1 /*
2  * SPI driver for Nvidia's Tegra20/Tegra30 SLINK Controller.
3  *
4  * Copyright (c) 2012, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/kthread.h>
31 #include <linux/module.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/spi/spi.h>
37 #include <linux/clk/tegra.h>
38 
39 #define SLINK_COMMAND			0x000
40 #define SLINK_BIT_LENGTH(x)		(((x) & 0x1f) << 0)
41 #define SLINK_WORD_SIZE(x)		(((x) & 0x1f) << 5)
42 #define SLINK_BOTH_EN			(1 << 10)
43 #define SLINK_CS_SW			(1 << 11)
44 #define SLINK_CS_VALUE			(1 << 12)
45 #define SLINK_CS_POLARITY		(1 << 13)
46 #define SLINK_IDLE_SDA_DRIVE_LOW	(0 << 16)
47 #define SLINK_IDLE_SDA_DRIVE_HIGH	(1 << 16)
48 #define SLINK_IDLE_SDA_PULL_LOW		(2 << 16)
49 #define SLINK_IDLE_SDA_PULL_HIGH	(3 << 16)
50 #define SLINK_IDLE_SDA_MASK		(3 << 16)
51 #define SLINK_CS_POLARITY1		(1 << 20)
52 #define SLINK_CK_SDA			(1 << 21)
53 #define SLINK_CS_POLARITY2		(1 << 22)
54 #define SLINK_CS_POLARITY3		(1 << 23)
55 #define SLINK_IDLE_SCLK_DRIVE_LOW	(0 << 24)
56 #define SLINK_IDLE_SCLK_DRIVE_HIGH	(1 << 24)
57 #define SLINK_IDLE_SCLK_PULL_LOW	(2 << 24)
58 #define SLINK_IDLE_SCLK_PULL_HIGH	(3 << 24)
59 #define SLINK_IDLE_SCLK_MASK		(3 << 24)
60 #define SLINK_M_S			(1 << 28)
61 #define SLINK_WAIT			(1 << 29)
62 #define SLINK_GO			(1 << 30)
63 #define SLINK_ENB			(1 << 31)
64 
65 #define SLINK_MODES			(SLINK_IDLE_SCLK_MASK | SLINK_CK_SDA)
66 
67 #define SLINK_COMMAND2			0x004
68 #define SLINK_LSBFE			(1 << 0)
69 #define SLINK_SSOE			(1 << 1)
70 #define SLINK_SPIE			(1 << 4)
71 #define SLINK_BIDIROE			(1 << 6)
72 #define SLINK_MODFEN			(1 << 7)
73 #define SLINK_INT_SIZE(x)		(((x) & 0x1f) << 8)
74 #define SLINK_CS_ACTIVE_BETWEEN		(1 << 17)
75 #define SLINK_SS_EN_CS(x)		(((x) & 0x3) << 18)
76 #define SLINK_SS_SETUP(x)		(((x) & 0x3) << 20)
77 #define SLINK_FIFO_REFILLS_0		(0 << 22)
78 #define SLINK_FIFO_REFILLS_1		(1 << 22)
79 #define SLINK_FIFO_REFILLS_2		(2 << 22)
80 #define SLINK_FIFO_REFILLS_3		(3 << 22)
81 #define SLINK_FIFO_REFILLS_MASK		(3 << 22)
82 #define SLINK_WAIT_PACK_INT(x)		(((x) & 0x7) << 26)
83 #define SLINK_SPC0			(1 << 29)
84 #define SLINK_TXEN			(1 << 30)
85 #define SLINK_RXEN			(1 << 31)
86 
87 #define SLINK_STATUS			0x008
88 #define SLINK_COUNT(val)		(((val) >> 0) & 0x1f)
89 #define SLINK_WORD(val)			(((val) >> 5) & 0x1f)
90 #define SLINK_BLK_CNT(val)		(((val) >> 0) & 0xffff)
91 #define SLINK_MODF			(1 << 16)
92 #define SLINK_RX_UNF			(1 << 18)
93 #define SLINK_TX_OVF			(1 << 19)
94 #define SLINK_TX_FULL			(1 << 20)
95 #define SLINK_TX_EMPTY			(1 << 21)
96 #define SLINK_RX_FULL			(1 << 22)
97 #define SLINK_RX_EMPTY			(1 << 23)
98 #define SLINK_TX_UNF			(1 << 24)
99 #define SLINK_RX_OVF			(1 << 25)
100 #define SLINK_TX_FLUSH			(1 << 26)
101 #define SLINK_RX_FLUSH			(1 << 27)
102 #define SLINK_SCLK			(1 << 28)
103 #define SLINK_ERR			(1 << 29)
104 #define SLINK_RDY			(1 << 30)
105 #define SLINK_BSY			(1 << 31)
106 #define SLINK_FIFO_ERROR		(SLINK_TX_OVF | SLINK_RX_UNF |	\
107 					SLINK_TX_UNF | SLINK_RX_OVF)
108 
109 #define SLINK_FIFO_EMPTY		(SLINK_TX_EMPTY | SLINK_RX_EMPTY)
110 
111 #define SLINK_MAS_DATA			0x010
112 #define SLINK_SLAVE_DATA		0x014
113 
114 #define SLINK_DMA_CTL			0x018
115 #define SLINK_DMA_BLOCK_SIZE(x)		(((x) & 0xffff) << 0)
116 #define SLINK_TX_TRIG_1			(0 << 16)
117 #define SLINK_TX_TRIG_4			(1 << 16)
118 #define SLINK_TX_TRIG_8			(2 << 16)
119 #define SLINK_TX_TRIG_16		(3 << 16)
120 #define SLINK_TX_TRIG_MASK		(3 << 16)
121 #define SLINK_RX_TRIG_1			(0 << 18)
122 #define SLINK_RX_TRIG_4			(1 << 18)
123 #define SLINK_RX_TRIG_8			(2 << 18)
124 #define SLINK_RX_TRIG_16		(3 << 18)
125 #define SLINK_RX_TRIG_MASK		(3 << 18)
126 #define SLINK_PACKED			(1 << 20)
127 #define SLINK_PACK_SIZE_4		(0 << 21)
128 #define SLINK_PACK_SIZE_8		(1 << 21)
129 #define SLINK_PACK_SIZE_16		(2 << 21)
130 #define SLINK_PACK_SIZE_32		(3 << 21)
131 #define SLINK_PACK_SIZE_MASK		(3 << 21)
132 #define SLINK_IE_TXC			(1 << 26)
133 #define SLINK_IE_RXC			(1 << 27)
134 #define SLINK_DMA_EN			(1 << 31)
135 
136 #define SLINK_STATUS2			0x01c
137 #define SLINK_TX_FIFO_EMPTY_COUNT(val)	(((val) & 0x3f) >> 0)
138 #define SLINK_RX_FIFO_FULL_COUNT(val)	(((val) & 0x3f0000) >> 16)
139 #define SLINK_SS_HOLD_TIME(val)		(((val) & 0xF) << 6)
140 
141 #define SLINK_TX_FIFO			0x100
142 #define SLINK_RX_FIFO			0x180
143 
144 #define DATA_DIR_TX			(1 << 0)
145 #define DATA_DIR_RX			(1 << 1)
146 
147 #define SLINK_DMA_TIMEOUT		(msecs_to_jiffies(1000))
148 
149 #define DEFAULT_SPI_DMA_BUF_LEN		(16*1024)
150 #define TX_FIFO_EMPTY_COUNT_MAX		SLINK_TX_FIFO_EMPTY_COUNT(0x20)
151 #define RX_FIFO_FULL_COUNT_ZERO		SLINK_RX_FIFO_FULL_COUNT(0)
152 
153 #define SLINK_STATUS2_RESET \
154 	(TX_FIFO_EMPTY_COUNT_MAX | RX_FIFO_FULL_COUNT_ZERO << 16)
155 
156 #define MAX_CHIP_SELECT			4
157 #define SLINK_FIFO_DEPTH		32
158 
159 struct tegra_slink_chip_data {
160 	bool cs_hold_time;
161 };
162 
163 struct tegra_slink_data {
164 	struct device				*dev;
