1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
4 *
5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6 */
7
8 #include <linux/delay.h>
9 #include <linux/pci.h>
10 #include <linux/wait.h>
11 #include <linux/spi/spi.h>
12 #include <linux/interrupt.h>
13 #include <linux/sched.h>
14 #include <linux/spi/spidev.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/platform_device.h>
18
19 #include <linux/dmaengine.h>
20 #include <linux/pch_dma.h>
21
22 /* Register offsets */
23 #define PCH_SPCR 0x00 /* SPI control register */
24 #define PCH_SPBRR 0x04 /* SPI baud rate register */
25 #define PCH_SPSR 0x08 /* SPI status register */
26 #define PCH_SPDWR 0x0C /* SPI write data register */
27 #define PCH_SPDRR 0x10 /* SPI read data register */
28 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
29 #define PCH_SRST 0x1C /* SPI reset register */
30 #define PCH_ADDRESS_SIZE 0x20
31
32 #define PCH_SPSR_TFD 0x000007C0
33 #define PCH_SPSR_RFD 0x0000F800
34
35 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
36 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
37
38 #define PCH_RX_THOLD 7
39 #define PCH_RX_THOLD_MAX 15
40
41 #define PCH_TX_THOLD 2
42
43 #define PCH_MAX_BAUDRATE 5000000
44 #define PCH_MAX_FIFO_DEPTH 16
45
46 #define STATUS_RUNNING 1
47 #define STATUS_EXITING 2
48 #define PCH_SLEEP_TIME 10
49
50 #define SSN_LOW 0x02U
51 #define SSN_HIGH 0x03U
52 #define SSN_NO_CONTROL 0x00U
53 #define PCH_MAX_CS 0xFF
54 #define PCI_DEVICE_ID_GE_SPI 0x8816
55
56 #define SPCR_SPE_BIT (1 << 0)
57 #define SPCR_MSTR_BIT (1 << 1)
58 #define SPCR_LSBF_BIT (1 << 4)
59 #define SPCR_CPHA_BIT (1 << 5)
60 #define SPCR_CPOL_BIT (1 << 6)
61 #define SPCR_TFIE_BIT (1 << 8)
62 #define SPCR_RFIE_BIT (1 << 9)
63 #define SPCR_FIE_BIT (1 << 10)
64 #define SPCR_ORIE_BIT (1 << 11)
65 #define SPCR_MDFIE_BIT (1 << 12)
66 #define SPCR_FICLR_BIT (1 << 24)
67 #define SPSR_TFI_BIT (1 << 0)
68 #define SPSR_RFI_BIT (1 << 1)
69 #define SPSR_FI_BIT (1 << 2)
70 #define SPSR_ORF_BIT (1 << 3)
71 #define SPBRR_SIZE_BIT (1 << 10)
72
73 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
74 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
75
76 #define SPCR_RFIC_FIELD 20
77 #define SPCR_TFIC_FIELD 16
78
79 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
80 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
81 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
82
83 #define PCH_CLOCK_HZ 50000000
84 #define PCH_MAX_SPBR 1023
85
86 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
87 #define PCI_DEVICE_ID_ML7213_SPI 0x802c
88 #define PCI_DEVICE_ID_ML7223_SPI 0x800F
89 #define PCI_DEVICE_ID_ML7831_SPI 0x8816
90
91 /*
92 * Set the number of SPI instance max
93 * Intel EG20T PCH : 1ch
94 * LAPIS Semiconductor ML7213 IOH : 2ch
95 * LAPIS Semiconductor ML7223 IOH : 1ch
96 * LAPIS Semiconductor ML7831 IOH : 1ch
97 */
98 #define PCH_SPI_MAX_DEV 2
99
100 #define PCH_BUF_SIZE 4096
101 #define PCH_DMA_TRANS_SIZE 12
102
103 static int use_dma = 1;
104
105 struct pch_spi_dma_ctrl {
106 struct pci_dev *dma_dev;
107 struct dma_async_tx_descriptor *desc_tx;
108 struct dma_async_tx_descriptor *desc_rx;
109 struct pch_dma_slave param_tx;
110 struct pch_dma_slave param_rx;
111 struct dma_chan *chan_tx;
112 struct dma_chan *chan_rx;
113 struct scatterlist *sg_tx_p;
114 struct scatterlist *sg_rx_p;
115 struct scatterlist sg_tx;
116 struct scatterlist sg_rx;
117 int nent;
118 void *tx_buf_virt;
119 void *rx_buf_virt;
120 dma_addr_t tx_buf_dma;
121 dma_addr_t rx_buf_dma;
122 };
123 /**
124 * struct pch_spi_data - Holds the SPI channel specific details
125 * @io_remap_addr: The remapped PCI base address
126 * @io_base_addr: Base address
127 * @master: Pointer to the SPI master structure
128 * @work: Reference to work queue handler
129 * @wait: Wait queue for waking up upon receiving an
130 * interrupt.
131 * @transfer_complete: Status of SPI Transfer
132 * @bcurrent_msg_processing: Status flag for message processing
133 * @lock: Lock for protecting this structure
134 * @queue: SPI Message queue
135 * @status: Status of the SPI driver
136 * @bpw_len: Length of data to be transferred in bits per
137 * word
138 * @transfer_active: Flag showing active transfer
139 * @tx_index: Transmit data count; for bookkeeping during
140 * transfer
141 * @rx_index: Receive data count; for bookkeeping during
142 * transfer
143 * @pkt_tx_buff: Buffer for data to be transmitted
144 * @pkt_rx_buff: Buffer for received data
145 * @n_curnt_chip: The chip number that this SPI driver currently
146 * operates on
147 * @current_chip: Reference to the current chip that this SPI
148 * driver currently operates on
149 * @current_msg: The current message that this SPI driver is
150 * handling
151 * @cur_trans: The current transfer that this SPI driver is
152 * handling
153 * @board_dat: Reference to the SPI device data structure
154 * @plat_dev: platform_device structure
155 * @ch: SPI channel number
156 * @dma: Local DMA information
157 * @use_dma: True if DMA is to be used
158 * @irq_reg_sts: Status of IRQ registration
159 * @save_total_len: Save length while data is being transferred
160 */
161 struct pch_spi_data {
162 void __iomem *io_remap_addr;
163 unsigned long io_base_addr;
164 struct spi_master *master;
165 struct work_struct work;
166 wait_queue_head_t wait;
167 u8 transfer_complete;
168 u8 bcurrent_msg_processing;
169 spinlock_t lock;
170 struct list_head queue;
171 u8 status;
172 u32 bpw_len;
173 u8 transfer_active;
174 u32 tx_index;
175 u32 rx_index;
176 u16 *pkt_tx_buff;
177 u16 *pkt_rx_buff;
178 u8 n_curnt_chip;
179 struct spi_device *current_chip;
180 struct spi_message *current_msg;
181 struct spi_transfer *cur_trans;
182 struct pch_spi_board_data *board_dat;
183 struct platform_device *plat_dev;
184 int ch;
185 struct pch_spi_dma_ctrl dma;
186 int use_dma;
187 u8 irq_reg_sts;
188 int save_total_len;
189 };
190
191 /**
192 * struct pch_spi_board_data - Holds the SPI device specific details
193 * @pdev: Pointer to the PCI device
194 * @suspend_sts: Status of suspend
195 * @num: The number of SPI device instance
196 */
197 struct pch_spi_board_data {
198 struct pci_dev *pdev;
199 u8 suspend_sts;
200 int num;
201 };
202
203 struct pch_pd_dev_save {
204 int num;
205 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
206 struct pch_spi_board_data *board_dat;
207 };
208
209 static const struct pci_device_id pch_spi_pcidev_id[] = {
210 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
211 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
212 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
213 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
214 { }
215 };
216
217 /**
218 * pch_spi_writereg() - Performs register writes
219 * @master: Pointer to struct spi_master.
