1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33 
34 /* Register offsets */
35 #define PCH_SPCR		0x00	/* SPI control register */
36 #define PCH_SPBRR		0x04	/* SPI baud rate register */
37 #define PCH_SPSR		0x08	/* SPI status register */
38 #define PCH_SPDWR		0x0C	/* SPI write data register */
39 #define PCH_SPDRR		0x10	/* SPI read data register */
40 #define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
41 #define PCH_SRST		0x1C	/* SPI reset register */
42 #define PCH_ADDRESS_SIZE	0x20
43 
44 #define PCH_SPSR_TFD		0x000007C0
45 #define PCH_SPSR_RFD		0x0000F800
46 
47 #define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
49 
50 #define PCH_RX_THOLD		7
51 #define PCH_RX_THOLD_MAX	15
52 
53 #define PCH_TX_THOLD		2
54 
55 #define PCH_MAX_BAUDRATE	5000000
56 #define PCH_MAX_FIFO_DEPTH	16
57 
58 #define STATUS_RUNNING		1
59 #define STATUS_EXITING		2
60 #define PCH_SLEEP_TIME		10
61 
62 #define SSN_LOW			0x02U
63 #define SSN_HIGH		0x03U
64 #define SSN_NO_CONTROL		0x00U
65 #define PCH_MAX_CS		0xFF
66 #define PCI_DEVICE_ID_GE_SPI	0x8816
67 
68 #define SPCR_SPE_BIT		(1 << 0)
69 #define SPCR_MSTR_BIT		(1 << 1)
70 #define SPCR_LSBF_BIT		(1 << 4)
71 #define SPCR_CPHA_BIT		(1 << 5)
72 #define SPCR_CPOL_BIT		(1 << 6)
73 #define SPCR_TFIE_BIT		(1 << 8)
74 #define SPCR_RFIE_BIT		(1 << 9)
75 #define SPCR_FIE_BIT		(1 << 10)
76 #define SPCR_ORIE_BIT		(1 << 11)
77 #define SPCR_MDFIE_BIT		(1 << 12)
78 #define SPCR_FICLR_BIT		(1 << 24)
79 #define SPSR_TFI_BIT		(1 << 0)
80 #define SPSR_RFI_BIT		(1 << 1)
81 #define SPSR_FI_BIT		(1 << 2)
82 #define SPSR_ORF_BIT		(1 << 3)
83 #define SPBRR_SIZE_BIT		(1 << 10)
84 
85 #define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86 				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
87 
88 #define SPCR_RFIC_FIELD		20
89 #define SPCR_TFIC_FIELD		16
90 
91 #define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
94 
95 #define PCH_CLOCK_HZ		50000000
96 #define PCH_MAX_SPBR		1023
97 
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM		0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI	0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI	0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI	0x8816
103 
104 /*
105  * Set the number of SPI instance max
106  * Intel EG20T PCH :		1ch
107  * LAPIS Semiconductor ML7213 IOH :	2ch
108  * LAPIS Semiconductor ML7223 IOH :	1ch
109  * LAPIS Semiconductor ML7831 IOH :	1ch
110 */
111 #define PCH_SPI_MAX_DEV			2
112 
113 #define PCH_BUF_SIZE		4096
114 #define PCH_DMA_TRANS_SIZE	12
115 
116 static int use_dma = 1;
117 
118 struct pch_spi_dma_ctrl {
119 	struct dma_async_tx_descriptor	*desc_tx;
120 	struct dma_async_tx_descriptor	*desc_rx;
121 	struct pch_dma_slave		param_tx;
122 	struct pch_dma_slave		param_rx;
123 	struct dma_chan		*chan_tx;
124 	struct dma_chan		*chan_rx;
125 	struct scatterlist		*sg_tx_p;
126 	struct scatterlist		*sg_rx_p;
127 	struct scatterlist		sg_tx;
128 	struct scatterlist		sg_rx;
129 	int				nent;
130 	void				*tx_buf_virt;
131 	void				*rx_buf_virt;
132 	dma_addr_t			tx_buf_dma;
133 	dma_addr_t			rx_buf_dma;
134 };
135 /**
136  * struct pch_spi_data - Holds the SPI channel specific details
137  * @io_remap_addr:		The remapped PCI base address
138  * @master:			Pointer to the SPI master structure
139  * @work:			Reference to work queue handler
140  * @wk:				Workqueue for carrying out execution of the
141  *				requests
142  * @wait:			Wait queue for waking up upon receiving an
143  *				interrupt.
144  * @transfer_complete:		Status of SPI Transfer
145  * @bcurrent_msg_processing:	Status flag for message processing
146  * @lock:			Lock for protecting this structure
147  * @queue:			SPI Message queue
148  * @status:			Status of the SPI driver
149  * @bpw_len:			Length of data to be transferred in bits per
150  *				word
151  * @transfer_active:		Flag showing active transfer
152  * @tx_index:			Transmit data count; for bookkeeping during
153  *				transfer
154  * @rx_index:			Receive data count; for bookkeeping during
155  *				transfer
156  * @tx_buff:			Buffer for data to be transmitted
157  * @rx_index:			Buffer for Received data
158  * @n_curnt_chip:		The chip number that this SPI driver currently
159  *				operates on
160  * @current_chip:		Reference to the current chip that this SPI
161  *				driver currently operates on
162  * @current_msg:		The current message that this SPI driver is
163  *				handling
164  * @cur_trans:			The current transfer that this SPI driver is
165  *				handling
166  * @board_dat:			Reference to the SPI device data structure
167  * @plat_dev:			platform_device structure
168  * @ch:				SPI channel number
169  * @irq_reg_sts:		Status of IRQ registration
170  */
171 struct pch_spi_data {
172 	void __iomem *io_remap_addr;
173 	unsigned long io_base_addr;
174 	struct spi_master *master;
175 	struct work_struct work;
176 	struct workqueue_struct *wk;
177 	wait_queue_head_t wait;
178 	u8 transfer_complete;
179 	u8 bcurrent_msg_processing;
180 	spinlock_t lock;
181 	struct list_head queue;
182 	u8 status;
183 	u32 bpw_len;
184 	u8 transfer_active;
185 	u32 tx_index;
186 	u32 rx_index;
187 	u16 *pkt_tx_buff;
188 	u16 *pkt_rx_buff;
189 	u8 n_curnt_chip;
190 	struct spi_device *current_chip;
191 	struct spi_message *current_msg;
192 	struct spi_transfer *cur_trans;
193 	struct pch_spi_board_data *board_dat;
194 	struct platform_device	*plat_dev;
195 	int ch;
196 	struct pch_spi_dma_ctrl dma;
197 	int use_dma;
198 	u8 irq_reg_sts;
199 	int save_total_len;
200 };
201 
202 /**
203  * struct pch_spi_board_data - Holds the SPI device specific details
204  * @pdev:		Pointer to the PCI device
205  * @suspend_sts:	Status of suspend
206  * @num:		The number of SPI device instance
207  */
208 struct pch_spi_board_data {
209 	struct pci_dev *pdev;
210 	u8 suspend_sts;
211 	int num;
212 };
213 
214 struct pch_pd_dev_save {
215 	int num;
216 	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
217 	struct pch_spi_board_data *board_dat;
218 };
219 
220 static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
221 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
222 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
223 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
224 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
225 	{ }
226 };
227 
228 /**
229  * pch_spi_writereg() - Performs  register writes
230  * @master:	Pointer to struct spi_master.
