1 /*
2  * SPI driver for Nvidia's Tegra20/Tegra30 SLINK Controller.
3  *
4  * Copyright (c) 2012, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/kthread.h>
31 #include <linux/module.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/spi/spi.h>
37 #include <linux/clk/tegra.h>
38 
39 #define SLINK_COMMAND			0x000
40 #define SLINK_BIT_LENGTH(x)		(((x) & 0x1f) << 0)
41 #define SLINK_WORD_SIZE(x)		(((x) & 0x1f) << 5)
42 #define SLINK_BOTH_EN			(1 << 10)
43 #define SLINK_CS_SW			(1 << 11)
44 #define SLINK_CS_VALUE			(1 << 12)
45 #define SLINK_CS_POLARITY		(1 << 13)
46 #define SLINK_IDLE_SDA_DRIVE_LOW	(0 << 16)
47 #define SLINK_IDLE_SDA_DRIVE_HIGH	(1 << 16)
48 #define SLINK_IDLE_SDA_PULL_LOW		(2 << 16)
49 #define SLINK_IDLE_SDA_PULL_HIGH	(3 << 16)
50 #define SLINK_IDLE_SDA_MASK		(3 << 16)
51 #define SLINK_CS_POLARITY1		(1 << 20)
52 #define SLINK_CK_SDA			(1 << 21)
53 #define SLINK_CS_POLARITY2		(1 << 22)
54 #define SLINK_CS_POLARITY3		(1 << 23)
55 #define SLINK_IDLE_SCLK_DRIVE_LOW	(0 << 24)
56 #define SLINK_IDLE_SCLK_DRIVE_HIGH	(1 << 24)
57 #define SLINK_IDLE_SCLK_PULL_LOW	(2 << 24)
58 #define SLINK_IDLE_SCLK_PULL_HIGH	(3 << 24)
59 #define SLINK_IDLE_SCLK_MASK		(3 << 24)
60 #define SLINK_M_S			(1 << 28)
61 #define SLINK_WAIT			(1 << 29)
62 #define SLINK_GO			(1 << 30)
63 #define SLINK_ENB			(1 << 31)
64 
65 #define SLINK_MODES			(SLINK_IDLE_SCLK_MASK | SLINK_CK_SDA)
66 
67 #define SLINK_COMMAND2			0x004
68 #define SLINK_LSBFE			(1 << 0)
69 #define SLINK_SSOE			(1 << 1)
70 #define SLINK_SPIE			(1 << 4)
71 #define SLINK_BIDIROE			(1 << 6)
72 #define SLINK_MODFEN			(1 << 7)
73 #define SLINK_INT_SIZE(x)		(((x) & 0x1f) << 8)
74 #define SLINK_CS_ACTIVE_BETWEEN		(1 << 17)
75 #define SLINK_SS_EN_CS(x)		(((x) & 0x3) << 18)
76 #define SLINK_SS_SETUP(x)		(((x) & 0x3) << 20)
77 #define SLINK_FIFO_REFILLS_0		(0 << 22)
78 #define SLINK_FIFO_REFILLS_1		(1 << 22)
79 #define SLINK_FIFO_REFILLS_2		(2 << 22)
80 #define SLINK_FIFO_REFILLS_3		(3 << 22)
81 #define SLINK_FIFO_REFILLS_MASK		(3 << 22)
82 #define SLINK_WAIT_PACK_INT(x)		(((x) & 0x7) << 26)
83 #define SLINK_SPC0			(1 << 29)
84 #define SLINK_TXEN			(1 << 30)
85 #define SLINK_RXEN			(1 << 31)
86 
87 #define SLINK_STATUS			0x008
88 #define SLINK_COUNT(val)		(((val) >> 0) & 0x1f)
89 #define SLINK_WORD(val)			(((val) >> 5) & 0x1f)
90 #define SLINK_BLK_CNT(val)		(((val) >> 0) & 0xffff)
91 #define SLINK_MODF			(1 << 16)
92 #define SLINK_RX_UNF			(1 << 18)
93 #define SLINK_TX_OVF			(1 << 19)
94 #define SLINK_TX_FULL			(1 << 20)
95 #define SLINK_TX_EMPTY			(1 << 21)
96 #define SLINK_RX_FULL			(1 << 22)
97 #define SLINK_RX_EMPTY			(1 << 23)
98 #define SLINK_TX_UNF			(1 << 24)
99 #define SLINK_RX_OVF			(1 << 25)
100 #define SLINK_TX_FLUSH			(1 << 26)
101 #define SLINK_RX_FLUSH			(1 << 27)
102 #define SLINK_SCLK			(1 << 28)
103 #define SLINK_ERR			(1 << 29)
104 #define SLINK_RDY			(1 << 30)
105 #define SLINK_BSY			(1 << 31)
106 #define SLINK_FIFO_ERROR		(SLINK_TX_OVF | SLINK_RX_UNF |	\
107 					SLINK_TX_UNF | SLINK_RX_OVF)
108 
109 #define SLINK_FIFO_EMPTY		(SLINK_TX_EMPTY | SLINK_RX_EMPTY)
110 
111 #define SLINK_MAS_DATA			0x010
112 #define SLINK_SLAVE_DATA		0x014
113 
114 #define SLINK_DMA_CTL			0x018
115 #define SLINK_DMA_BLOCK_SIZE(x)		(((x) & 0xffff) << 0)
116 #define SLINK_TX_TRIG_1			(0 << 16)
117 #define SLINK_TX_TRIG_4			(1 << 16)
118 #define SLINK_TX_TRIG_8			(2 << 16)
119 #define SLINK_TX_TRIG_16		(3 << 16)
120 #define SLINK_TX_TRIG_MASK		(3 << 16)
121 #define SLINK_RX_TRIG_1			(0 << 18)
122 #define SLINK_RX_TRIG_4			(1 << 18)
123 #define SLINK_RX_TRIG_8			(2 << 18)
124 #define SLINK_RX_TRIG_16		(3 << 18)
125 #define SLINK_RX_TRIG_MASK		(3 << 18)