220 * @idx: Register offset.
221 * @val: Value to be written to register.
222 */
pch_spi_writereg(struct spi_master * master,int idx,u32 val)223 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
224 {
225 struct pch_spi_data *data = spi_master_get_devdata(master);
226 iowrite32(val, (data->io_remap_addr + idx));
227 }
228
229 /**
230 * pch_spi_readreg() - Performs register reads
231 * @master: Pointer to struct spi_master.
232 * @idx: Register offset.
233 */
pch_spi_readreg(struct spi_master * master,int idx)234 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
235 {
236 struct pch_spi_data *data = spi_master_get_devdata(master);
237 return ioread32(data->io_remap_addr + idx);
238 }
239
pch_spi_setclr_reg(struct spi_master * master,int idx,u32 set,u32 clr)240 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
241 u32 set, u32 clr)
242 {
243 u32 tmp = pch_spi_readreg(master, idx);
244 tmp = (tmp & ~clr) | set;
245 pch_spi_writereg(master, idx, tmp);
246 }
247
pch_spi_set_master_mode(struct spi_master * master)248 static void pch_spi_set_master_mode(struct spi_master *master)
249 {
250 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
251 }
252
253 /**
254 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
255 * @master: Pointer to struct spi_master.
256 */
pch_spi_clear_fifo(struct spi_master * master)257 static void pch_spi_clear_fifo(struct spi_master *master)
258 {
259 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
260 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
261 }
262
pch_spi_handler_sub(struct pch_spi_data * data,u32 reg_spsr_val,void __iomem * io_remap_addr)263 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
264 void __iomem *io_remap_addr)
265 {
266 u32 n_read, tx_index, rx_index, bpw_len;
267 u16 *pkt_rx_buffer, *pkt_tx_buff;
268 int read_cnt;
269 u32 reg_spcr_val;
270 void __iomem *spsr;
271 void __iomem *spdrr;
272 void __iomem *spdwr;
273
274 spsr = io_remap_addr + PCH_SPSR;
275 iowrite32(reg_spsr_val, spsr);
276
277 if (data->transfer_active) {
278 rx_index = data->rx_index;
279 tx_index = data->tx_index;
280 bpw_len = data->bpw_len;
281 pkt_rx_buffer = data->pkt_rx_buff;
282 pkt_tx_buff = data->pkt_tx_buff;
283
284 spdrr = io_remap_addr + PCH_SPDRR;
285 spdwr = io_remap_addr + PCH_SPDWR;
286
287 n_read = PCH_READABLE(reg_spsr_val);
288
289 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
290 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
291 if (tx_index < bpw_len)
292 iowrite32(pkt_tx_buff[tx_index++], spdwr);
293 }
294
295 /* disable RFI if not needed */
296 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
297 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
298 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
299
300 /* reset rx threshold */
301 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
302 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
303
304 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
305 }
306
307 /* update counts */
308 data->tx_index = tx_index;
309 data->rx_index = rx_index;
310
311 /* if transfer complete interrupt */
312 if (reg_spsr_val & SPSR_FI_BIT) {
313 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
314 /* disable interrupts */
315 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
316 PCH_ALL);
317
318 /* transfer is completed;
319 inform pch_spi_process_messages */
320 data->transfer_complete = true;
321 data->transfer_active = false;
322 wake_up(&data->wait);
323 } else {
324 dev_vdbg(&data->master->dev,
325 "%s : Transfer is not completed",
326 __func__);
327 }
328 }
329 }
330 }
331
332 /**
333 * pch_spi_handler() - Interrupt handler
334 * @irq: The interrupt number.
335 * @dev_id: Pointer to struct pch_spi_board_data.
336 */
pch_spi_handler(int irq,void * dev_id)337 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
338 {
339 u32 reg_spsr_val;
340 void __iomem *spsr;
341 void __iomem *io_remap_addr;
342 irqreturn_t ret = IRQ_NONE;
343 struct pch_spi_data *data = dev_id;
344 struct pch_spi_board_data *board_dat = data->board_dat;
345
346 if (board_dat->suspend_sts) {
347 dev_dbg(&board_dat->pdev->dev,
348 "%s returning due to suspend\n", __func__);
349 return IRQ_NONE;
350 }
351
352 io_remap_addr = data->io_remap_addr;
353 spsr = io_remap_addr + PCH_SPSR;
354
355 reg_spsr_val = ioread32(spsr);
356
357 if (reg_spsr_val & SPSR_ORF_BIT) {
358 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
359 if (data->current_msg->complete) {
360 data->transfer_complete = true;
361 data->current_msg->status = -EIO;
362 data->current_msg->complete(data->current_msg->context);
363 data->bcurrent_msg_processing = false;
364 data->current_msg = NULL;
365 data->cur_trans = NULL;
366 }
367 }
368
369 if (data->use_dma)
370 return IRQ_NONE;
371
372 /* Check if the interrupt is for SPI device */
373 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
374 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
375 ret = IRQ_HANDLED;
376 }
377
378 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
379 __func__, ret);
380
381 return ret;
382 }
383
384 /**
385 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
386 * @master: Pointer to struct spi_master.
387 * @speed_hz: Baud rate.
388 */
pch_spi_set_baud_rate(struct spi_master * master,u32 speed_hz)389 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
390 {
391 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
392
393 /* if baud rate is less than we can support limit it */
394 if (n_spbr > PCH_MAX_SPBR)
395 n_spbr = PCH_MAX_SPBR;
396
397 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
398 }
399
400 /**
401 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
402 * @master: Pointer to struct spi_master.
403 * @bits_per_word: Bits per word for SPI transfer.
