev); 1582 goto err_platform_device; 1583 } 1584 } 1585 1586 pci_set_drvdata(pdev, pd_dev_save); 1587 1588 return 0; 1589 1590 err_platform_device: 1591 while (--i >= 0) 1592 platform_device_unregister(pd_dev_save->pd_save[i]); 1593 pci_disable_device(pdev); 1594 pci_enable_device: 1595 pci_release_regions(pdev); 1596 pci_request_regions: 1597 kfree(board_dat); 1598 err_no_mem: 1599 kfree(pd_dev_save); 1600 1601 return retval; 1602 } 1603 1604 static void pch_spi_remove(struct pci_dev *pdev) 1605 { 1606 int i; 1607 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1608 1609 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev); 1610 1611 for (i = 0; i < pd_dev_save->num; i++) 1612 platform_device_unregister(pd_dev_save->pd_save[i]); 1613 1614 pci_disable_device(pdev); 1615 pci_release_regions(pdev); 1616 kfree(pd_dev_save->board_dat); 1617 kfree(pd_dev_save); 1618 } 1619 1620 static int __maybe_unused pch_spi_suspend(struct device *dev) 1621 { 1622 struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev); 1623 1624 dev_dbg(dev, "%s ENTRY\n", __func__); 1625 1626 pd_dev_save->board_dat->suspend_sts = true; 1627 1628 return 0; 1629 } 1630 1631 static int __maybe_unused pch_spi_resume(struct device *dev) 1632 { 1633 struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev); 1634 1635 dev_dbg(dev, "%s ENTRY\n", __func__); 1636 1637 /* set suspend status to false */ 1638 pd_dev_save->board_dat->suspend_sts = false; 1639 1640 return 0; 1641 } 1642 1643 static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume); 1644 1645 static struct pci_driver pch_spi_pcidev_driver = { 1646 .name = "pch_spi", 1647 .id_table = pch_spi_pcidev_id, 1648 .probe = pch_spi_probe, 1649 .remove = pch_spi_remove, 1650 .driver.pm = &pch_spi_pm_ops, 1651 }; 1652 1653 static int __init pch_spi_init(void) 1654 { 1655 int ret; 1656 ret = platform_driver_register(&pch_spi_pd_driver); 1657 if (ret) 1658 return ret; 1659 1660 ret = pci_register_driver(&pch_spi_pcidev_driver); 1661 if (ret) { 1662 platform_driver_unregister(&pch_spi_pd_driver); 1663 return ret; 1664 } 1665 1666 return 0; 1667 } 1668 module_init(pch_spi_init); 1669 1670 static void __exit pch_spi_exit(void) 1671 { 1672 pci_unregister_driver(&pch_spi_pcidev_driver); 1673 platform_driver_unregister(&pch_spi_pd_driver); 1674 } 1675 module_exit(pch_spi_exit); 1676 1677 module_param(use_dma, int, 0644); 1678 MODULE_PARM_DESC(use_dma, 1679 "to use DMA for data transfers pass 1 else 0; default 1"); 1680 1681 MODULE_LICENSE("GPL"); 1682 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver"); 1683 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id); 1684 1685