231  * @idx:	Register offset.
232  * @val:	Value to be written to register.
233  */
234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
235 {
236 	struct pch_spi_data *data = spi_master_get_devdata(master);
237 	iowrite32(val, (data->io_remap_addr + idx));
238 }
239 
240 /**
241  * pch_spi_readreg() - Performs register reads
242  * @master:	Pointer to struct spi_master.
243  * @idx:	Register offset.
244  */
245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
246 {
247 	struct pch_spi_data *data = spi_master_get_devdata(master);
248 	return ioread32(data->io_remap_addr + idx);
249 }
250 
251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
252 				      u32 set, u32 clr)
253 {
254 	u32 tmp = pch_spi_readreg(master, idx);
255 	tmp = (tmp & ~clr) | set;
256 	pch_spi_writereg(master, idx, tmp);
257 }
258 
259 static void pch_spi_set_master_mode(struct spi_master *master)
260 {
261 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
262 }
263 
264 /**
265  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
266  * @master:	Pointer to struct spi_master.
267  */
268 static void pch_spi_clear_fifo(struct spi_master *master)
269 {
270 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
271 	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
272 }
273 
274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
275 				void __iomem *io_remap_addr)
276 {
277 	u32 n_read, tx_index, rx_index, bpw_len;
278 	u16 *pkt_rx_buffer, *pkt_tx_buff;
279 	int read_cnt;
280 	u32 reg_spcr_val;
281 	void __iomem *spsr;
282 	void __iomem *spdrr;
283 	void __iomem *spdwr;
284 
285 	spsr = io_remap_addr + PCH_SPSR;
286 	iowrite32(reg_spsr_val, spsr);
287 
288 	if (data->transfer_active) {
289 		rx_index = data->rx_index;
290 		tx_index = data->tx_index;
291 		bpw_len = data->bpw_len;
292 		pkt_rx_buffer = data->pkt_rx_buff;
293 		pkt_tx_buff = data->pkt_tx_buff;
294 
295 		spdrr = io_remap_addr + PCH_SPDRR;
296 		spdwr = io_remap_addr + PCH_SPDWR;
297 
298 		n_read = PCH_READABLE(reg_spsr_val);
299 
300 		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
301 			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
302 			if (tx_index < bpw_len)
303 				iowrite32(pkt_tx_buff[tx_index++], spdwr);
304 		}
305 
306 		/* disable RFI if not needed */
307 		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
308 			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
309 			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
310 
311 			/* reset rx threshold */
312 			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
313 			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
314 
315 			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
316 		}
317 
318 		/* update counts */
319 		data->tx_index = tx_index;
320 		data->rx_index = rx_index;
321 
322 		/* if transfer complete interrupt */
323 		if (reg_spsr_val & SPSR_FI_BIT) {
324 			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
325 				/* disable interrupts */
326 				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
327 						   PCH_ALL);
328 
329 				/* transfer is completed;
330 				   inform pch_spi_process_messages */
331 				data->transfer_complete = true;
332 				data->transfer_active = false;
333 				wake_up(&data->wait);
334 			} else {
335 				dev_err(&data->master->dev,
336 					"%s : Transfer is not completed",
337 					__func__);
338 			}
339 		}
340 	}
341 }
342 
343 /**
344  * pch_spi_handler() - Interrupt handler
345  * @irq:	The interrupt number.
346  * @dev_id:	Pointer to struct pch_spi_board_data.
347  */
348 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
349 {
350 	u32 reg_spsr_val;
351 	void __iomem *spsr;
352 	void __iomem *io_remap_addr;
353 	irqreturn_t ret = IRQ_NONE;
354 	struct pch_spi_data *data = dev_id;
355 	struct pch_spi_board_data *board_dat = data->board_dat;
356 
357 	if (board_dat->suspend_sts) {
358 		dev_dbg(&board_dat->pdev->dev,
359 			"%s returning due to suspend\n", __func__);
360 		return IRQ_NONE;
361 	}
362 
363 	io_remap_addr = data->io_remap_addr;
364 	spsr = io_remap_addr + PCH_SPSR;
365 
366 	reg_spsr_val = ioread32(spsr);
367 
368 	if (reg_spsr_val & SPSR_ORF_BIT) {
369 		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
370 		if (data->current_msg->complete) {
371 			data->transfer_complete = true;
372 			data->current_msg->status = -EIO;
373 			data->current_msg->complete(data->current_msg->context);
374 			data->bcurrent_msg_processing = false;
375 			data->current_msg = NULL;
376 			data->cur_trans = NULL;
377 		}
378 	}
379 
380 	if (data->use_dma)
381 		return IRQ_NONE;
382 
383 	/* Check if the interrupt is for SPI device */
384 	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
385 		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
386 		ret = IRQ_HANDLED;
387 	}
388 
389 	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
390 		__func__, ret);
391 
392 	return ret;
393 }
394 
395 /**
396  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
397  * @master:	Pointer to struct spi_master.
398  * @speed_hz:	Baud rate.
399  */
400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
401 {
402 	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
403 
404 	/* if baud rate is less than we can support limit it */
405 	if (n_spbr > PCH_MAX_SPBR)
406 		n_spbr = PCH_MAX_SPBR;
407 
408 	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
409 }
410 
411 /**
412  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
413  * @master:		Pointer to struct spi_master.
414  * @bits_per_word:	Bits per word for SPI transfer.
415  */
416 static void pch_spi_set_bits_per_word(struct spi_master *master,
417 				      u8 bits_per_word)
418 {
419 	if (bits_per_word == 8)
420 		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
421 	else
422 		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
423 }
424 
425 /**
426  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
427  * @spi:	Pointer to struct spi_device.
428  */
429 static void pch_spi_setup_transfer(struct spi_device *spi)
430 {
431 	u32 flags = 0;
432 
433 	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
434 		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
435 		spi->max_speed_hz);
436 	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
437 
438 	/* set bits per word */
439 	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
440 
441 	if (!(spi->mode & SPI_LSB_FIRST))
442 		flags |= SPCR_LSBF_BIT;
443 	if (spi->mode & SPI_CPOL)
444 		flags |= SPCR_CPOL_BIT;
445 	if (spi->mode & SPI_CPHA)
446 		flags |= SPCR_CPHA_BIT;
447 	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
448 			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
449 
450 	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
451 	pch_spi_clear_fifo(spi->master);
452 }
453 
454 /**
455  * pch_spi_reset() - Clears SPI registers
456  * @master:	Pointer to struct spi_master.