404 */
pch_spi_set_bits_per_word(struct spi_master * master,u8 bits_per_word)405 static void pch_spi_set_bits_per_word(struct spi_master *master,
406 u8 bits_per_word)
407 {
408 if (bits_per_word == 8)
409 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
410 else
411 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
412 }
413
414 /**
415 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
416 * @spi: Pointer to struct spi_device.
417 */
pch_spi_setup_transfer(struct spi_device * spi)418 static void pch_spi_setup_transfer(struct spi_device *spi)
419 {
420 u32 flags = 0;
421
422 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
423 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
424 spi->max_speed_hz);
425 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
426
427 /* set bits per word */
428 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
429
430 if (!(spi->mode & SPI_LSB_FIRST))
431 flags |= SPCR_LSBF_BIT;
432 if (spi->mode & SPI_CPOL)
433 flags |= SPCR_CPOL_BIT;
434 if (spi->mode & SPI_CPHA)
435 flags |= SPCR_CPHA_BIT;
436 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
437 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
438
439 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
440 pch_spi_clear_fifo(spi->master);
441 }
442
443 /**
444 * pch_spi_reset() - Clears SPI registers
445 * @master: Pointer to struct spi_master.
446 */
pch_spi_reset(struct spi_master * master)447 static void pch_spi_reset(struct spi_master *master)
448 {
449 /* write 1 to reset SPI */
450 pch_spi_writereg(master, PCH_SRST, 0x1);
451
452 /* clear reset */
453 pch_spi_writereg(master, PCH_SRST, 0x0);
454 }
455
pch_spi_transfer(struct spi_device * pspi,struct spi_message * pmsg)456 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
457 {
458 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
459 int retval;
460 unsigned long flags;
461
462 /* We won't process any messages if we have been asked to terminate */
463 if (data->status == STATUS_EXITING) {
464 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
465 retval = -ESHUTDOWN;
466 goto err_out;
467 }
468
469 /* If suspended ,return -EINVAL */
470 if (data->board_dat->suspend_sts) {
471 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
472 retval = -EINVAL;
473 goto err_out;
474 }
475
476 /* set status of message */
477 pmsg->actual_length = 0;
478 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
479
480 pmsg->status = -EINPROGRESS;
481 spin_lock_irqsave(&data->lock, flags);
482 /* add message to queue */
483 list_add_tail(&pmsg->queue, &data->queue);
484 spin_unlock_irqrestore(&data->lock, flags);
485
486 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
487
488 schedule_work(&data->work);
489 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
490
491 retval = 0;
492
493 err_out:
494 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
495 return retval;
496 }
497
pch_spi_select_chip(struct pch_spi_data * data,struct spi_device * pspi)498 static inline void pch_spi_select_chip(struct pch_spi_data *data,
499 struct spi_device *pspi)
500 {
501 if (data->current_chip != NULL) {
502 if (spi_get_chipselect(pspi, 0) != data->n_curnt_chip) {
503 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
504 data->current_chip = NULL;
505 }
506 }
507
508 data->current_chip = pspi;
509
510 data->n_curnt_chip = spi_get_chipselect(data->current_chip, 0);
511
512 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
513 pch_spi_setup_transfer(pspi);
514 }
515
pch_spi_set_tx(struct pch_spi_data * data,int * bpw)516 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
517 {
518 int size;
519 u32 n_writes;
520 int j;
521 struct spi_message *pmsg, *tmp;
522 const u8 *tx_buf;
523 const u16 *tx_sbuf;
524
525 /* set baud rate if needed */
526 if (data->cur_trans->speed_hz) {
527 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
528 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
529 }
530
531 /* set bits per word if needed */
532 if (data->cur_trans->bits_per_word &&
533 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
534 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
535 pch_spi_set_bits_per_word(data->master,
536 data->cur_trans->bits_per_word);
537 *bpw = data->cur_trans->bits_per_word;
538 } else {
539 *bpw = data->current_msg->spi->bits_per_word;
540 }
541
542 /* reset Tx/Rx index */
543 data->tx_index = 0;
544 data->rx_index = 0;
545
546 data->bpw_len = data->cur_trans->len / (*bpw / 8);
547
548 /* find alloc size */
549 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
550
551 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
552 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
553 if (data->pkt_tx_buff != NULL) {
554 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
555 if (!data->pkt_rx_buff) {
556 kfree(data->pkt_tx_buff);
557 data->pkt_tx_buff = NULL;
558 }
559 }
560
561 if (!data->pkt_rx_buff) {
562 /* flush queue and set status of all transfers to -ENOMEM */
563 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
564 pmsg->status = -ENOMEM;
565
566 if (pmsg->complete)
567 pmsg->complete(pmsg->context);
568
569 /* delete from queue */
570 list_del_init(&pmsg->queue);
571 }
572 return;
573 }
574
575 /* copy Tx Data */
576 if (data->cur_trans->tx_buf != NULL) {
577 if (*bpw == 8) {
578 tx_buf = data->cur_trans->tx_buf;
579 for (j = 0; j < data->bpw_len; j++)
580 data->pkt_tx_buff[j] = *tx_buf++;
581 } else {
582 tx_sbuf = data->cur_trans->tx_buf;
583 for (j = 0; j < data->bpw_len; j++)
584 data->pkt_tx_buff[j] = *tx_sbuf++;
585 }
586 }
587
588 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
589 n_writes = data->bpw_len;
590 if (n_writes > PCH_MAX_FIFO_DEPTH)
591 n_writes = PCH_MAX_FIFO_DEPTH;
592
593 dev_dbg(&data->master->dev,
594 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
595 __func__);
596 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
597
598 for (j = 0; j < n_writes; j++)
599 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
600
601 /* update tx_index */
602 data->tx_index = j;
603
604 /* reset transfer complete flag */
605 data->transfer_complete = false;
606 data->transfer_active = true;
607 }
608
pch_spi_nomore_transfer(struct pch_spi_data * data)609 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
610 {
611 struct spi_message *pmsg, *tmp;
612 dev_dbg(&data->master->dev, "%s called\n", __func__);
613 /* Invoke complete callback
614 * [To the spi core..indicating end of transfer] */