165 	struct spi_master			*master;
166 	const struct tegra_slink_chip_data	*chip_data;
167 	spinlock_t				lock;
168 
169 	struct clk				*clk;
170 	void __iomem				*base;
171 	phys_addr_t				phys;
172 	unsigned				irq;
173 	int					dma_req_sel;
174 	u32					spi_max_frequency;
175 	u32					cur_speed;
176 
177 	struct spi_device			*cur_spi;
178 	unsigned				cur_pos;
179 	unsigned				cur_len;
180 	unsigned				words_per_32bit;
181 	unsigned				bytes_per_word;
182 	unsigned				curr_dma_words;
183 	unsigned				cur_direction;
184 
185 	unsigned				cur_rx_pos;
186 	unsigned				cur_tx_pos;
187 
188 	unsigned				dma_buf_size;
189 	unsigned				max_buf_size;
190 	bool					is_curr_dma_xfer;
191 
192 	struct completion			rx_dma_complete;
193 	struct completion			tx_dma_complete;
194 
195 	u32					tx_status;
196 	u32					rx_status;
197 	u32					status_reg;
198 	bool					is_packed;
199 	unsigned long				packed_size;
200 
201 	u32					command_reg;
202 	u32					command2_reg;
203 	u32					dma_control_reg;
204 	u32					def_command_reg;
205 	u32					def_command2_reg;
206 
207 	struct completion			xfer_completion;
208 	struct spi_transfer			*curr_xfer;
209 	struct dma_chan				*rx_dma_chan;
210 	u32					*rx_dma_buf;
211 	dma_addr_t				rx_dma_phys;
212 	struct dma_async_tx_descriptor		*rx_dma_desc;
213 
214 	struct dma_chan				*tx_dma_chan;
215 	u32					*tx_dma_buf;
216 	dma_addr_t				tx_dma_phys;
217 	struct dma_async_tx_descriptor		*tx_dma_desc;
218 };
219 
220 static int tegra_slink_runtime_suspend(struct device *dev);
221 static int tegra_slink_runtime_resume(struct device *dev);
222 
223 static inline unsigned long tegra_slink_readl(struct tegra_slink_data *tspi,
224 		unsigned long reg)
225 {
226 	return readl(tspi->base + reg);
227 }
228 
229 static inline void tegra_slink_writel(struct tegra_slink_data *tspi,
230 		unsigned long val, unsigned long reg)
231 {
232 	writel(val, tspi->base + reg);
233 
234 	/* Read back register to make sure that register writes completed */
235 	if (reg != SLINK_TX_FIFO)
236 		readl(tspi->base + SLINK_MAS_DATA);
237 }
238 
239 static void tegra_slink_clear_status(struct tegra_slink_data *tspi)
240 {
241 	unsigned long val;
242 	unsigned long val_write = 0;
243 
244 	val = tegra_slink_readl(tspi, SLINK_STATUS);
245 
246 	/* Write 1 to clear status register */
247 	val_write = SLINK_RDY | SLINK_FIFO_ERROR;
248 	tegra_slink_writel(tspi, val_write, SLINK_STATUS);
249 }
250 
251 static unsigned long tegra_slink_get_packed_size(struct tegra_slink_data *tspi,
252 				  struct spi_transfer *t)
253 {
254 	unsigned long val;
255 
256 	switch (tspi->bytes_per_word) {
257 	case 0:
258 		val = SLINK_PACK_SIZE_4;
259 		break;
260 	case 1:
261 		val = SLINK_PACK_SIZE_8;
262 		break;
263 	case 2:
264 		val = SLINK_PACK_SIZE_16;
265 		break;
266 	case 4:
267 		val = SLINK_PACK_SIZE_32;
268 		break;
269 	default:
270 		val = 0;
271 	}
272 	return val;
273 }
274 
275 static unsigned tegra_slink_calculate_curr_xfer_param(
276 	struct spi_device *spi, struct tegra_slink_data *tspi,
277 	struct spi_transfer *t)
278 {
279 	unsigned remain_len = t->len - tspi->cur_pos;
280 	unsigned max_word;
281 	unsigned bits_per_word ;
282 	unsigned max_len;
283 	unsigned total_fifo_words;
284 
285 	bits_per_word = t->bits_per_word;
286 	tspi->bytes_per_word = (bits_per_word - 1) / 8 + 1;
287 
288 	if (bits_per_word == 8 || bits_per_word == 16) {
289 		tspi->is_packed = 1;
290 		tspi->words_per_32bit = 32/bits_per_word;
291 	} else {
292 		tspi->is_packed = 0;
293 		tspi->words_per_32bit = 1;
294 	}
295 	tspi->packed_size = tegra_slink_get_packed_size(tspi, t);
296 
297 	if (tspi->is_packed) {
298 		max_len = min(remain_len, tspi->max_buf_size);
299 		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
300 		total_fifo_words = max_len/4;
301 	} else {
302 		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
303 		max_word = min(max_word, tspi->max_buf_size/4);
304 		tspi->curr_dma_words = max_word;
305 		total_fifo_words = max_word;
306 	}
307 	return total_fifo_words;
308 }
309 
310 static unsigned tegra_slink_fill_tx_fifo_from_client_txbuf(
311 	struct tegra_slink_data *tspi, struct spi_transfer *t)
312 {
313 	unsigned nbytes;
314 	unsigned tx_empty_count;
315 	unsigned long fifo_status;
316 	unsigned max_n_32bit;
317 	unsigned i, count;
318 	unsigned long x;
319 	unsigned int written_words;
320 	unsigned fifo_words_left;
321 	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
322 
323 	fifo_status = tegra_slink_readl(tspi, SLINK_STATUS2);
324 	tx_empty_count = SLINK_TX_FIFO_EMPTY_COUNT(fifo_status);
325 
326 	if (tspi->is_packed) {
327 		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
328 		written_words = min(fifo_words_left, tspi->curr_dma_words);
329 		nbytes = written_words * tspi->bytes_per_word;
330 		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
331 		for (count = 0; count < max_n_32bit; count++) {
332 			x = 0;
333 			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