457  */
458 static void pch_spi_reset(struct spi_master *master)
459 {
460 	/* write 1 to reset SPI */
461 	pch_spi_writereg(master, PCH_SRST, 0x1);
462 
463 	/* clear reset */
464 	pch_spi_writereg(master, PCH_SRST, 0x0);
465 }
466 
467 static int pch_spi_setup(struct spi_device *pspi)
468 {
469 	/* check bits per word */
470 	if (pspi->bits_per_word == 0) {
471 		pspi->bits_per_word = 8;
472 		dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
473 	}
474 
475 	/* Check baud rate setting */
476 	/* if baud rate of chip is greater than
477 	   max we can support,return error */
478 	if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
479 		pspi->max_speed_hz = PCH_MAX_BAUDRATE;
480 
481 	dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
482 		(pspi->mode) & (SPI_CPOL | SPI_CPHA));
483 
484 	return 0;
485 }
486 
487 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
488 {
489 
490 	struct spi_transfer *transfer;
491 	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
492 	int retval;
493 	unsigned long flags;
494 
495 	/* validate spi message and baud rate */
496 	if (unlikely(list_empty(&pmsg->transfers) == 1)) {
497 		dev_err(&pspi->dev, "%s list empty\n", __func__);
498 		retval = -EINVAL;
499 		goto err_out;
500 	}
501 
502 	if (unlikely(pspi->max_speed_hz == 0)) {
503 		dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n",
504 			__func__, pspi->max_speed_hz);
505 		retval = -EINVAL;
506 		goto err_out;
507 	}
508 
509 	dev_dbg(&pspi->dev,
510 		"%s Transfer List not empty. Transfer Speed is set.\n", __func__);
511 
512 	spin_lock_irqsave(&data->lock, flags);
513 	/* validate Tx/Rx buffers and Transfer length */
514 	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
515 		if (!transfer->tx_buf && !transfer->rx_buf) {
516 			dev_err(&pspi->dev,
517 				"%s Tx and Rx buffer NULL\n", __func__);
518 			retval = -EINVAL;
519 			goto err_return_spinlock;
520 		}
521 
522 		if (!transfer->len) {
523 			dev_err(&pspi->dev, "%s Transfer length invalid\n",
524 				__func__);
525 			retval = -EINVAL;
526 			goto err_return_spinlock;
527 		}
528 
529 		dev_dbg(&pspi->dev,
530 			"%s Tx/Rx buffer valid. Transfer length valid\n",
531 			__func__);
532 
533 		/* if baud rate has been specified validate the same */
534 		if (transfer->speed_hz > PCH_MAX_BAUDRATE)
535 			transfer->speed_hz = PCH_MAX_BAUDRATE;
536 	}
537 	spin_unlock_irqrestore(&data->lock, flags);
538 
539 	/* We won't process any messages if we have been asked to terminate */
540 	if (data->status == STATUS_EXITING) {
541 		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
542 		retval = -ESHUTDOWN;
543 		goto err_out;
544 	}
545 
546 	/* If suspended ,return -EINVAL */
547 	if (data->board_dat->suspend_sts) {
548 		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
549 		retval = -EINVAL;
550 		goto err_out;
551 	}
552 
553 	/* set status of message */
554 	pmsg->actual_length = 0;
555 	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
556 
557 	pmsg->status = -EINPROGRESS;
558 	spin_lock_irqsave(&data->lock, flags);
559 	/* add message to queue */
560 	list_add_tail(&pmsg->queue, &data->queue);
561 	spin_unlock_irqrestore(&data->lock, flags);
562 
563 	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
564 
565 	/* schedule work queue to run */
566 	queue_work(data->wk, &data->work);
567 	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
568 
569 	retval = 0;
570 
571 err_out:
572 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
573 	return retval;
574 err_return_spinlock:
575 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
576 	spin_unlock_irqrestore(&data->lock, flags);
577 	return retval;
578 }
579 
580 static inline void pch_spi_select_chip(struct pch_spi_data *data,
581 				       struct spi_device *pspi)
582 {
583 	if (data->current_chip != NULL) {
584 		if (pspi->chip_select != data->n_curnt_chip) {
585 			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
586 			data->current_chip = NULL;
587 		}
588 	}
589 
590 	data->current_chip = pspi;
591 
592 	data->n_curnt_chip = data->current_chip->chip_select;
593 
594 	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
595 	pch_spi_setup_transfer(pspi);
596 }
597 
598 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
599 {
600 	int size;
601 	u32 n_writes;
602 	int j;
603 	struct spi_message *pmsg, *tmp;
604 	const u8 *tx_buf;
605 	const u16 *tx_sbuf;
606 
607 	/* set baud rate if needed */
608 	if (data->cur_trans->speed_hz) {
609 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
610 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
611 	}
612 
613 	/* set bits per word if needed */
614 	if (data->cur_trans->bits_per_word &&
615 	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
616 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
617 		pch_spi_set_bits_per_word(data->master,
618 					  data->cur_trans->bits_per_word);
619 		*bpw = data->cur_trans->bits_per_word;
620 	} else {
621 		*bpw = data->current_msg->spi->bits_per_word;
622 	}
623 
624 	/* reset Tx/Rx index */
625 	data->tx_index = 0;
626 	data->rx_index = 0;
627 
628 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
629 
630 	/* find alloc size */
631 	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
632 
633 	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
634 	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
635 	if (data->pkt_tx_buff != NULL) {
636 		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
637 		if (!data->pkt_rx_buff)
638 			kfree(data->pkt_tx_buff);
639 	}
640 
641 	if (!data->pkt_rx_buff) {
642 		/* flush queue and set status of all transfers to -ENOMEM */
643 		dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
644 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
645 			pmsg->status = -ENOMEM;
646 
647 			if (pmsg->complete)
648 				pmsg->complete(pmsg->context);
649 
650 			/* delete from queue */
651 			list_del_init(&pmsg->queue);
652 		}
653 		return;
654 	}
655 
656 	/* copy Tx Data */
657 	if (data->cur_trans->tx_buf != NULL) {
658 		if (*bpw == 8) {
659 			tx_buf = data->cur_trans->tx_buf;
660 			for (j = 0; j < data->bpw_len; j++)
661 				data->pkt_tx_buff[j] = *tx_buf++;
662 		} else {
663 			tx_sbuf = data->cur_trans->tx_buf;
664 			for (j = 0; j < data->bpw_len; j++)
665 				data->pkt_tx_buff[j] = *tx_sbuf++;
666 		}
667 	}
668 
669 	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
670 	n_writes = data->bpw_len;
671 	if (n_writes > PCH_MAX_FIFO_DEPTH)
672 		n_writes = PCH_MAX_FIFO_DEPTH;
673 
674 	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
675 		"0x2 to SSNXCR\n", __func__);
676 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
677 
678 	for (j = 0; j < n_writes; j++)
679 		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
680 
681 	/* update tx_index */
682 	data->tx_index = j;
683 
684 	/* reset transfer complete flag */
685 	data->transfer_complete = false;