615 data->current_msg->status = 0;
616
617 if (data->current_msg->complete) {
618 dev_dbg(&data->master->dev,
619 "%s:Invoking callback of SPI core\n", __func__);
620 data->current_msg->complete(data->current_msg->context);
621 }
622
623 /* update status in global variable */
624 data->bcurrent_msg_processing = false;
625
626 dev_dbg(&data->master->dev,
627 "%s:data->bcurrent_msg_processing = false\n", __func__);
628
629 data->current_msg = NULL;
630 data->cur_trans = NULL;
631
632 /* check if we have items in list and not suspending
633 * return 1 if list empty */
634 if ((list_empty(&data->queue) == 0) &&
635 (!data->board_dat->suspend_sts) &&
636 (data->status != STATUS_EXITING)) {
637 /* We have some more work to do (either there is more tranint
638 * bpw;sfer requests in the current message or there are
639 *more messages)
640 */
641 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
642 schedule_work(&data->work);
643 } else if (data->board_dat->suspend_sts ||
644 data->status == STATUS_EXITING) {
645 dev_dbg(&data->master->dev,
646 "%s suspend/remove initiated, flushing queue\n",
647 __func__);
648 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
649 pmsg->status = -EIO;
650
651 if (pmsg->complete)
652 pmsg->complete(pmsg->context);
653
654 /* delete from queue */
655 list_del_init(&pmsg->queue);
656 }
657 }
658 }
659
pch_spi_set_ir(struct pch_spi_data * data)660 static void pch_spi_set_ir(struct pch_spi_data *data)
661 {
662 /* enable interrupts, set threshold, enable SPI */
663 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
664 /* set receive threshold to PCH_RX_THOLD */
665 pch_spi_setclr_reg(data->master, PCH_SPCR,
666 PCH_RX_THOLD << SPCR_RFIC_FIELD |
667 SPCR_FIE_BIT | SPCR_RFIE_BIT |
668 SPCR_ORIE_BIT | SPCR_SPE_BIT,
669 MASK_RFIC_SPCR_BITS | PCH_ALL);
670 else
671 /* set receive threshold to maximum */
672 pch_spi_setclr_reg(data->master, PCH_SPCR,
673 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
674 SPCR_FIE_BIT | SPCR_ORIE_BIT |
675 SPCR_SPE_BIT,
676 MASK_RFIC_SPCR_BITS | PCH_ALL);
677
678 /* Wait until the transfer completes; go to sleep after
679 initiating the transfer. */
680 dev_dbg(&data->master->dev,
681 "%s:waiting for transfer to get over\n", __func__);
682
683 wait_event_interruptible(data->wait, data->transfer_complete);
684
685 /* clear all interrupts */
686 pch_spi_writereg(data->master, PCH_SPSR,
687 pch_spi_readreg(data->master, PCH_SPSR));
688 /* Disable interrupts and SPI transfer */
689 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
690 /* clear FIFO */
691 pch_spi_clear_fifo(data->master);
692 }
693
pch_spi_copy_rx_data(struct pch_spi_data * data,int bpw)694 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
695 {
696 int j;
697 u8 *rx_buf;
698 u16 *rx_sbuf;
699
700 /* copy Rx Data */
701 if (!data->cur_trans->rx_buf)
702 return;
703
704 if (bpw == 8) {
705 rx_buf = data->cur_trans->rx_buf;
706 for (j = 0; j < data->bpw_len; j++)
707 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
708 } else {
709 rx_sbuf = data->cur_trans->rx_buf;
710 for (j = 0; j < data->bpw_len; j++)
711 *rx_sbuf++ = data->pkt_rx_buff[j];
712 }
713 }
714
pch_spi_copy_rx_data_for_dma(struct pch_spi_data * data,int bpw)715 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
716 {
717 int j;
718 u8 *rx_buf;
719 u16 *rx_sbuf;
720 const u8 *rx_dma_buf;
721 const u16 *rx_dma_sbuf;
722
723 /* copy Rx Data */
724 if (!data->cur_trans->rx_buf)
725 return;
726
727 if (bpw == 8) {
728 rx_buf = data->cur_trans->rx_buf;
729 rx_dma_buf = data->dma.rx_buf_virt;
730 for (j = 0; j < data->bpw_len; j++)
731 *rx_buf++ = *rx_dma_buf++ & 0xFF;
732 data->cur_trans->rx_buf = rx_buf;
733 } else {
734 rx_sbuf = data->cur_trans->rx_buf;
735 rx_dma_sbuf = data->dma.rx_buf_virt;
736 for (j = 0; j < data->bpw_len; j++)
737 *rx_sbuf++ = *rx_dma_sbuf++;
738 data->cur_trans->rx_buf = rx_sbuf;
739 }
740 }
741
pch_spi_start_transfer(struct pch_spi_data * data)742 static int pch_spi_start_transfer(struct pch_spi_data *data)
743 {
744 struct pch_spi_dma_ctrl *dma;
745 unsigned long flags;
746 int rtn;
747
748 dma = &data->dma;
749
750 spin_lock_irqsave(&data->lock, flags);
751
752 /* disable interrupts, SPI set enable */
753 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
754
755 spin_unlock_irqrestore(&data->lock, flags);
756
757 /* Wait until the transfer completes; go to sleep after
758 initiating the transfer. */
759 dev_dbg(&data->master->dev,
760 "%s:waiting for transfer to get over\n", __func__);
761 rtn = wait_event_interruptible_timeout(data->wait,
762 data->transfer_complete,
763 msecs_to_jiffies(2 * HZ));
764 if (!rtn)
765 dev_err(&data->master->dev,
766 "%s wait-event timeout\n", __func__);
767
768 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
769 DMA_FROM_DEVICE);
770
771 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
772 DMA_FROM_DEVICE);
773 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
774
775 async_tx_ack(dma->desc_rx);
776 async_tx_ack(dma->desc_tx);
777 kfree(dma->sg_tx_p);
778 kfree(dma->sg_rx_p);
779
780 spin_lock_irqsave(&data->lock, flags);
781
782 /* clear fifo threshold, disable interrupts, disable SPI transfer */
783 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
784 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
785 SPCR_SPE_BIT);
786 /* clear all interrupts */
787 pch_spi_writereg(data->master, PCH_SPSR,
788 pch_spi_readreg(data->master, PCH_SPSR));
789 /* clear FIFO */
790 pch_spi_clear_fifo(data->master);
791
792 spin_unlock_irqrestore(&data->lock, flags);
793
794 return rtn;
795 }
796
pch_dma_rx_complete(void * arg)797 static void pch_dma_rx_complete(void *arg)
798 {
799 struct pch_spi_data *data = arg;
800
801 /* transfer is completed;inform pch_spi_process_messages_dma */
802 data->transfer_complete = true;
803 wake_up_interruptible(&data->wait);
804 }
805
pch_spi_filter(struct dma_chan * chan,void * slave)806 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
807 {
808 struct pch_dma_slave *param = slave;
809
810 if ((chan->chan_id == param->chan_id) &&
811 (param->dma_dev == chan->device->dev)) {
812 chan->private = param;
813 return true;
814 } else {
815 return false;
816 }
817 }
818
pch_spi_request_dma(struct pch_spi_data * data,int bpw)819 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
820 {
821 dma_cap_mask_t mask;
822 struct dma_chan *chan;
823 struct pci_dev *dma_dev;
824 struct pch_dma_slave *param;
825 struct pch_spi_dma_ctrl *dma;