334 				x |= (*tx_buf++) << (i*8);
335 			tegra_slink_writel(tspi, x, SLINK_TX_FIFO);
336 		}
337 	} else {
338 		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
339 		written_words = max_n_32bit;
340 		nbytes = written_words * tspi->bytes_per_word;
341 		for (count = 0; count < max_n_32bit; count++) {
342 			x = 0;
343 			for (i = 0; nbytes && (i < tspi->bytes_per_word);
344 							i++, nbytes--)
345 				x |= ((*tx_buf++) << i*8);
346 			tegra_slink_writel(tspi, x, SLINK_TX_FIFO);
347 		}
348 	}
349 	tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
350 	return written_words;
351 }
352 
353 static unsigned int tegra_slink_read_rx_fifo_to_client_rxbuf(
354 		struct tegra_slink_data *tspi, struct spi_transfer *t)
355 {
356 	unsigned rx_full_count;
357 	unsigned long fifo_status;
358 	unsigned i, count;
359 	unsigned long x;
360 	unsigned int read_words = 0;
361 	unsigned len;
362 	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
363 
364 	fifo_status = tegra_slink_readl(tspi, SLINK_STATUS2);
365 	rx_full_count = SLINK_RX_FIFO_FULL_COUNT(fifo_status);
366 	if (tspi->is_packed) {
367 		len = tspi->curr_dma_words * tspi->bytes_per_word;
368 		for (count = 0; count < rx_full_count; count++) {
369 			x = tegra_slink_readl(tspi, SLINK_RX_FIFO);
370 			for (i = 0; len && (i < 4); i++, len--)
371 				*rx_buf++ = (x >> i*8) & 0xFF;
372 		}
373 		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
374 		read_words += tspi->curr_dma_words;
375 	} else {
376 		for (count = 0; count < rx_full_count; count++) {
377 			x = tegra_slink_readl(tspi, SLINK_RX_FIFO);
378 			for (i = 0; (i < tspi->bytes_per_word); i++)
379 				*rx_buf++ = (x >> (i*8)) & 0xFF;
380 		}
381 		tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
382 		read_words += rx_full_count;
383 	}
384 	return read_words;
385 }
386 
387 static void tegra_slink_copy_client_txbuf_to_spi_txbuf(
388 		struct tegra_slink_data *tspi, struct spi_transfer *t)
389 {
390 	unsigned len;
391 
392 	/* Make the dma buffer to read by cpu */
393 	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
394 				tspi->dma_buf_size, DMA_TO_DEVICE);
395 
396 	if (tspi->is_packed) {
397 		len = tspi->curr_dma_words * tspi->bytes_per_word;
398 		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
399 	} else {
400 		unsigned int i;
401 		unsigned int count;
402 		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
403 		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
404 		unsigned int x;
405 
406 		for (count = 0; count < tspi->curr_dma_words; count++) {
407 			x = 0;
408 			for (i = 0; consume && (i < tspi->bytes_per_word);
409 							i++, consume--)
410 				x |= ((*tx_buf++) << i * 8);
411 			tspi->tx_dma_buf[count] = x;
412 		}
413 	}
414 	tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
415 
416 	/* Make the dma buffer to read by dma */
417 	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
418 				tspi->dma_buf_size, DMA_TO_DEVICE);
419 }
420 
421 static void tegra_slink_copy_spi_rxbuf_to_client_rxbuf(
422 		struct tegra_slink_data *tspi, struct spi_transfer *t)
423 {
424 	unsigned len;
425 
426 	/* Make the dma buffer to read by cpu */
427 	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
428 		tspi->dma_buf_size, DMA_FROM_DEVICE);
429 
430 	if (tspi->is_packed) {
431 		len = tspi->curr_dma_words * tspi->bytes_per_word;
432 		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
433 	} else {
434 		unsigned int i;
435 		unsigned int count;
436 		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
437 		unsigned int x;
438 		unsigned int rx_mask, bits_per_word;
439 
440 		bits_per_word = t->bits_per_word;
441 		rx_mask = (1 << bits_per_word) - 1;
442 		for (count = 0; count < tspi->curr_dma_words; count++) {
443 			x = tspi->rx_dma_buf[count];
444 			x &= rx_mask;
445 			for (i = 0; (i < tspi->bytes_per_word); i++)
446 				*rx_buf++ = (x >> (i*8)) & 0xFF;
447 		}
448 	}
449 	tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
450 
451 	/* Make the dma buffer to read by dma */
452 	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
453 		tspi->dma_buf_size, DMA_FROM_DEVICE);
454 }
455 
456 static void tegra_slink_dma_complete(void *args)
457 {
458 	struct completion *dma_complete = args;
459 
460 	complete(dma_complete);
461 }
462 
463 static int tegra_slink_start_tx_dma(struct tegra_slink_data *tspi, int len)
464 {
465 	INIT_COMPLETION(tspi->tx_dma_complete);
466 	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
467 				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
468 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
469 	if (!tspi->tx_dma_desc) {
470 		dev_err(tspi->dev, "Not able to get desc for Tx\n");
471 		return -EIO;
472 	}
473 
474 	tspi->tx_dma_desc->callback = tegra_slink_dma_complete;
475 	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
476 
477 	dmaengine_submit(tspi->tx_dma_desc);
478 	dma_async_issue_pending(tspi->tx_dma_chan);
479 	return 0;