686 	data->transfer_active = true;
687 }
688 
689 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
690 {
691 	struct spi_message *pmsg, *tmp;
692 	dev_dbg(&data->master->dev, "%s called\n", __func__);
693 	/* Invoke complete callback
694 	 * [To the spi core..indicating end of transfer] */
695 	data->current_msg->status = 0;
696 
697 	if (data->current_msg->complete) {
698 		dev_dbg(&data->master->dev,
699 			"%s:Invoking callback of SPI core\n", __func__);
700 		data->current_msg->complete(data->current_msg->context);
701 	}
702 
703 	/* update status in global variable */
704 	data->bcurrent_msg_processing = false;
705 
706 	dev_dbg(&data->master->dev,
707 		"%s:data->bcurrent_msg_processing = false\n", __func__);
708 
709 	data->current_msg = NULL;
710 	data->cur_trans = NULL;
711 
712 	/* check if we have items in list and not suspending
713 	 * return 1 if list empty */
714 	if ((list_empty(&data->queue) == 0) &&
715 	    (!data->board_dat->suspend_sts) &&
716 	    (data->status != STATUS_EXITING)) {
717 		/* We have some more work to do (either there is more tranint
718 		 * bpw;sfer requests in the current message or there are
719 		 *more messages)
720 		 */
721 		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
722 		queue_work(data->wk, &data->work);
723 	} else if (data->board_dat->suspend_sts ||
724 		   data->status == STATUS_EXITING) {
725 		dev_dbg(&data->master->dev,
726 			"%s suspend/remove initiated, flushing queue\n",
727 			__func__);
728 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
729 			pmsg->status = -EIO;
730 
731 			if (pmsg->complete)
732 				pmsg->complete(pmsg->context);
733 
734 			/* delete from queue */
735 			list_del_init(&pmsg->queue);
736 		}
737 	}
738 }
739 
740 static void pch_spi_set_ir(struct pch_spi_data *data)
741 {
742 	/* enable interrupts, set threshold, enable SPI */
743 	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
744 		/* set receive threshold to PCH_RX_THOLD */
745 		pch_spi_setclr_reg(data->master, PCH_SPCR,
746 				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
747 				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
748 				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
749 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
750 	else
751 		/* set receive threshold to maximum */
752 		pch_spi_setclr_reg(data->master, PCH_SPCR,
753 				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
754 				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
755 				   SPCR_SPE_BIT,
756 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
757 
758 	/* Wait until the transfer completes; go to sleep after
759 				 initiating the transfer. */
760 	dev_dbg(&data->master->dev,
761 		"%s:waiting for transfer to get over\n", __func__);
762 
763 	wait_event_interruptible(data->wait, data->transfer_complete);
764 
765 	/* clear all interrupts */
766 	pch_spi_writereg(data->master, PCH_SPSR,
767 			 pch_spi_readreg(data->master, PCH_SPSR));
768 	/* Disable interrupts and SPI transfer */
769 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
770 	/* clear FIFO */
771 	pch_spi_clear_fifo(data->master);
772 }
773 
774 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
775 {
776 	int j;
777 	u8 *rx_buf;
778 	u16 *rx_sbuf;
779 
780 	/* copy Rx Data */
781 	if (!data->cur_trans->rx_buf)
782 		return;
783 
784 	if (bpw == 8) {
785 		rx_buf = data->cur_trans->rx_buf;
786 		for (j = 0; j < data->bpw_len; j++)
787 			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
788 	} else {
789 		rx_sbuf = data->cur_trans->rx_buf;
790 		for (j = 0; j < data->bpw_len; j++)
791 			*rx_sbuf++ = data->pkt_rx_buff[j];
792 	}
793 }
794 
795 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
796 {
797 	int j;
798 	u8 *rx_buf;
799 	u16 *rx_sbuf;
800 	const u8 *rx_dma_buf;
801 	const u16 *rx_dma_sbuf;
802 
803 	/* copy Rx Data */
804 	if (!data->cur_trans->rx_buf)
805 		return;
806 
807 	if (bpw == 8) {
808 		rx_buf = data->cur_trans->rx_buf;
809 		rx_dma_buf = data->dma.rx_buf_virt;
810 		for (j = 0; j < data->bpw_len; j++)
811 			*rx_buf++ = *rx_dma_buf++ & 0xFF;
812 		data->cur_trans->rx_buf = rx_buf;
813 	} else {
814 		rx_sbuf = data->cur_trans->rx_buf;
815 		rx_dma_sbuf = data->dma.rx_buf_virt;
816 		for (j = 0; j < data->bpw_len; j++)
817 			*rx_sbuf++ = *rx_dma_sbuf++;
818 		data->cur_trans->rx_buf = rx_sbuf;
819 	}
820 }
821 
822 static int pch_spi_start_transfer(struct pch_spi_data *data)
823 {
824 	struct pch_spi_dma_ctrl *dma;
825 	unsigned long flags;
826 	int rtn;
827 
828 	dma = &data->dma;
829 
830 	spin_lock_irqsave(&data->lock, flags);
831 
832 	/* disable interrupts, SPI set enable */
833 	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
834 
835 	spin_unlock_irqrestore(&data->lock, flags);
836 
837 	/* Wait until the transfer completes; go to sleep after
838 				 initiating the transfer. */
839 	dev_dbg(&data->master->dev,
840 		"%s:waiting for transfer to get over\n", __func__);
841 	rtn = wait_event_interruptible_timeout(data->wait,
842 					       data->transfer_complete,
843 					       msecs_to_jiffies(2 * HZ));
844 	if (!rtn)
845 		dev_err(&data->master->dev,
846 			"%s wait-event timeout\n", __func__);
847 
848 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
849 			    DMA_FROM_DEVICE);
850 
851 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
852 			    DMA_FROM_DEVICE);
853 	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
854 
855 	async_tx_ack(dma->desc_rx);
856 	async_tx_ack(dma->desc_tx);
857 	kfree(dma->sg_tx_p);
858 	kfree(dma->sg_rx_p);
859 
860 	spin_lock_irqsave(&data->lock, flags);
861 
862 	/* clear fifo threshold, disable interrupts, disable SPI transfer */
863 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
864 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
865 			   SPCR_SPE_BIT);
866 	/* clear all interrupts */
867 	pch_spi_writereg(data->master, PCH_SPSR,
868 			 pch_spi_readreg(data->master, PCH_SPSR));
869 	/* clear FIFO */
870 	pch_spi_clear_fifo(data->master);
871 
872 	spin_unlock_irqrestore(&data->lock, flags);
873 
874 	return rtn;
875 }
876 
877 static void pch_dma_rx_complete(void *arg)
878 {
879 	struct pch_spi_data *data = arg;
880 
881 	/* transfer is completed;inform pch_spi_process_messages_dma */
882 	data->transfer_complete = true;
883 	wake_up_interruptible(&data->wait);
884 }
885 
886 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
887 {
888 	struct pch_dma_slave *param = slave;
889 
890 	if ((chan->chan_id == param->chan_id) &&
891 	    (param->dma_dev == chan->device->dev)) {
892 		chan->private = param;
893 		return true;
894 	} else {
895 		return false;
896 	}
897 }
898 
899 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
900 {
901 	dma_cap_mask_t mask;
902 	struct dma_chan *chan;
903 	struct pci_dev *dma_dev;
904 	struct pch_dma_slave *param;
905 	struct pch_spi_dma_ctrl *dma;
906 	unsigned int width;