826 unsigned int width;
827
828 if (bpw == 8)
829 width = PCH_DMA_WIDTH_1_BYTE;
830 else
831 width = PCH_DMA_WIDTH_2_BYTES;
832
833 dma = &data->dma;
834 dma_cap_zero(mask);
835 dma_cap_set(DMA_SLAVE, mask);
836
837 /* Get DMA's dev information */
838 dma_dev = pci_get_slot(data->board_dat->pdev->bus,
839 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
840
841 /* Set Tx DMA */
842 param = &dma->param_tx;
843 param->dma_dev = &dma_dev->dev;
844 param->chan_id = data->ch * 2; /* Tx = 0, 2 */
845 param->tx_reg = data->io_base_addr + PCH_SPDWR;
846 param->width = width;
847 chan = dma_request_channel(mask, pch_spi_filter, param);
848 if (!chan) {
849 dev_err(&data->master->dev,
850 "ERROR: dma_request_channel FAILS(Tx)\n");
851 goto out;
852 }
853 dma->chan_tx = chan;
854
855 /* Set Rx DMA */
856 param = &dma->param_rx;
857 param->dma_dev = &dma_dev->dev;
858 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
859 param->rx_reg = data->io_base_addr + PCH_SPDRR;
860 param->width = width;
861 chan = dma_request_channel(mask, pch_spi_filter, param);
862 if (!chan) {
863 dev_err(&data->master->dev,
864 "ERROR: dma_request_channel FAILS(Rx)\n");
865 dma_release_channel(dma->chan_tx);
866 dma->chan_tx = NULL;
867 goto out;
868 }
869 dma->chan_rx = chan;
870
871 dma->dma_dev = dma_dev;
872 return;
873 out:
874 pci_dev_put(dma_dev);
875 data->use_dma = 0;
876 }
877
pch_spi_release_dma(struct pch_spi_data * data)878 static void pch_spi_release_dma(struct pch_spi_data *data)
879 {
880 struct pch_spi_dma_ctrl *dma;
881
882 dma = &data->dma;
883 if (dma->chan_tx) {
884 dma_release_channel(dma->chan_tx);
885 dma->chan_tx = NULL;
886 }
887 if (dma->chan_rx) {
888 dma_release_channel(dma->chan_rx);
889 dma->chan_rx = NULL;
890 }
891
892 pci_dev_put(dma->dma_dev);
893 }
894
pch_spi_handle_dma(struct pch_spi_data * data,int * bpw)895 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
896 {
897 const u8 *tx_buf;
898 const u16 *tx_sbuf;
899 u8 *tx_dma_buf;
900 u16 *tx_dma_sbuf;
901 struct scatterlist *sg;
902 struct dma_async_tx_descriptor *desc_tx;
903 struct dma_async_tx_descriptor *desc_rx;
904 int num;
905 int i;
906 int size;
907 int rem;
908 int head;
909 unsigned long flags;
910 struct pch_spi_dma_ctrl *dma;
911
912 dma = &data->dma;
913
914 /* set baud rate if needed */
915 if (data->cur_trans->speed_hz) {
916 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
917 spin_lock_irqsave(&data->lock, flags);
918 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
919 spin_unlock_irqrestore(&data->lock, flags);
920 }
921
922 /* set bits per word if needed */
923 if (data->cur_trans->bits_per_word &&
924 (data->current_msg->spi->bits_per_word !=
925 data->cur_trans->bits_per_word)) {
926 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
927 spin_lock_irqsave(&data->lock, flags);
928 pch_spi_set_bits_per_word(data->master,
929 data->cur_trans->bits_per_word);
930 spin_unlock_irqrestore(&data->lock, flags);
931 *bpw = data->cur_trans->bits_per_word;
932 } else {
933 *bpw = data->current_msg->spi->bits_per_word;
934 }
935 data->bpw_len = data->cur_trans->len / (*bpw / 8);
936
937 if (data->bpw_len > PCH_BUF_SIZE) {
938 data->bpw_len = PCH_BUF_SIZE;
939 data->cur_trans->len -= PCH_BUF_SIZE;
940 }
941
942 /* copy Tx Data */
943 if (data->cur_trans->tx_buf != NULL) {
944 if (*bpw == 8) {
945 tx_buf = data->cur_trans->tx_buf;
946 tx_dma_buf = dma->tx_buf_virt;
947 for (i = 0; i < data->bpw_len; i++)
948 *tx_dma_buf++ = *tx_buf++;
949 } else {
950 tx_sbuf = data->cur_trans->tx_buf;
951 tx_dma_sbuf = dma->tx_buf_virt;
952 for (i = 0; i < data->bpw_len; i++)
953 *tx_dma_sbuf++ = *tx_sbuf++;
954 }
955 }
956
957 /* Calculate Rx parameter for DMA transmitting */
958 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
959 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
960 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
961 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
962 } else {
963 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
964 rem = PCH_DMA_TRANS_SIZE;
965 }
966 size = PCH_DMA_TRANS_SIZE;
967 } else {
968 num = 1;
969 size = data->bpw_len;
970 rem = data->bpw_len;
971 }
972 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
973 __func__, num, size, rem);
974 spin_lock_irqsave(&data->lock, flags);
975
976 /* set receive fifo threshold and transmit fifo threshold */
977 pch_spi_setclr_reg(data->master, PCH_SPCR,
978 ((size - 1) << SPCR_RFIC_FIELD) |
979 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
980 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
981
982 spin_unlock_irqrestore(&data->lock, flags);
983
984 /* RX */
985 dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
986 if (!dma->sg_rx_p)
987 return;
988
989 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
990 /* offset, length setting */
991 sg = dma->sg_rx_p;
992 for (i = 0; i < num; i++, sg++) {
993 if (i == (num - 2)) {
994 sg->offset = size * i;
995 sg->offset = sg->offset * (*bpw / 8);
996 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
997 sg->offset);
998 sg_dma_len(sg) = rem;
999 } else if (i == (num - 1)) {
1000 sg->offset = size * (i - 1) + rem;
1001 sg->offset = sg->offset * (*bpw / 8);
1002 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1003 sg->offset);
1004 sg_dma_len(sg) = size;
1005 } else {
1006 sg->offset = size * i;
1007 sg->offset = sg->offset * (*bpw / 8);
1008 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1009 sg->offset);
1010 sg_dma_len(sg) = size;
1011 }
1012 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1013 }
1014 sg = dma->sg_rx_p;
1015 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1016 num, DMA_DEV_TO_MEM,
1017 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1018 if (!desc_rx) {
1019 dev_err(&data->master->dev,
1020 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1021 return;
1022 }
1023 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1024 desc_rx->callback = pch_dma_rx_complete;
1025 desc_rx->callback_param = data;
1026 dma->nent = num;
1027 dma->desc_rx = desc_rx;
1028
1029 /* Calculate Tx parameter for DMA transmitting */
1030 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1031 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1032 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1033 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1034 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1035 } else {