480 }
481 
482 static int tegra_slink_start_rx_dma(struct tegra_slink_data *tspi, int len)
483 {
484 	INIT_COMPLETION(tspi->rx_dma_complete);
485 	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
486 				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
487 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
488 	if (!tspi->rx_dma_desc) {
489 		dev_err(tspi->dev, "Not able to get desc for Rx\n");
490 		return -EIO;
491 	}
492 
493 	tspi->rx_dma_desc->callback = tegra_slink_dma_complete;
494 	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
495 
496 	dmaengine_submit(tspi->rx_dma_desc);
497 	dma_async_issue_pending(tspi->rx_dma_chan);
498 	return 0;
499 }
500 
501 static int tegra_slink_start_dma_based_transfer(
502 		struct tegra_slink_data *tspi, struct spi_transfer *t)
503 {
504 	unsigned long val;
505 	unsigned long test_val;
506 	unsigned int len;
507 	int ret = 0;
508 	unsigned long status;
509 
510 	/* Make sure that Rx and Tx fifo are empty */
511 	status = tegra_slink_readl(tspi, SLINK_STATUS);
512 	if ((status & SLINK_FIFO_EMPTY) != SLINK_FIFO_EMPTY) {
513 		dev_err(tspi->dev,
514 			"Rx/Tx fifo are not empty status 0x%08lx\n", status);
515 		return -EIO;
516 	}
517 
518 	val = SLINK_DMA_BLOCK_SIZE(tspi->curr_dma_words - 1);
519 	val |= tspi->packed_size;
520 	if (tspi->is_packed)
521 		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
522 					4) * 4;
523 	else
524 		len = tspi->curr_dma_words * 4;
525 
526 	/* Set attention level based on length of transfer */
527 	if (len & 0xF)
528 		val |= SLINK_TX_TRIG_1 | SLINK_RX_TRIG_1;
529 	else if (((len) >> 4) & 0x1)
530 		val |= SLINK_TX_TRIG_4 | SLINK_RX_TRIG_4;
531 	else
532 		val |= SLINK_TX_TRIG_8 | SLINK_RX_TRIG_8;
533 
534 	if (tspi->cur_direction & DATA_DIR_TX)
535 		val |= SLINK_IE_TXC;
536 
537 	if (tspi->cur_direction & DATA_DIR_RX)
538 		val |= SLINK_IE_RXC;
539 
540 	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
541 	tspi->dma_control_reg = val;
542 
543 	if (tspi->cur_direction & DATA_DIR_TX) {
544 		tegra_slink_copy_client_txbuf_to_spi_txbuf(tspi, t);
545 		wmb();
546 		ret = tegra_slink_start_tx_dma(tspi, len);
547 		if (ret < 0) {
548 			dev_err(tspi->dev,
549 				"Starting tx dma failed, err %d\n", ret);
550 			return ret;
551 		}
552 
553 		/* Wait for tx fifo to be fill before starting slink */
554 		test_val = tegra_slink_readl(tspi, SLINK_STATUS);
555 		while (!(test_val & SLINK_TX_FULL))
556 			test_val = tegra_slink_readl(tspi, SLINK_STATUS);
557 	}
558 
559 	if (tspi->cur_direction & DATA_DIR_RX) {
560 		/* Make the dma buffer to read by dma */
561 		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
562 				tspi->dma_buf_size, DMA_FROM_DEVICE);
563 
564 		ret = tegra_slink_start_rx_dma(tspi, len);
565 		if (ret < 0) {
566 			dev_err(tspi->dev,
567 				"Starting rx dma failed, err %d\n", ret);
568 			if (tspi->cur_direction & DATA_DIR_TX)
569 				dmaengine_terminate_all(tspi->tx_dma_chan);
570 			return ret;
571 		}
572 	}
573 	tspi->is_curr_dma_xfer = true;
574 	if (tspi->is_packed) {
575 		val |= SLINK_PACKED;
576 		tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
577 		/* HW need small delay after settign Packed mode */
578 		udelay(1);
579 	}
580 	tspi->dma_control_reg = val;
581 
582 	val |= SLINK_DMA_EN;
583 	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
584 	return ret;
585 }
586 
587 static int tegra_slink_start_cpu_based_transfer(
588 		struct tegra_slink_data *tspi, struct spi_transfer *t)
589 {
590 	unsigned long val;
591 	unsigned cur_words;
592 
593 	val = tspi->packed_size;
594 	if (tspi->cur_direction & DATA_DIR_TX)
595 		val |= SLINK_IE_TXC;
596 
597 	if (tspi->cur_direction & DATA_DIR_RX)
598 		val |= SLINK_IE_RXC;
599 
600 	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
601 	tspi->dma_control_reg = val;
602 
603 	if (tspi->cur_direction & DATA_DIR_TX)
604 		cur_words = tegra_slink_fill_tx_fifo_from_client_txbuf(tspi, t);
605 	else
606 		cur_words = tspi->curr_dma_words;
607 	val |= SLINK_DMA_BLOCK_SIZE(cur_words - 1);
608 	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
609 	tspi->dma_control_reg = val;
610 
611 	tspi->is_curr_dma_xfer = false;
612 	if (tspi->is_packed) {
613 		val |= SLINK_PACKED;
614 		tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
615 		udelay(1);
616 		wmb();
617 	}
618 	tspi->dma_control_reg = val;
619 	val |= SLINK_DMA_EN;
620 	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
621 	return 0;
622 }
623 
624 static int tegra_slink_init_dma_param(struct tegra_slink_data *tspi,
625 			bool dma_to_memory)
626 {
627 	struct dma_chan *dma_chan;
628 	u32 *dma_buf;
629 	dma_addr_t dma_phys;
630 	int ret;
631 	struct dma_slave_config dma_sconfig;
632 	dma_cap_mask_t mask;
633 
634 	dma_cap_zero(mask);
635 	dma_cap_set(DMA_SLAVE, mask);
636 	dma_chan = dma_request_channel(mask, NULL, NULL);
637 	if (!dma_chan) {
638 		dev_err(tspi->dev,
639 			"Dma channel is not available, will try later\n");