907 
908 	if (bpw == 8)
909 		width = PCH_DMA_WIDTH_1_BYTE;
910 	else
911 		width = PCH_DMA_WIDTH_2_BYTES;
912 
913 	dma = &data->dma;
914 	dma_cap_zero(mask);
915 	dma_cap_set(DMA_SLAVE, mask);
916 
917 	/* Get DMA's dev information */
918 	dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
919 				       PCI_DEVFN(12, 0));
920 
921 	/* Set Tx DMA */
922 	param = &dma->param_tx;
923 	param->dma_dev = &dma_dev->dev;
924 	param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
925 	param->tx_reg = data->io_base_addr + PCH_SPDWR;
926 	param->width = width;
927 	chan = dma_request_channel(mask, pch_spi_filter, param);
928 	if (!chan) {
929 		dev_err(&data->master->dev,
930 			"ERROR: dma_request_channel FAILS(Tx)\n");
931 		data->use_dma = 0;
932 		return;
933 	}
934 	dma->chan_tx = chan;
935 
936 	/* Set Rx DMA */
937 	param = &dma->param_rx;
938 	param->dma_dev = &dma_dev->dev;
939 	param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
940 	param->rx_reg = data->io_base_addr + PCH_SPDRR;
941 	param->width = width;
942 	chan = dma_request_channel(mask, pch_spi_filter, param);
943 	if (!chan) {
944 		dev_err(&data->master->dev,
945 			"ERROR: dma_request_channel FAILS(Rx)\n");
946 		dma_release_channel(dma->chan_tx);
947 		dma->chan_tx = NULL;
948 		data->use_dma = 0;
949 		return;
950 	}
951 	dma->chan_rx = chan;
952 }
953 
954 static void pch_spi_release_dma(struct pch_spi_data *data)
955 {
956 	struct pch_spi_dma_ctrl *dma;
957 
958 	dma = &data->dma;
959 	if (dma->chan_tx) {
960 		dma_release_channel(dma->chan_tx);
961 		dma->chan_tx = NULL;
962 	}
963 	if (dma->chan_rx) {
964 		dma_release_channel(dma->chan_rx);
965 		dma->chan_rx = NULL;
966 	}
967 	return;
968 }
969 
970 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
971 {
972 	const u8 *tx_buf;
973 	const u16 *tx_sbuf;
974 	u8 *tx_dma_buf;
975 	u16 *tx_dma_sbuf;
976 	struct scatterlist *sg;
977 	struct dma_async_tx_descriptor *desc_tx;
978 	struct dma_async_tx_descriptor *desc_rx;
979 	int num;
980 	int i;
981 	int size;
982 	int rem;
983 	int head;
984 	unsigned long flags;
985 	struct pch_spi_dma_ctrl *dma;
986 
987 	dma = &data->dma;
988 
989 	/* set baud rate if needed */
990 	if (data->cur_trans->speed_hz) {
991 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
992 		spin_lock_irqsave(&data->lock, flags);
993 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
994 		spin_unlock_irqrestore(&data->lock, flags);
995 	}
996 
997 	/* set bits per word if needed */
998 	if (data->cur_trans->bits_per_word &&
999 	    (data->current_msg->spi->bits_per_word !=
1000 	     data->cur_trans->bits_per_word)) {
1001 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1002 		spin_lock_irqsave(&data->lock, flags);
1003 		pch_spi_set_bits_per_word(data->master,
1004 					  data->cur_trans->bits_per_word);
1005 		spin_unlock_irqrestore(&data->lock, flags);
1006 		*bpw = data->cur_trans->bits_per_word;
1007 	} else {
1008 		*bpw = data->current_msg->spi->bits_per_word;
1009 	}
1010 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
1011 
1012 	if (data->bpw_len > PCH_BUF_SIZE) {
1013 		data->bpw_len = PCH_BUF_SIZE;
1014 		data->cur_trans->len -= PCH_BUF_SIZE;
1015 	}
1016 
1017 	/* copy Tx Data */
1018 	if (data->cur_trans->tx_buf != NULL) {
1019 		if (*bpw == 8) {
1020 			tx_buf = data->cur_trans->tx_buf;
1021 			tx_dma_buf = dma->tx_buf_virt;
1022 			for (i = 0; i < data->bpw_len; i++)
1023 				*tx_dma_buf++ = *tx_buf++;
1024 		} else {
1025 			tx_sbuf = data->cur_trans->tx_buf;
1026 			tx_dma_sbuf = dma->tx_buf_virt;
1027 			for (i = 0; i < data->bpw_len; i++)
1028 				*tx_dma_sbuf++ = *tx_sbuf++;
1029 		}
1030 	}
1031 
1032 	/* Calculate Rx parameter for DMA transmitting */
1033 	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1034 		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
1035 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1036 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1037 		} else {
1038 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1039 			rem = PCH_DMA_TRANS_SIZE;
1040 		}
1041 		size = PCH_DMA_TRANS_SIZE;
1042 	} else {
1043 		num = 1;
1044 		size = data->bpw_len;
1045 		rem = data->bpw_len;
1046 	}
1047 	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1048 		__func__, num, size, rem);
1049 	spin_lock_irqsave(&data->lock, flags);
1050 
1051 	/* set receive fifo threshold and transmit fifo threshold */
1052 	pch_spi_setclr_reg(data->master, PCH_SPCR,
1053 			   ((size - 1) << SPCR_RFIC_FIELD) |
1054 			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1055 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1056 
1057 	spin_unlock_irqrestore(&data->lock, flags);
1058 
1059 	/* RX */
1060 	dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1061 	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1062 	/* offset, length setting */
1063 	sg = dma->sg_rx_p;
1064 	for (i = 0; i < num; i++, sg++) {
1065 		if (i == (num - 2)) {
1066 			sg->offset = size * i;
1067 			sg->offset = sg->offset * (*bpw / 8);
1068 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1069 				    sg->offset);
1070 			sg_dma_len(sg) = rem;
1071 		} else if (i == (num - 1)) {
1072 			sg->offset = size * (i - 1) + rem;
1073 			sg->offset = sg->offset * (*bpw / 8);
1074 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1075 				    sg->offset);
1076 			sg_dma_len(sg) = size;
1077 		} else {
1078 			sg->offset = size * i;
1079 			sg->offset = sg->offset * (*bpw / 8);
1080 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1081 				    sg->offset);
1082 			sg_dma_len(sg) = size;
1083 		}
1084 		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1085 	}
1086 	sg = dma->sg_rx_p;
1087 	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1088 					num, DMA_DEV_TO_MEM,
1089 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1090 	if (!desc_rx) {
1091 		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1092 			__func__);
1093 		return;
1094 	}
1095 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1096 	desc_rx->callback = pch_dma_rx_complete;
1097 	desc_rx->callback_param = data;
1098 	dma->nent = num;
1099 	dma->desc_rx = desc_rx;
1100 
1101 	/* Calculate Tx parameter for DMA transmitting */
1102 	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1103 		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1104 		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1105 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1106 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1107 		} else {
1108 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1109 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1110 			      PCH_DMA_TRANS_SIZE - head;
1111 		}
1112 		size = PCH_DMA_TRANS_SIZE;
1113 	} else {
1114 		num = 1;
1115 		size = data->bpw_len;
1116 		rem = data->bpw_len;
1117 		head = 0;
1118 	}
1119 