1036 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1037 rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1038 PCH_DMA_TRANS_SIZE - head;
1039 }
1040 size = PCH_DMA_TRANS_SIZE;
1041 } else {
1042 num = 1;
1043 size = data->bpw_len;
1044 rem = data->bpw_len;
1045 head = 0;
1046 }
1047
1048 dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1049 if (!dma->sg_tx_p)
1050 return;
1051
1052 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1053 /* offset, length setting */
1054 sg = dma->sg_tx_p;
1055 for (i = 0; i < num; i++, sg++) {
1056 if (i == 0) {
1057 sg->offset = 0;
1058 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1059 sg->offset);
1060 sg_dma_len(sg) = size + head;
1061 } else if (i == (num - 1)) {
1062 sg->offset = head + size * i;
1063 sg->offset = sg->offset * (*bpw / 8);
1064 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1065 sg->offset);
1066 sg_dma_len(sg) = rem;
1067 } else {
1068 sg->offset = head + size * i;
1069 sg->offset = sg->offset * (*bpw / 8);
1070 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1071 sg->offset);
1072 sg_dma_len(sg) = size;
1073 }
1074 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1075 }
1076 sg = dma->sg_tx_p;
1077 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1078 sg, num, DMA_MEM_TO_DEV,
1079 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1080 if (!desc_tx) {
1081 dev_err(&data->master->dev,
1082 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1083 return;
1084 }
1085 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1086 desc_tx->callback = NULL;
1087 desc_tx->callback_param = data;
1088 dma->nent = num;
1089 dma->desc_tx = desc_tx;
1090
1091 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1092
1093 spin_lock_irqsave(&data->lock, flags);
1094 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1095 desc_rx->tx_submit(desc_rx);
1096 desc_tx->tx_submit(desc_tx);
1097 spin_unlock_irqrestore(&data->lock, flags);
1098
1099 /* reset transfer complete flag */
1100 data->transfer_complete = false;
1101 }
1102
pch_spi_process_messages(struct work_struct * pwork)1103 static void pch_spi_process_messages(struct work_struct *pwork)
1104 {
1105 struct spi_message *pmsg, *tmp;
1106 struct pch_spi_data *data;
1107 int bpw;
1108
1109 data = container_of(pwork, struct pch_spi_data, work);
1110 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1111
1112 spin_lock(&data->lock);
1113 /* check if suspend has been initiated;if yes flush queue */
1114 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1115 dev_dbg(&data->master->dev,
1116 "%s suspend/remove initiated, flushing queue\n", __func__);
1117 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1118 pmsg->status = -EIO;
1119
1120 if (pmsg->complete) {
1121 spin_unlock(&data->lock);
1122 pmsg->complete(pmsg->context);
1123 spin_lock(&data->lock);
1124 }
1125
1126 /* delete from queue */
1127 list_del_init(&pmsg->queue);
1128 }
1129
1130 spin_unlock(&data->lock);
1131 return;
1132 }
1133
1134 data->bcurrent_msg_processing = true;
1135 dev_dbg(&data->master->dev,
1136 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1137
1138 /* Get the message from the queue and delete it from there. */
1139 data->current_msg = list_entry(data->queue.next, struct spi_message,
1140 queue);
1141
1142 list_del_init(&data->current_msg->queue);
1143
1144 data->current_msg->status = 0;
1145
1146 pch_spi_select_chip(data, data->current_msg->spi);
1147
1148 spin_unlock(&data->lock);
1149
1150 if (data->use_dma)
1151 pch_spi_request_dma(data,
1152 data->current_msg->spi->bits_per_word);
1153 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1154 do {
1155 int cnt;
1156 /* If we are already processing a message get the next
1157 transfer structure from the message otherwise retrieve
1158 the 1st transfer request from the message. */
1159 spin_lock(&data->lock);
1160 if (data->cur_trans == NULL) {
1161 data->cur_trans =
1162 list_entry(data->current_msg->transfers.next,
1163 struct spi_transfer, transfer_list);
1164 dev_dbg(&data->master->dev,
1165 "%s :Getting 1st transfer message\n",
1166 __func__);
1167 } else {
1168 data->cur_trans =
1169 list_entry(data->cur_trans->transfer_list.next,
1170 struct spi_transfer, transfer_list);
1171 dev_dbg(&data->master->dev,
1172 "%s :Getting next transfer message\n",
1173 __func__);
1174 }
1175 spin_unlock(&data->lock);
1176
1177 if (!data->cur_trans->len)
1178 goto out;
1179 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1180 data->save_total_len = data->cur_trans->len;
1181 if (data->use_dma) {
1182 int i;
1183 char *save_rx_buf = data->cur_trans->rx_buf;
1184
1185 for (i = 0; i < cnt; i++) {
1186 pch_spi_handle_dma(data, &bpw);
1187 if (!pch_spi_start_transfer(data)) {
1188 data->transfer_complete = true;
1189 data->current_msg->status = -EIO;
1190 data->current_msg->complete
1191 (data->current_msg->context);
1192 data->bcurrent_msg_processing = false;
1193 data->current_msg = NULL;
1194 data->cur_trans = NULL;
1195 goto out;
1196 }
1197 pch_spi_copy_rx_data_for_dma(data, bpw);
1198 }
1199 data->cur_trans->rx_buf = save_rx_buf;
1200 } else {
1201 pch_spi_set_tx(data, &bpw);
1202 pch_spi_set_ir(data);
1203 pch_spi_copy_rx_data(data, bpw);
1204 kfree(data->pkt_rx_buff);
1205 data->pkt_rx_buff = NULL;
1206 kfree(data->pkt_tx_buff);
1207 data->pkt_tx_buff = NULL;
1208 }
1209 /* increment message count */
1210 data->cur_trans->len = data->save_total_len;
1211 data->current_msg->actual_length += data->cur_trans->len;
1212
1213 dev_dbg(&data->master->dev,
1214 "%s:data->current_msg->actual_length=%d\n",
1215 __func__, data->current_msg->actual_length);
1216
1217 spi_transfer_delay_exec(data->cur_trans);
1218
1219 spin_lock(&data->lock);
1220
1221 /* No more transfer in this message. */
1222 if ((data->cur_trans->transfer_list.next) ==
1223 &(data->current_msg->transfers)) {
1224 pch_spi_nomore_transfer(data);
1225 }
1226
1227 spin_unlock(&data->lock);
1228
1229 } while (data->cur_trans != NULL);
1230
1231 out:
1232 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1233 if (data->use_dma)
1234 pch_spi_release_dma(data);
1235 }
1236
pch_spi_free_resources(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1237 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1238 struct pch_spi_data *data)
1239 {
1240 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1241
1242 flush_work(&data->work);
1243 }
1244
pch_spi_get_resources(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1245 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1246 struct pch_spi_data *data)