640 		return -EPROBE_DEFER;
641 	}
642 
643 	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
644 				&dma_phys, GFP_KERNEL);
645 	if (!dma_buf) {
646 		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
647 		dma_release_channel(dma_chan);
648 		return -ENOMEM;
649 	}
650 
651 	dma_sconfig.slave_id = tspi->dma_req_sel;
652 	if (dma_to_memory) {
653 		dma_sconfig.src_addr = tspi->phys + SLINK_RX_FIFO;
654 		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
655 		dma_sconfig.src_maxburst = 0;
656 	} else {
657 		dma_sconfig.dst_addr = tspi->phys + SLINK_TX_FIFO;
658 		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
659 		dma_sconfig.dst_maxburst = 0;
660 	}
661 
662 	ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
663 	if (ret)
664 		goto scrub;
665 	if (dma_to_memory) {
666 		tspi->rx_dma_chan = dma_chan;
667 		tspi->rx_dma_buf = dma_buf;
668 		tspi->rx_dma_phys = dma_phys;
669 	} else {
670 		tspi->tx_dma_chan = dma_chan;
671 		tspi->tx_dma_buf = dma_buf;
672 		tspi->tx_dma_phys = dma_phys;
673 	}
674 	return 0;
675 
676 scrub:
677 	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
678 	dma_release_channel(dma_chan);
679 	return ret;
680 }
681 
682 static void tegra_slink_deinit_dma_param(struct tegra_slink_data *tspi,
683 	bool dma_to_memory)
684 {
685 	u32 *dma_buf;
686 	dma_addr_t dma_phys;
687 	struct dma_chan *dma_chan;
688 
689 	if (dma_to_memory) {
690 		dma_buf = tspi->rx_dma_buf;
691 		dma_chan = tspi->rx_dma_chan;
692 		dma_phys = tspi->rx_dma_phys;
693 		tspi->rx_dma_chan = NULL;
694 		tspi->rx_dma_buf = NULL;
695 	} else {
696 		dma_buf = tspi->tx_dma_buf;
697 		dma_chan = tspi->tx_dma_chan;
698 		dma_phys = tspi->tx_dma_phys;
699 		tspi->tx_dma_buf = NULL;
700 		tspi->tx_dma_chan = NULL;
701 	}
702 	if (!dma_chan)
703 		return;
704 
705 	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
706 	dma_release_channel(dma_chan);
707 }
708 
709 static int tegra_slink_start_transfer_one(struct spi_device *spi,
710 		struct spi_transfer *t, bool is_first_of_msg,
711 		bool is_single_xfer)
712 {
713 	struct tegra_slink_data *tspi = spi_master_get_devdata(spi->master);
714 	u32 speed;
715 	u8 bits_per_word;
716 	unsigned total_fifo_words;
717 	int ret;
718 	unsigned long command;
719 	unsigned long command2;
720 
721 	bits_per_word = t->bits_per_word;
722 	speed = t->speed_hz;
723 	if (speed != tspi->cur_speed) {
724 		clk_set_rate(tspi->clk, speed * 4);
725 		tspi->cur_speed = speed;
726 	}
727 
728 	tspi->cur_spi = spi;
729 	tspi->cur_pos = 0;
730 	tspi->cur_rx_pos = 0;
731 	tspi->cur_tx_pos = 0;
732 	tspi->curr_xfer = t;
733 	total_fifo_words = tegra_slink_calculate_curr_xfer_param(spi, tspi, t);
734 
735 	if (is_first_of_msg) {
736 		tegra_slink_clear_status(tspi);
737 
738 		command = tspi->def_command_reg;
739 		command |= SLINK_BIT_LENGTH(bits_per_word - 1);
740 		command |= SLINK_CS_SW | SLINK_CS_VALUE;
741 
742 		command2 = tspi->def_command2_reg;
743 		command2 |= SLINK_SS_EN_CS(spi->chip_select);
744 
745 		command &= ~SLINK_MODES;
746 		if (spi->mode & SPI_CPHA)
747 			command |= SLINK_CK_SDA;
748 
749 		if (spi->mode & SPI_CPOL)
750 			command |= SLINK_IDLE_SCLK_DRIVE_HIGH;
751 		else
752 			command |= SLINK_IDLE_SCLK_DRIVE_LOW;
753 	} else {
754 		command = tspi->command_reg;
755 		command &= ~SLINK_BIT_LENGTH(~0);
756 		command |= SLINK_BIT_LENGTH(bits_per_word - 1);
757 
758 		command2 = tspi->command2_reg;
759 		command2 &= ~(SLINK_RXEN | SLINK_TXEN);
760 	}
761 
762 	tegra_slink_writel(tspi, command, SLINK_COMMAND);
763 	tspi->command_reg = command;
764 
765 	tspi->cur_direction = 0;
766 	if (t->rx_buf) {
767 		command2 |= SLINK_RXEN;
768 		tspi->cur_direction |= DATA_DIR_RX;
769 	}
770 	if (t->tx_buf) {
771 		command2 |= SLINK_TXEN;
772 		tspi->cur_direction |= DATA_DIR_TX;
773 	}
774 	tegra_slink_writel(tspi, command2, SLINK_COMMAND2);
775 	tspi->command2_reg = command2;
776 
777 	if (total_fifo_words > SLINK_FIFO_DEPTH)
778 		ret = tegra_slink_start_dma_based_transfer(tspi, t);
779 	else
780 		ret = tegra_slink_start_cpu_based_transfer(tspi, t);
781 	return ret;
782 }
783 
784 static int tegra_slink_setup(struct spi_device *spi)
785 {
786 	struct tegra_slink_data *tspi = spi_master_get_devdata(spi->master);
787 	unsigned long val;
788 	unsigned long flags;
789 	int ret;
790 	unsigned int cs_pol_bit[MAX_CHIP_SELECT] = {
791 			SLINK_CS_POLARITY,
792 			SLINK_CS_POLARITY1,
793 			SLINK_CS_POLARITY2,
794 			SLINK_CS_POLARITY3,
795 	};
796 
797 	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
798 		spi->bits_per_word,
799 		spi->mode & SPI_CPOL ? "" : "~",
800 		spi->mode & SPI_CPHA ? "" : "~",
801 		spi->max_speed_hz);
802 
803 	BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);
804 
805 	/* Set speed to the spi max fequency if spi device has not set */
806 	spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency;
807 	ret = pm_runtime_get_sync(tspi->dev);
808 	if (ret < 0) {