1120 	dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1121 	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1122 	/* offset, length setting */
1123 	sg = dma->sg_tx_p;
1124 	for (i = 0; i < num; i++, sg++) {
1125 		if (i == 0) {
1126 			sg->offset = 0;
1127 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1128 				    sg->offset);
1129 			sg_dma_len(sg) = size + head;
1130 		} else if (i == (num - 1)) {
1131 			sg->offset = head + size * i;
1132 			sg->offset = sg->offset * (*bpw / 8);
1133 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1134 				    sg->offset);
1135 			sg_dma_len(sg) = rem;
1136 		} else {
1137 			sg->offset = head + size * i;
1138 			sg->offset = sg->offset * (*bpw / 8);
1139 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1140 				    sg->offset);
1141 			sg_dma_len(sg) = size;
1142 		}
1143 		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1144 	}
1145 	sg = dma->sg_tx_p;
1146 	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1147 					sg, num, DMA_MEM_TO_DEV,
1148 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1149 	if (!desc_tx) {
1150 		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1151 			__func__);
1152 		return;
1153 	}
1154 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1155 	desc_tx->callback = NULL;
1156 	desc_tx->callback_param = data;
1157 	dma->nent = num;
1158 	dma->desc_tx = desc_tx;
1159 
1160 	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1161 		"0x2 to SSNXCR\n", __func__);
1162 
1163 	spin_lock_irqsave(&data->lock, flags);
1164 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1165 	desc_rx->tx_submit(desc_rx);
1166 	desc_tx->tx_submit(desc_tx);
1167 	spin_unlock_irqrestore(&data->lock, flags);
1168 
1169 	/* reset transfer complete flag */
1170 	data->transfer_complete = false;
1171 }
1172 
1173 static void pch_spi_process_messages(struct work_struct *pwork)
1174 {
1175 	struct spi_message *pmsg, *tmp;
1176 	struct pch_spi_data *data;
1177 	int bpw;
1178 
1179 	data = container_of(pwork, struct pch_spi_data, work);
1180 	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1181 
1182 	spin_lock(&data->lock);
1183 	/* check if suspend has been initiated;if yes flush queue */
1184 	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1185 		dev_dbg(&data->master->dev,
1186 			"%s suspend/remove initiated, flushing queue\n", __func__);
1187 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1188 			pmsg->status = -EIO;
1189 
1190 			if (pmsg->complete) {
1191 				spin_unlock(&data->lock);
1192 				pmsg->complete(pmsg->context);
1193 				spin_lock(&data->lock);
1194 			}
1195 
1196 			/* delete from queue */
1197 			list_del_init(&pmsg->queue);
1198 		}
1199 
1200 		spin_unlock(&data->lock);
1201 		return;
1202 	}
1203 
1204 	data->bcurrent_msg_processing = true;
1205 	dev_dbg(&data->master->dev,
1206 		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1207 
1208 	/* Get the message from the queue and delete it from there. */
1209 	data->current_msg = list_entry(data->queue.next, struct spi_message,
1210 					queue);
1211 
1212 	list_del_init(&data->current_msg->queue);
1213 
1214 	data->current_msg->status = 0;
1215 
1216 	pch_spi_select_chip(data, data->current_msg->spi);
1217 
1218 	spin_unlock(&data->lock);
1219 
1220 	if (data->use_dma)
1221 		pch_spi_request_dma(data,
1222 				    data->current_msg->spi->bits_per_word);
1223 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1224 	do {
1225 		int cnt;
1226 		/* If we are already processing a message get the next
1227 		transfer structure from the message otherwise retrieve
1228 		the 1st transfer request from the message. */
1229 		spin_lock(&data->lock);
1230 		if (data->cur_trans == NULL) {
1231 			data->cur_trans =
1232 				list_entry(data->current_msg->transfers.next,
1233 					   struct spi_transfer, transfer_list);
1234 			dev_dbg(&data->master->dev, "%s "
1235 				":Getting 1st transfer message\n", __func__);
1236 		} else {
1237 			data->cur_trans =
1238 				list_entry(data->cur_trans->transfer_list.next,
1239 					   struct spi_transfer, transfer_list);
1240 			dev_dbg(&data->master->dev, "%s "
1241 				":Getting next transfer message\n", __func__);
1242 		}
1243 		spin_unlock(&data->lock);
1244 
1245 		if (!data->cur_trans->len)
1246 			goto out;
1247 		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1248 		data->save_total_len = data->cur_trans->len;
1249 		if (data->use_dma) {
1250 			int i;
1251 			char *save_rx_buf = data->cur_trans->rx_buf;
1252 			for (i = 0; i < cnt; i ++) {
1253 				pch_spi_handle_dma(data, &bpw);
1254 				if (!pch_spi_start_transfer(data)) {
1255 					data->transfer_complete = true;
1256 					data->current_msg->status = -EIO;
1257 					data->current_msg->complete
1258 						   (data->current_msg->context);
1259 					data->bcurrent_msg_processing = false;
1260 					data->current_msg = NULL;
1261 					data->cur_trans = NULL;
1262 					goto out;
1263 				}
1264 				pch_spi_copy_rx_data_for_dma(data, bpw);
1265 			}
1266 			data->cur_trans->rx_buf = save_rx_buf;
1267 		} else {
1268 			pch_spi_set_tx(data, &bpw);
1269 			pch_spi_set_ir(data);
1270 			pch_spi_copy_rx_data(data, bpw);
1271 			kfree(data->pkt_rx_buff);
1272 			data->pkt_rx_buff = NULL;
1273 			kfree(data->pkt_tx_buff);
1274 			data->pkt_tx_buff = NULL;
1275 		}
1276 		/* increment message count */
1277 		data->cur_trans->len = data->save_total_len;
1278 		data->current_msg->actual_length += data->cur_trans->len;
1279 
1280 		dev_dbg(&data->master->dev,
1281 			"%s:data->current_msg->actual_length=%d\n",
1282 			__func__, data->current_msg->actual_length);
1283 
1284 		/* check for delay */
1285 		if (data->cur_trans->delay_usecs) {
1286 			dev_dbg(&data->master->dev, "%s:"
1287 				"delay in usec=%d\n", __func__,
1288 				data->cur_trans->delay_usecs);
1289 			udelay(data->cur_trans->delay_usecs);
1290 		}
1291 
1292 		spin_lock(&data->lock);
1293 
1294 		/* No more transfer in this message. */
1295 		if ((data->cur_trans->transfer_list.next) ==
1296 		    &(data->current_msg->transfers)) {
1297 			pch_spi_nomore_transfer(data);
1298 		}
1299 
1300 		spin_unlock(&data->lock);
1301 
1302 	} while (data->cur_trans != NULL);
1303 
1304 out:
1305 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1306 	if (data->use_dma)
1307 		pch_spi_release_dma(data);
1308 }
1309 
1310 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1311 				   struct pch_spi_data *data)
1312 {
1313 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1314 
1315 	/* free workqueue */
1316 	if (data->wk != NULL) {
1317 		destroy_workqueue(data->wk);
1318 		data->wk = NULL;
1319 		dev_dbg(&board_dat->pdev->dev,
1320 			"%s destroy_workqueue invoked successfully\n",
1321 			__func__);
1322 	}
1323 }
1324 
1325 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1326 				 struct pch_spi_data *data)
1327 {
1328 	int retval = 0;
1329 
1330 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1331 