1247 {
1248 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1249
1250 /* reset PCH SPI h/w */
1251 pch_spi_reset(data->master);
1252 dev_dbg(&board_dat->pdev->dev,
1253 "%s pch_spi_reset invoked successfully\n", __func__);
1254
1255 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1256
1257 return 0;
1258 }
1259
pch_free_dma_buf(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1260 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1261 struct pch_spi_data *data)
1262 {
1263 struct pch_spi_dma_ctrl *dma;
1264
1265 dma = &data->dma;
1266 if (dma->tx_buf_dma)
1267 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1268 dma->tx_buf_virt, dma->tx_buf_dma);
1269 if (dma->rx_buf_dma)
1270 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1271 dma->rx_buf_virt, dma->rx_buf_dma);
1272 }
1273
pch_alloc_dma_buf(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1274 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1275 struct pch_spi_data *data)
1276 {
1277 struct pch_spi_dma_ctrl *dma;
1278 int ret;
1279
1280 dma = &data->dma;
1281 ret = 0;
1282 /* Get Consistent memory for Tx DMA */
1283 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1284 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1285 if (!dma->tx_buf_virt)
1286 ret = -ENOMEM;
1287
1288 /* Get Consistent memory for Rx DMA */
1289 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1290 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1291 if (!dma->rx_buf_virt)
1292 ret = -ENOMEM;
1293
1294 return ret;
1295 }
1296
pch_spi_pd_probe(struct platform_device * plat_dev)1297 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1298 {
1299 int ret;
1300 struct spi_master *master;
1301 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1302 struct pch_spi_data *data;
1303
1304 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1305
1306 master = spi_alloc_master(&board_dat->pdev->dev,
1307 sizeof(struct pch_spi_data));
1308 if (!master) {
1309 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1310 plat_dev->id);
1311 return -ENOMEM;
1312 }
1313
1314 data = spi_master_get_devdata(master);
1315 data->master = master;
1316
1317 platform_set_drvdata(plat_dev, data);
1318
1319 /* baseaddress + address offset) */
1320 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1321 PCH_ADDRESS_SIZE * plat_dev->id;
1322 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1323 if (!data->io_remap_addr) {
1324 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1325 ret = -ENOMEM;
1326 goto err_pci_iomap;
1327 }
1328 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1329
1330 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1331 plat_dev->id, data->io_remap_addr);
1332
1333 /* initialize members of SPI master */
1334 master->num_chipselect = PCH_MAX_CS;
1335 master->transfer = pch_spi_transfer;
1336 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1337 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1338 master->max_speed_hz = PCH_MAX_BAUDRATE;
1339 master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1340
1341 data->board_dat = board_dat;
1342 data->plat_dev = plat_dev;
1343 data->n_curnt_chip = 255;
1344 data->status = STATUS_RUNNING;
1345 data->ch = plat_dev->id;
1346 data->use_dma = use_dma;
1347
1348 INIT_LIST_HEAD(&data->queue);
1349 spin_lock_init(&data->lock);
1350 INIT_WORK(&data->work, pch_spi_process_messages);
1351 init_waitqueue_head(&data->wait);
1352
1353 ret = pch_spi_get_resources(board_dat, data);
1354 if (ret) {
1355 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1356 goto err_spi_get_resources;
1357 }
1358
1359 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1360 IRQF_SHARED, KBUILD_MODNAME, data);
1361 if (ret) {
1362 dev_err(&plat_dev->dev,
1363 "%s request_irq failed\n", __func__);
1364 goto err_request_irq;
1365 }
1366 data->irq_reg_sts = true;
1367
1368 pch_spi_set_master_mode(master);
1369
1370 if (use_dma) {
1371 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1372 ret = pch_alloc_dma_buf(board_dat, data);
1373 if (ret)
1374 goto err_spi_register_master;
1375 }
1376
1377 ret = spi_register_master(master);
1378 if (ret != 0) {
1379 dev_err(&plat_dev->dev,
1380 "%s spi_register_master FAILED\n", __func__);
1381 goto err_spi_register_master;
1382 }
1383
1384 return 0;
1385
1386 err_spi_register_master:
1387 pch_free_dma_buf(board_dat, data);
1388 free_irq(board_dat->pdev->irq, data);
1389 err_request_irq:
1390 pch_spi_free_resources(board_dat, data);
1391 err_spi_get_resources:
1392 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1393 err_pci_iomap:
1394 spi_master_put(master);
1395
1396 return ret;
1397 }
1398
pch_spi_pd_remove(struct platform_device * plat_dev)1399 static void pch_spi_pd_remove(struct platform_device *plat_dev)
1400 {
1401 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1402 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1403 int count;
1404 unsigned long flags;
1405
1406 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1407 __func__, plat_dev->id, board_dat->pdev->irq);
1408
1409 if (use_dma)
1410 pch_free_dma_buf(board_dat, data);
1411
1412 /* check for any pending messages; no action is taken if the queue
1413 * is still full; but at least we tried. Unload anyway */
1414 count = 500;
1415 spin_lock_irqsave(&data->lock, flags);
1416 data->status = STATUS_EXITING;
1417 while ((list_empty(&data->queue) == 0) && --count) {
1418 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1419 __func__);
1420 spin_unlock_irqrestore(&data->lock, flags);
1421 msleep(PCH_SLEEP_TIME);
1422 spin_lock_irqsave(&data->lock, flags);
1423 }
1424 spin_unlock_irqrestore(&data->lock, flags);
1425
1426 pch_spi_free_resources(board_dat, data);
1427 /* disable interrupts & free IRQ */
1428 if (data->irq_reg_sts) {
1429 /* disable interrupts */
1430 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1431 data->irq_reg_sts = false;
1432 free_irq(board_dat->pdev->irq, data);
1433 }
1434
1435 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1436 spi_unregister_master(data->master);
1437 }
1438 #ifdef CONFIG_PM
pch_spi_pd_suspend(struct platform_device * pd_dev,pm_message_t state)1439 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1440 pm_message_t state)
1441 {
1442 u8 count;
1443 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1444 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1445
1446 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1447