809 		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
810 		return ret;
811 	}
812 
813 	spin_lock_irqsave(&tspi->lock, flags);
814 	val = tspi->def_command_reg;
815 	if (spi->mode & SPI_CS_HIGH)
816 		val |= cs_pol_bit[spi->chip_select];
817 	else
818 		val &= ~cs_pol_bit[spi->chip_select];
819 	tspi->def_command_reg = val;
820 	tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
821 	spin_unlock_irqrestore(&tspi->lock, flags);
822 
823 	pm_runtime_put(tspi->dev);
824 	return 0;
825 }
826 
827 static int tegra_slink_transfer_one_message(struct spi_master *master,
828 			struct spi_message *msg)
829 {
830 	bool is_first_msg = true;
831 	int single_xfer;
832 	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
833 	struct spi_transfer *xfer;
834 	struct spi_device *spi = msg->spi;
835 	int ret;
836 
837 	msg->status = 0;
838 	msg->actual_length = 0;
839 
840 	single_xfer = list_is_singular(&msg->transfers);
841 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
842 		INIT_COMPLETION(tspi->xfer_completion);
843 		ret = tegra_slink_start_transfer_one(spi, xfer,
844 					is_first_msg, single_xfer);
845 		if (ret < 0) {
846 			dev_err(tspi->dev,
847 				"spi can not start transfer, err %d\n", ret);
848 			goto exit;
849 		}
850 		is_first_msg = false;
851 		ret = wait_for_completion_timeout(&tspi->xfer_completion,
852 						SLINK_DMA_TIMEOUT);
853 		if (WARN_ON(ret == 0)) {
854 			dev_err(tspi->dev,
855 				"spi trasfer timeout, err %d\n", ret);
856 			ret = -EIO;
857 			goto exit;
858 		}
859 
860 		if (tspi->tx_status ||  tspi->rx_status) {
861 			dev_err(tspi->dev, "Error in Transfer\n");
862 			ret = -EIO;
863 			goto exit;
864 		}
865 		msg->actual_length += xfer->len;
866 		if (xfer->cs_change && xfer->delay_usecs) {
867 			tegra_slink_writel(tspi, tspi->def_command_reg,
868 					SLINK_COMMAND);
869 			udelay(xfer->delay_usecs);
870 		}
871 	}
872 	ret = 0;
873 exit:
874 	tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
875 	tegra_slink_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2);
876 	msg->status = ret;
877 	spi_finalize_current_message(master);
878 	return ret;
879 }
880 
881 static irqreturn_t handle_cpu_based_xfer(struct tegra_slink_data *tspi)
882 {
883 	struct spi_transfer *t = tspi->curr_xfer;
884 	unsigned long flags;
885 
886 	spin_lock_irqsave(&tspi->lock, flags);
887 	if (tspi->tx_status ||  tspi->rx_status ||
888 				(tspi->status_reg & SLINK_BSY)) {
889 		dev_err(tspi->dev,
890 			"CpuXfer ERROR bit set 0x%x\n", tspi->status_reg);
891 		dev_err(tspi->dev,
892 			"CpuXfer 0x%08x:0x%08x:0x%08x\n", tspi->command_reg,
893 				tspi->command2_reg, tspi->dma_control_reg);
894 		tegra_periph_reset_assert(tspi->clk);
895 		udelay(2);
896 		tegra_periph_reset_deassert(tspi->clk);
897 		complete(&tspi->xfer_completion);
898 		goto exit;
899 	}
900 
901 	if (tspi->cur_direction & DATA_DIR_RX)
902 		tegra_slink_read_rx_fifo_to_client_rxbuf(tspi, t);
903 
904 	if (tspi->cur_direction & DATA_DIR_TX)
905 		tspi->cur_pos = tspi->cur_tx_pos;
906 	else
907 		tspi->cur_pos = tspi->cur_rx_pos;
908 
909 	if (tspi->cur_pos == t->len) {
910 		complete(&tspi->xfer_completion);
911 		goto exit;
912 	}
913 
914 	tegra_slink_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
915 	tegra_slink_start_cpu_based_transfer(tspi, t);
916 exit:
917 	spin_unlock_irqrestore(&tspi->lock, flags);
918 	return IRQ_HANDLED;
919 }
920 
921 static irqreturn_t handle_dma_based_xfer(struct tegra_slink_data *tspi)
922 {
923 	struct spi_transfer *t = tspi->curr_xfer;
924 	long wait_status;
925 	int err = 0;
926 	unsigned total_fifo_words;
927 	unsigned long flags;
928 
929 	/* Abort dmas if any error */
930 	if (tspi->cur_direction & DATA_DIR_TX) {
931 		if (tspi->tx_status) {
932 			dmaengine_terminate_all(tspi->tx_dma_chan);
933 			err += 1;
934 		} else {
935 			wait_status = wait_for_completion_interruptible_timeout(
936 				&tspi->tx_dma_complete, SLINK_DMA_TIMEOUT);
937 			if (wait_status <= 0) {
938 				dmaengine_terminate_all(tspi->tx_dma_chan);
939 				dev_err(tspi->dev, "TxDma Xfer failed\n");
940 				err += 1;
941 			}
942 		}
943 	}
944 
945 	if (tspi->cur_direction & DATA_DIR_RX) {
946 		if (tspi->rx_status) {
947 			dmaengine_terminate_all(tspi->rx_dma_chan);
948 			err += 2;
949 		} else {
950 			wait_status = wait_for_completion_interruptible_timeout(
951 				&tspi->rx_dma_complete, SLINK_DMA_TIMEOUT);
952 			if (wait_status <= 0) {
953 				dmaengine_terminate_all(tspi->rx_dma_chan);
954 				dev_err(tspi->dev, "RxDma Xfer failed\n");
955 				err += 2;
956 			}
957 		}
958 	}
959 
960 	spin_lock_irqsave(&tspi->lock, flags);
961 	if (err) {
962 		dev_err(tspi->dev,
963 			"DmaXfer: ERROR bit set 0x%x\n", tspi->status_reg);
964 		dev_err(tspi->dev,
965 			"DmaXfer 0x%08x:0x%08x:0x%08x\n", tspi->command_reg,
966 				tspi->command2_reg, tspi->dma_control_reg);
967 		tegra_periph_reset_assert(tspi->clk);
968 		udelay(2);
969 		tegra_periph_reset_deassert(tspi->clk);