1332 	/* create workqueue */
1333 	data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1334 	if (!data->wk) {
1335 		dev_err(&board_dat->pdev->dev,
1336 			"%s create_singlet hread_workqueue failed\n", __func__);
1337 		retval = -EBUSY;
1338 		goto err_return;
1339 	}
1340 
1341 	/* reset PCH SPI h/w */
1342 	pch_spi_reset(data->master);
1343 	dev_dbg(&board_dat->pdev->dev,
1344 		"%s pch_spi_reset invoked successfully\n", __func__);
1345 
1346 	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1347 
1348 err_return:
1349 	if (retval != 0) {
1350 		dev_err(&board_dat->pdev->dev,
1351 			"%s FAIL:invoking pch_spi_free_resources\n", __func__);
1352 		pch_spi_free_resources(board_dat, data);
1353 	}
1354 
1355 	dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1356 
1357 	return retval;
1358 }
1359 
1360 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1361 			     struct pch_spi_data *data)
1362 {
1363 	struct pch_spi_dma_ctrl *dma;
1364 
1365 	dma = &data->dma;
1366 	if (dma->tx_buf_dma)
1367 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1368 				  dma->tx_buf_virt, dma->tx_buf_dma);
1369 	if (dma->rx_buf_dma)
1370 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1371 				  dma->rx_buf_virt, dma->rx_buf_dma);
1372 	return;
1373 }
1374 
1375 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1376 			      struct pch_spi_data *data)
1377 {
1378 	struct pch_spi_dma_ctrl *dma;
1379 
1380 	dma = &data->dma;
1381 	/* Get Consistent memory for Tx DMA */
1382 	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1383 				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1384 	/* Get Consistent memory for Rx DMA */
1385 	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1386 				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1387 }
1388 
1389 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1390 {
1391 	int ret;
1392 	struct spi_master *master;
1393 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1394 	struct pch_spi_data *data;
1395 
1396 	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1397 
1398 	master = spi_alloc_master(&board_dat->pdev->dev,
1399 				  sizeof(struct pch_spi_data));
1400 	if (!master) {
1401 		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1402 			plat_dev->id);
1403 		return -ENOMEM;
1404 	}
1405 
1406 	data = spi_master_get_devdata(master);
1407 	data->master = master;
1408 
1409 	platform_set_drvdata(plat_dev, data);
1410 
1411 	/* baseaddress + address offset) */
1412 	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1413 					 PCH_ADDRESS_SIZE * plat_dev->id;
1414 	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1415 	if (!data->io_remap_addr) {
1416 		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1417 		ret = -ENOMEM;
1418 		goto err_pci_iomap;
1419 	}
1420 	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1421 
1422 	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1423 		plat_dev->id, data->io_remap_addr);
1424 
1425 	/* initialize members of SPI master */
1426 	master->num_chipselect = PCH_MAX_CS;
1427 	master->setup = pch_spi_setup;
1428 	master->transfer = pch_spi_transfer;
1429 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1430 	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1431 
1432 	data->board_dat = board_dat;
1433 	data->plat_dev = plat_dev;
1434 	data->n_curnt_chip = 255;
1435 	data->status = STATUS_RUNNING;
1436 	data->ch = plat_dev->id;
1437 	data->use_dma = use_dma;
1438 
1439 	INIT_LIST_HEAD(&data->queue);
1440 	spin_lock_init(&data->lock);
1441 	INIT_WORK(&data->work, pch_spi_process_messages);
1442 	init_waitqueue_head(&data->wait);
1443 
1444 	ret = pch_spi_get_resources(board_dat, data);
1445 	if (ret) {
1446 		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1447 		goto err_spi_get_resources;
1448 	}
1449 
1450 	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1451 			  IRQF_SHARED, KBUILD_MODNAME, data);
1452 	if (ret) {
1453 		dev_err(&plat_dev->dev,
1454 			"%s request_irq failed\n", __func__);
1455 		goto err_request_irq;
1456 	}
1457 	data->irq_reg_sts = true;
1458 
1459 	pch_spi_set_master_mode(master);
1460 
1461 	ret = spi_register_master(master);
1462 	if (ret != 0) {
1463 		dev_err(&plat_dev->dev,
1464 			"%s spi_register_master FAILED\n", __func__);
1465 		goto err_spi_register_master;
1466 	}
1467 
1468 	if (use_dma) {
1469 		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1470 		pch_alloc_dma_buf(board_dat, data);
1471 	}
1472 
1473 	return 0;
1474 
1475 err_spi_register_master:
1476 	free_irq(board_dat->pdev->irq, data);
1477 err_request_irq:
1478 	pch_spi_free_resources(board_dat, data);
1479 err_spi_get_resources:
1480 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1481 err_pci_iomap:
1482 	spi_master_put(master);
1483 
1484 	return ret;
1485 }
1486 
1487 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1488 {
1489 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1490 	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1491 	int count;
1492 	unsigned long flags;
1493 
1494 	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1495 		__func__, plat_dev->id, board_dat->pdev->irq);
1496 
1497 	if (use_dma)
1498 		pch_free_dma_buf(board_dat, data);
1499 
1500 	/* check for any pending messages; no action is taken if the queue
1501 	 * is still full; but at least we tried.  Unload anyway */
1502 	count = 500;
1503 	spin_lock_irqsave(&data->lock, flags);
1504 	data->status = STATUS_EXITING;
1505 	while ((list_empty(&data->queue) == 0) && --count) {
1506 		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1507 			__func__);
1508 		spin_unlock_irqrestore(&data->lock, flags);
1509 		msleep(PCH_SLEEP_TIME);
1510 		spin_lock_irqsave(&data->lock, flags);
1511 	}
1512 	spin_unlock_irqrestore(&data->lock, flags);
1513 
1514 	pch_spi_free_resources(board_dat, data);
1515 	/* disable interrupts & free IRQ */
1516 	if (data->irq_reg_sts) {
1517 		/* disable interrupts */
1518 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1519 		data->irq_reg_sts = false;
1520 		free_irq(board_dat->pdev->irq, data);
1521 	}
1522 
1523 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1524 	spi_unregister_master(data->master);
1525 
1526 	return 0;
1527 }
1528 #ifdef CONFIG_PM
1529 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1530 			      pm_message_t state)
1531 {
1532 	u8 count;
1533 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1534 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1535 
1536 	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1537 
1538 	if (!board_dat) {
1539 		dev_err(&pd_dev->dev,
1540 			"%s pci_get_drvdata returned NULL\n", __func__);
1541 		return -EFAULT;
1542 	}
1543 
1544 	/* check if the current message is processed:
1545 	   Only after thats done the transfer will be suspended */
1546 	count = 255;
1547 	while ((--count) > 0) {
1548 		if (!(data->bcurrent_msg_processing))
1549 			break;