1448 if (!board_dat) {
1449 dev_err(&pd_dev->dev,
1450 "%s pci_get_drvdata returned NULL\n", __func__);
1451 return -EFAULT;
1452 }
1453
1454 /* check if the current message is processed:
1455 Only after thats done the transfer will be suspended */
1456 count = 255;
1457 while ((--count) > 0) {
1458 if (!(data->bcurrent_msg_processing))
1459 break;
1460 msleep(PCH_SLEEP_TIME);
1461 }
1462
1463 /* Free IRQ */
1464 if (data->irq_reg_sts) {
1465 /* disable all interrupts */
1466 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1467 pch_spi_reset(data->master);
1468 free_irq(board_dat->pdev->irq, data);
1469
1470 data->irq_reg_sts = false;
1471 dev_dbg(&pd_dev->dev,
1472 "%s free_irq invoked successfully.\n", __func__);
1473 }
1474
1475 return 0;
1476 }
1477
pch_spi_pd_resume(struct platform_device * pd_dev)1478 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1479 {
1480 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1481 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1482 int retval;
1483
1484 if (!board_dat) {
1485 dev_err(&pd_dev->dev,
1486 "%s pci_get_drvdata returned NULL\n", __func__);
1487 return -EFAULT;
1488 }
1489
1490 if (!data->irq_reg_sts) {
1491 /* register IRQ */
1492 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1493 IRQF_SHARED, KBUILD_MODNAME, data);
1494 if (retval < 0) {
1495 dev_err(&pd_dev->dev,
1496 "%s request_irq failed\n", __func__);
1497 return retval;
1498 }
1499
1500 /* reset PCH SPI h/w */
1501 pch_spi_reset(data->master);
1502 pch_spi_set_master_mode(data->master);
1503 data->irq_reg_sts = true;
1504 }
1505 return 0;
1506 }
1507 #else
1508 #define pch_spi_pd_suspend NULL
1509 #define pch_spi_pd_resume NULL
1510 #endif
1511
1512 static struct platform_driver pch_spi_pd_driver = {
1513 .driver = {
1514 .name = "pch-spi",
1515 },
1516 .probe = pch_spi_pd_probe,
1517 .remove_new = pch_spi_pd_remove,
1518 .suspend = pch_spi_pd_suspend,
1519 .resume = pch_spi_pd_resume
1520 };
1521
pch_spi_probe(struct pci_dev * pdev,const struct pci_device_id * id)1522 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1523 {
1524 struct pch_spi_board_data *board_dat;
1525 struct platform_device *pd_dev = NULL;
1526 int retval;
1527 int i;
1528 struct pch_pd_dev_save *pd_dev_save;
1529
1530 pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1531 if (!pd_dev_save)
1532 return -ENOMEM;
1533
1534 board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1535 if (!board_dat) {
1536 retval = -ENOMEM;
1537 goto err_no_mem;
1538 }
1539
1540 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1541 if (retval) {
1542 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1543 goto pci_request_regions;
1544 }
1545
1546 board_dat->pdev = pdev;
1547 board_dat->num = id->driver_data;
1548 pd_dev_save->num = id->driver_data;
1549 pd_dev_save->board_dat = board_dat;
1550
1551 retval = pci_enable_device(pdev);
1552 if (retval) {
1553 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1554 goto pci_enable_device;
1555 }
1556
1557 for (i = 0; i < board_dat->num; i++) {
1558 pd_dev = platform_device_alloc("pch-spi", i);
1559 if (!pd_dev) {
1560 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1561 retval = -ENOMEM;
1562 goto err_platform_device;
1563 }
1564 pd_dev_save->pd_save[i] = pd_dev;
1565 pd_dev->dev.parent = &pdev->dev;
1566
1567 retval = platform_device_add_data(pd_dev, board_dat,
1568 sizeof(*board_dat));
1569 if (retval) {
1570 dev_err(&pdev->dev,
1571 "platform_device_add_data failed\n");
1572 platform_device_put(pd_dev);
1573 goto err_platform_device;
1574 }
1575
1576 retval = platform_device_add(pd_dev);
1577 if (retval) {
1578 dev_err(&pdev->dev, "platform_device_add failed\n");
1579 platform_device_put(pd_dev);
1580 goto err_platform_device;
1581 }
1582 }
1583
1584 pci_set_drvdata(pdev, pd_dev_save);
1585
1586 return 0;
1587
1588 err_platform_device:
1589 while (--i >= 0)
1590 platform_device_unregister(pd_dev_save->pd_save[i]);
1591 pci_disable_device(pdev);
1592 pci_enable_device:
1593 pci_release_regions(pdev);
1594 pci_request_regions:
1595 kfree(board_dat);
1596 err_no_mem:
1597 kfree(pd_dev_save);
1598
1599 return retval;
1600 }
1601
pch_spi_remove(struct pci_dev * pdev)1602 static void pch_spi_remove(struct pci_dev *pdev)
1603 {
1604 int i;
1605 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1606
1607 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1608
1609 for (i = 0; i < pd_dev_save->num; i++)
1610 platform_device_unregister(pd_dev_save->pd_save[i]);
1611
1612 pci_disable_device(pdev);
1613 pci_release_regions(pdev);
1614 kfree(pd_dev_save->board_dat);
1615 kfree(pd_dev_save);
1616 }
1617
pch_spi_suspend(struct device * dev)1618 static int __maybe_unused pch_spi_suspend(struct device *dev)
1619 {
1620 struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1621
1622 dev_dbg(dev, "%s ENTRY\n", __func__);
1623
1624 pd_dev_save->board_dat->suspend_sts = true;
1625
1626 return 0;
1627 }
1628
pch_spi_resume(struct device * dev)1629 static int __maybe_unused pch_spi_resume(struct device *dev)
1630 {
1631 struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1632
1633 dev_dbg(dev, "%s ENTRY\n", __func__);
1634
1635 /* set suspend status to false */
1636 pd_dev_save->board_dat->suspend_sts = false;
1637
1638 return 0;
1639 }
1640
1641 static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1642
1643 static struct pci_driver pch_spi_pcidev_driver = {
1644 .name = "pch_spi",
1645 .id_table = pch_spi_pcidev_id,
1646 .probe = pch_spi_probe,
1647 .remove = pch_spi_remove,
1648 .driver.pm = &pch_spi_pm_ops,
1649 };
1650
pch_spi_init(void)1651 static int __init pch_spi_init(void)
1652 {
1653 int ret;
1654 ret = platform_driver_register(&pch_spi_pd_driver);
1655 if (ret)
1656 return ret;
1657
1658 ret = pci_register_driver(&pch_spi_pcidev_driver);
1659 if (ret) {
1660 platform_driver_unregister(&pch_spi_pd_driver);
1661 return ret;
1662 }
1663
1664 return 0;
1665 }
1666 module_init(pch_spi_init);
1667
pch_spi_exit(void)1668 static void __exit pch_spi_exit(void)
1669 {
1670 pci_unregister_driver(&pch_spi_pcidev_driver);
1671 platform_driver_unregister(&pch_spi_pd_driver);
1672 }
1673 module_exit(pch_spi_exit);
1674
1675 module_param(use_dma, int, 0644);
1676 MODULE_PARM_DESC(use_dma,
1677 "to use DMA for data transfers pass 1 else 0; default 1");
1678
1679 MODULE_LICENSE("GPL");
1680 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1681 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1682
1683