970 		complete(&tspi->xfer_completion);
971 		spin_unlock_irqrestore(&tspi->lock, flags);
972 		return IRQ_HANDLED;
973 	}
974 
975 	if (tspi->cur_direction & DATA_DIR_RX)
976 		tegra_slink_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
977 
978 	if (tspi->cur_direction & DATA_DIR_TX)
979 		tspi->cur_pos = tspi->cur_tx_pos;
980 	else
981 		tspi->cur_pos = tspi->cur_rx_pos;
982 
983 	if (tspi->cur_pos == t->len) {
984 		complete(&tspi->xfer_completion);
985 		goto exit;
986 	}
987 
988 	/* Continue transfer in current message */
989 	total_fifo_words = tegra_slink_calculate_curr_xfer_param(tspi->cur_spi,
990 							tspi, t);
991 	if (total_fifo_words > SLINK_FIFO_DEPTH)
992 		err = tegra_slink_start_dma_based_transfer(tspi, t);
993 	else
994 		err = tegra_slink_start_cpu_based_transfer(tspi, t);
995 
996 exit:
997 	spin_unlock_irqrestore(&tspi->lock, flags);
998 	return IRQ_HANDLED;
999 }
1000 
1001 static irqreturn_t tegra_slink_isr_thread(int irq, void *context_data)
1002 {
1003 	struct tegra_slink_data *tspi = context_data;
1004 
1005 	if (!tspi->is_curr_dma_xfer)
1006 		return handle_cpu_based_xfer(tspi);
1007 	return handle_dma_based_xfer(tspi);
1008 }
1009 
1010 static irqreturn_t tegra_slink_isr(int irq, void *context_data)
1011 {
1012 	struct tegra_slink_data *tspi = context_data;
1013 
1014 	tspi->status_reg = tegra_slink_readl(tspi, SLINK_STATUS);
1015 	if (tspi->cur_direction & DATA_DIR_TX)
1016 		tspi->tx_status = tspi->status_reg &
1017 					(SLINK_TX_OVF | SLINK_TX_UNF);
1018 
1019 	if (tspi->cur_direction & DATA_DIR_RX)
1020 		tspi->rx_status = tspi->status_reg &
1021 					(SLINK_RX_OVF | SLINK_RX_UNF);
1022 	tegra_slink_clear_status(tspi);
1023 
1024 	return IRQ_WAKE_THREAD;
1025 }
1026 
1027 static void tegra_slink_parse_dt(struct tegra_slink_data *tspi)
1028 {
1029 	struct device_node *np = tspi->dev->of_node;
1030 	u32 of_dma[2];
1031 
1032 	if (of_property_read_u32_array(np, "nvidia,dma-request-selector",
1033 				of_dma, 2) >= 0)
1034 		tspi->dma_req_sel = of_dma[1];
1035 
1036 	if (of_property_read_u32(np, "spi-max-frequency",
1037 					&tspi->spi_max_frequency))
1038 		tspi->spi_max_frequency = 25000000; /* 25MHz */
1039 }
1040 
1041 static const struct tegra_slink_chip_data tegra30_spi_cdata = {
1042 	.cs_hold_time = true,
1043 };
1044 
1045 static const struct tegra_slink_chip_data tegra20_spi_cdata = {
1046 	.cs_hold_time = false,
1047 };
1048 
1049 static struct of_device_id tegra_slink_of_match[] = {
1050 	{ .compatible = "nvidia,tegra30-slink", .data = &tegra30_spi_cdata, },
1051 	{ .compatible = "nvidia,tegra20-slink", .data = &tegra20_spi_cdata, },
1052 	{}
1053 };
1054 MODULE_DEVICE_TABLE(of, tegra_slink_of_match);
1055 
1056 static int tegra_slink_probe(struct platform_device *pdev)
1057 {
1058 	struct spi_master	*master;
1059 	struct tegra_slink_data	*tspi;
1060 	struct resource		*r;
1061 	int ret, spi_irq;
1062 	const struct tegra_slink_chip_data *cdata = NULL;
1063 	const struct of_device_id *match;
1064 
1065 	match = of_match_device(tegra_slink_of_match, &pdev->dev);
1066 	if (!match) {
1067 		dev_err(&pdev->dev, "Error: No device match found\n");
1068 		return -ENODEV;
1069 	}
1070 	cdata = match->data;
1071 
1072 	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1073 	if (!master) {
1074 		dev_err(&pdev->dev, "master allocation failed\n");
1075 		return -ENOMEM;
1076 	}
1077 
1078 	/* the spi->mode bits understood by this driver: */
1079 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1080 	master->setup = tegra_slink_setup;
1081 	master->transfer_one_message = tegra_slink_transfer_one_message;
1082 	master->auto_runtime_pm = true;
1083 	master->num_chipselect = MAX_CHIP_SELECT;
1084 	master->bus_num = -1;
1085 
1086 	platform_set_drvdata(pdev, master);
1087 	tspi = spi_master_get_devdata(master);
1088 	tspi->master = master;
1089 	tspi->dev = &pdev->dev;
1090 	tspi->chip_data = cdata;
1091 	spin_lock_init(&tspi->lock);
1092 
1093 	tegra_slink_parse_dt(tspi);
1094 
1095 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1096 	if (!r) {
1097 		dev_err(&pdev->dev, "No IO memory resource\n");
1098 		ret = -ENODEV;
1099 		goto exit_free_master;
1100 	}
1101 	tspi->phys = r->start;
1102 	tspi->base = devm_ioremap_resource(&pdev->dev, r);
1103 	if (IS_ERR(tspi->base)) {
1104 		ret = PTR_ERR(tspi->base);
1105 		goto exit_free_master;
1106 	}
1107 
1108 	spi_irq = platform_get_irq(pdev, 0);
1109 	tspi->irq = spi_irq;
1110 	ret = request_threaded_irq(tspi->irq, tegra_slink_isr,
1111 			tegra_slink_isr_thread, IRQF_ONESHOT,
1112 			dev_name(&pdev->dev), tspi);
1113 	if (ret < 0) {
1114 		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1115 					tspi->irq);
1116 		goto exit_free_master;
1117 	}
1118 
1119 	tspi->clk = devm_clk_get(&pdev->dev, NULL);
1120 	if (IS_ERR(tspi->clk)) {
1121 		dev_err(&pdev->dev, "can not get clock\n");
1122 		ret = PTR_ERR(tspi->clk);
1123 		goto exit_free_irq;
1124 	}
1125 