1550 		msleep(PCH_SLEEP_TIME);
1551 	}
1552 
1553 	/* Free IRQ */
1554 	if (data->irq_reg_sts) {
1555 		/* disable all interrupts */
1556 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1557 		pch_spi_reset(data->master);
1558 		free_irq(board_dat->pdev->irq, data);
1559 
1560 		data->irq_reg_sts = false;
1561 		dev_dbg(&pd_dev->dev,
1562 			"%s free_irq invoked successfully.\n", __func__);
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1569 {
1570 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1571 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1572 	int retval;
1573 
1574 	if (!board_dat) {
1575 		dev_err(&pd_dev->dev,
1576 			"%s pci_get_drvdata returned NULL\n", __func__);
1577 		return -EFAULT;
1578 	}
1579 
1580 	if (!data->irq_reg_sts) {
1581 		/* register IRQ */
1582 		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1583 				     IRQF_SHARED, KBUILD_MODNAME, data);
1584 		if (retval < 0) {
1585 			dev_err(&pd_dev->dev,
1586 				"%s request_irq failed\n", __func__);
1587 			return retval;
1588 		}
1589 
1590 		/* reset PCH SPI h/w */
1591 		pch_spi_reset(data->master);
1592 		pch_spi_set_master_mode(data->master);
1593 		data->irq_reg_sts = true;
1594 	}
1595 	return 0;
1596 }
1597 #else
1598 #define pch_spi_pd_suspend NULL
1599 #define pch_spi_pd_resume NULL
1600 #endif
1601 
1602 static struct platform_driver pch_spi_pd_driver = {
1603 	.driver = {
1604 		.name = "pch-spi",
1605 		.owner = THIS_MODULE,
1606 	},
1607 	.probe = pch_spi_pd_probe,
1608 	.remove = pch_spi_pd_remove,
1609 	.suspend = pch_spi_pd_suspend,
1610 	.resume = pch_spi_pd_resume
1611 };
1612 
1613 static int pch_spi_probe(struct pci_dev *pdev,
1614 				   const struct pci_device_id *id)
1615 {
1616 	struct pch_spi_board_data *board_dat;
1617 	struct platform_device *pd_dev = NULL;
1618 	int retval;
1619 	int i;
1620 	struct pch_pd_dev_save *pd_dev_save;
1621 
1622 	pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1623 	if (!pd_dev_save) {
1624 		dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1625 		return -ENOMEM;
1626 	}
1627 
1628 	board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1629 	if (!board_dat) {
1630 		dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1631 		retval = -ENOMEM;
1632 		goto err_no_mem;
1633 	}
1634 
1635 	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1636 	if (retval) {
1637 		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1638 		goto pci_request_regions;
1639 	}
1640 
1641 	board_dat->pdev = pdev;
1642 	board_dat->num = id->driver_data;
1643 	pd_dev_save->num = id->driver_data;
1644 	pd_dev_save->board_dat = board_dat;
1645 
1646 	retval = pci_enable_device(pdev);
1647 	if (retval) {
1648 		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1649 		goto pci_enable_device;
1650 	}
1651 
1652 	for (i = 0; i < board_dat->num; i++) {
1653 		pd_dev = platform_device_alloc("pch-spi", i);
1654 		if (!pd_dev) {
1655 			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1656 			retval = -ENOMEM;
1657 			goto err_platform_device;
1658 		}
1659 		pd_dev_save->pd_save[i] = pd_dev;
1660 		pd_dev->dev.parent = &pdev->dev;
1661 
1662 		retval = platform_device_add_data(pd_dev, board_dat,
1663 						  sizeof(*board_dat));
1664 		if (retval) {
1665 			dev_err(&pdev->dev,
1666 				"platform_device_add_data failed\n");
1667 			platform_device_put(pd_dev);
1668 			goto err_platform_device;
1669 		}
1670 
1671 		retval = platform_device_add(pd_dev);
1672 		if (retval) {
1673 			dev_err(&pdev->dev, "platform_device_add failed\n");
1674 			platform_device_put(pd_dev);
1675 			goto err_platform_device;
1676 		}
1677 	}
1678 
1679 	pci_set_drvdata(pdev, pd_dev_save);
1680 
1681 	return 0;
1682 
1683 err_platform_device:
1684 	pci_disable_device(pdev);
1685 pci_enable_device:
1686 	pci_release_regions(pdev);
1687 pci_request_regions:
1688 	kfree(board_dat);
1689 err_no_mem:
1690 	kfree(pd_dev_save);
1691 
1692 	return retval;
1693 }
1694 
1695 static void pch_spi_remove(struct pci_dev *pdev)
1696 {
1697 	int i;
1698 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1699 
1700 	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1701 
1702 	for (i = 0; i < pd_dev_save->num; i++)
1703 		platform_device_unregister(pd_dev_save->pd_save[i]);
1704 
1705 	pci_disable_device(pdev);
1706 	pci_release_regions(pdev);
1707 	kfree(pd_dev_save->board_dat);
1708 	kfree(pd_dev_save);
1709 }
1710 
1711 #ifdef CONFIG_PM
1712 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1713 {
1714 	int retval;
1715 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1716 
1717 	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1718 
1719 	pd_dev_save->board_dat->suspend_sts = true;
1720 
1721 	/* save config space */
1722 	retval = pci_save_state(pdev);
1723 	if (retval == 0) {
1724 		pci_enable_wake(pdev, PCI_D3hot, 0);
1725 		pci_disable_device(pdev);
1726 		pci_set_power_state(pdev, PCI_D3hot);
1727 	} else {
1728 		dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1729 	}
1730 
1731 	return retval;
1732 }
1733 
1734 static int pch_spi_resume(struct pci_dev *pdev)
1735 {
1736 	int retval;
1737 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1738 	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1739 
1740 	pci_set_power_state(pdev, PCI_D0);
1741 	pci_restore_state(pdev);
1742 
1743 	retval = pci_enable_device(pdev);
1744 	if (retval < 0) {
1745 		dev_err(&pdev->dev,
1746 			"%s pci_enable_device failed\n", __func__);
1747 	} else {
1748 		pci_enable_wake(pdev, PCI_D3hot, 0);
1749 
1750 		/* set suspend status to false */
1751 		pd_dev_save->board_dat->suspend_sts = false;
1752 	}
1753 
1754 	return retval;
1755 }
1756 #else
1757 #define pch_spi_suspend NULL
1758 #define pch_spi_resume NULL
1759 
1760 #endif
1761 
1762 static struct pci_driver pch_spi_pcidev_driver = {
1763 	.name = "pch_spi",
1764 	.id_table = pch_spi_pcidev_id,
1765 	.probe = pch_spi_probe,
1766 	.remove = pch_spi_remove,
1767 	.suspend = pch_spi_suspend,
1768 	.resume = pch_spi_resume,
1769 };
1770 
1771 static int __init pch_spi_init(void)
1772 {
1773 	int ret;
1774 	ret = platform_driver_register(&pch_spi_pd_driver);
1775 	if (ret)
1776 		return ret;
1777 
1778 	ret = pci_register_driver(&pch_spi_pcidev_driver);
1779 	if (ret) {
1780 		platform_driver_unregister(&pch_spi_pd_driver);
1781 		return ret;
1782 	}
1783 
1784 	return 0;
1785 }
1786 module_init(pch_spi_init);
1787 
1788 static void __exit pch_spi_exit(void)
1789 {
1790 	pci_unregister_driver(&pch_spi_pcidev_driver);
1791 	platform_driver_unregister(&pch_spi_pd_driver);
1792 }
1793 module_exit(pch_spi_exit);
1794 
1795 module_param(use_dma, int, 0644);
1796 MODULE_PARM_DESC(use_dma,
1797 		 "to use DMA for data transfers pass 1 else 0; default 1");
1798 
1799 MODULE_LICENSE("GPL");
1800 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1801 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1802 
1803