1126 	tspi->max_buf_size = SLINK_FIFO_DEPTH << 2;
1127 	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1128 
1129 	if (tspi->dma_req_sel) {
1130 		ret = tegra_slink_init_dma_param(tspi, true);
1131 		if (ret < 0) {
1132 			dev_err(&pdev->dev, "RxDma Init failed, err %d\n", ret);
1133 			goto exit_free_irq;
1134 		}
1135 
1136 		ret = tegra_slink_init_dma_param(tspi, false);
1137 		if (ret < 0) {
1138 			dev_err(&pdev->dev, "TxDma Init failed, err %d\n", ret);
1139 			goto exit_rx_dma_free;
1140 		}
1141 		tspi->max_buf_size = tspi->dma_buf_size;
1142 		init_completion(&tspi->tx_dma_complete);
1143 		init_completion(&tspi->rx_dma_complete);
1144 	}
1145 
1146 	init_completion(&tspi->xfer_completion);
1147 
1148 	pm_runtime_enable(&pdev->dev);
1149 	if (!pm_runtime_enabled(&pdev->dev)) {
1150 		ret = tegra_slink_runtime_resume(&pdev->dev);
1151 		if (ret)
1152 			goto exit_pm_disable;
1153 	}
1154 
1155 	ret = pm_runtime_get_sync(&pdev->dev);
1156 	if (ret < 0) {
1157 		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1158 		goto exit_pm_disable;
1159 	}
1160 	tspi->def_command_reg  = SLINK_M_S;
1161 	tspi->def_command2_reg = SLINK_CS_ACTIVE_BETWEEN;
1162 	tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
1163 	tegra_slink_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2);
1164 	pm_runtime_put(&pdev->dev);
1165 
1166 	master->dev.of_node = pdev->dev.of_node;
1167 	ret = spi_register_master(master);
1168 	if (ret < 0) {
1169 		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1170 		goto exit_pm_disable;
1171 	}
1172 	return ret;
1173 
1174 exit_pm_disable:
1175 	pm_runtime_disable(&pdev->dev);
1176 	if (!pm_runtime_status_suspended(&pdev->dev))
1177 		tegra_slink_runtime_suspend(&pdev->dev);
1178 	tegra_slink_deinit_dma_param(tspi, false);
1179 exit_rx_dma_free:
1180 	tegra_slink_deinit_dma_param(tspi, true);
1181 exit_free_irq:
1182 	free_irq(spi_irq, tspi);
1183 exit_free_master:
1184 	spi_master_put(master);
1185 	return ret;
1186 }
1187 
1188 static int tegra_slink_remove(struct platform_device *pdev)
1189 {
1190 	struct spi_master *master = platform_get_drvdata(pdev);
1191 	struct tegra_slink_data	*tspi = spi_master_get_devdata(master);
1192 
1193 	free_irq(tspi->irq, tspi);
1194 	spi_unregister_master(master);
1195 
1196 	if (tspi->tx_dma_chan)
1197 		tegra_slink_deinit_dma_param(tspi, false);
1198 
1199 	if (tspi->rx_dma_chan)
1200 		tegra_slink_deinit_dma_param(tspi, true);
1201 
1202 	pm_runtime_disable(&pdev->dev);
1203 	if (!pm_runtime_status_suspended(&pdev->dev))
1204 		tegra_slink_runtime_suspend(&pdev->dev);
1205 
1206 	return 0;
1207 }
1208 
1209 #ifdef CONFIG_PM_SLEEP
1210 static int tegra_slink_suspend(struct device *dev)
1211 {
1212 	struct spi_master *master = dev_get_drvdata(dev);
1213 
1214 	return spi_master_suspend(master);
1215 }
1216 
1217 static int tegra_slink_resume(struct device *dev)
1218 {
1219 	struct spi_master *master = dev_get_drvdata(dev);
1220 	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
1221 	int ret;
1222 
1223 	ret = pm_runtime_get_sync(dev);
1224 	if (ret < 0) {
1225 		dev_err(dev, "pm runtime failed, e = %d\n", ret);
1226 		return ret;
1227 	}
1228 	tegra_slink_writel(tspi, tspi->command_reg, SLINK_COMMAND);
1229 	tegra_slink_writel(tspi, tspi->command2_reg, SLINK_COMMAND2);
1230 	pm_runtime_put(dev);
1231 
1232 	return spi_master_resume(master);
1233 }
1234 #endif
1235 
1236 static int tegra_slink_runtime_suspend(struct device *dev)
1237 {
1238 	struct spi_master *master = dev_get_drvdata(dev);
1239 	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
1240 
1241 	/* Flush all write which are in PPSB queue by reading back */
1242 	tegra_slink_readl(tspi, SLINK_MAS_DATA);
1243 
1244 	clk_disable_unprepare(tspi->clk);
1245 	return 0;
1246 }
1247 
1248 static int tegra_slink_runtime_resume(struct device *dev)
1249 {
1250 	struct spi_master *master = dev_get_drvdata(dev);
1251 	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
1252 	int ret;
1253 
1254 	ret = clk_prepare_enable(tspi->clk);
1255 	if (ret < 0) {
1256 		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1257 		return ret;
1258 	}
1259 	return 0;
1260 }
1261 
1262 static const struct dev_pm_ops slink_pm_ops = {
1263 	SET_RUNTIME_PM_OPS(tegra_slink_runtime_suspend,
1264 		tegra_slink_runtime_resume, NULL)
1265 	SET_SYSTEM_SLEEP_PM_OPS(tegra_slink_suspend, tegra_slink_resume)
1266 };
1267 static struct platform_driver tegra_slink_driver = {
1268 	.driver = {
1269 		.name		= "spi-tegra-slink",
1270 		.owner		= THIS_MODULE,
1271 		.pm		= &slink_pm_ops,
1272 		.of_match_table	= tegra_slink_of_match,
1273 	},
1274 	.probe =	tegra_slink_probe,
1275 	.remove =	tegra_slink_remove,
1276 };
1277 module_platform_driver(tegra_slink_driver);
1278 
1279 MODULE_ALIAS("platform:spi-tegra-slink");
1280 MODULE_DESCRIPTION("NVIDIA Tegra20/Tegra30 SLINK Controller Driver");
1281 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1282 MODULE_LICENSE("GPL v2");
1283