126 #define SLINK_PACKED			(1 << 20)
127 #define SLINK_PACK_SIZE_4		(0 << 21)
128 #define SLINK_PACK_SIZE_8		(1 << 21)
129 #define SLINK_PACK_SIZE_16		(2 << 21)
130 #define SLINK_PACK_SIZE_32		(3 << 21)
131 #define SLINK_PACK_SIZE_MASK		(3 << 21)
132 #define SLINK_IE_TXC			(1 << 26)
133 #define SLINK_IE_RXC			(1 << 27)
134 #define SLINK_DMA_EN			(1 << 31)
135 
136 #define SLINK_STATUS2			0x01c
137 #define SLINK_TX_FIFO_EMPTY_COUNT(val)	(((val) & 0x3f) >> 0)
138 #define SLINK_RX_FIFO_FULL_COUNT(val)	(((val) & 0x3f0000) >> 16)
139 #define SLINK_SS_HOLD_TIME(val)		(((val) & 0xF) << 6)
140 
141 #define SLINK_TX_FIFO			0x100
142 #define SLINK_RX_FIFO			0x180
143 
144 #define DATA_DIR_TX			(1 << 0)
145 #define DATA_DIR_RX			(1 << 1)
146 
147 #define SLINK_DMA_TIMEOUT		(msecs_to_jiffies(1000))
148 
149 #define DEFAULT_SPI_DMA_BUF_LEN		(16*1024)
150 #define TX_FIFO_EMPTY_COUNT_MAX		SLINK_TX_FIFO_EMPTY_COUNT(0x20)
151 #define RX_FIFO_FULL_COUNT_ZERO		SLINK_RX_FIFO_FULL_COUNT(0)
152 
153 #define SLINK_STATUS2_RESET \
154 	(TX_FIFO_EMPTY_COUNT_MAX | RX_FIFO_FULL_COUNT_ZERO << 16)
155 
156 #define MAX_CHIP_SELECT			4
157 #define SLINK_FIFO_DEPTH		32
158 
159 struct tegra_slink_chip_data {
160 	bool cs_hold_time;
161 };
162 
163 struct tegra_slink_data {
164 	struct device				*dev;
165 	struct spi_master			*master;
166 	const struct tegra_slink_chip_data	*chip_data;
167 	spinlock_t				lock;
168 
169 	struct clk				*clk;
170 	void __iomem				*base;
171 	phys_addr_t				phys;
172 	unsigned				irq;
173 	int					dma_req_sel;
174 	u32					spi_max_frequency;
175 	u32					cur_speed;
176 
177 	struct spi_device			*cur_spi;
178 	unsigned				cur_pos;
179 	unsigned				cur_len;
180 	unsigned				words_per_32bit;
181 	unsigned				bytes_per_word;
182 	unsigned				curr_dma_words;
183 	unsigned				cur_direction;
184 
185 	unsigned				cur_rx_pos;
186 	unsigned				cur_tx_pos;
187 
188 	unsigned				dma_buf_size;
189 	unsigned				max_buf_size;
190 	bool					is_curr_dma_xfer;
191 
192 	struct completion			rx_dma_complete;
193 	struct completion			tx_dma_complete;
194 
195 	u32					tx_status;
196 	u32					rx_status;
197 	u32					status_reg;
198 	bool					is_packed;
199 	unsigned long				packed_size;
200 
201 	u32					command_reg;
202 	u32					command2_reg;
203 	u32					dma_control_reg;
204 	u32					def_command_reg;
205 	u32					def_command2_reg;
206 
207 	struct completion			xfer_completion;
208 	struct spi_transfer			*curr_xfer;
209 	struct dma_chan				*rx_dma_chan;
210 	u32					*rx_dma_buf;
211 	dma_addr_t				rx_dma_phys;
212 	struct dma_async_tx_descriptor		*rx_dma_desc;
213 
214 	struct dma_chan				*tx_dma_chan;
215 	u32					*tx_dma_buf;
216 	dma_addr_t				tx_dma_phys;
217 	struct dma_async_tx_descriptor		*tx_dma_desc;
218 };
219 
220 static int tegra_slink_runtime_suspend(struct device *dev);
221 static int tegra_slink_runtime_resume(struct device *dev);
222 
223 static inline unsigned long tegra_slink_readl(struct tegra_slink_data *tspi,
224 		unsigned long reg)
225 {
226 	return readl(tspi->base + reg);
227 }
228 
229 static inline void tegra_slink_writel(struct tegra_slink_data *tspi,
230 		unsigned long val, unsigned long reg)
231 {
232 	writel(val, tspi->base + reg);
233 
234 	/* Read back register to make sure that register writes completed */
235 	if (reg != SLINK_TX_FIFO)
236 		readl(tspi->base + SLINK_MAS_DATA);
237 }
238 
239 static void tegra_slink_clear_status(struct tegra_slink_data *tspi)
240 {
241 	unsigned long val;
242 	unsigned long val_write = 0;
243 
244 	val = tegra_slink_readl(tspi, SLINK_STATUS);
245 
246 	/* Write 1 to clear status register */
247 	val_write = SLINK_RDY | SLINK_FIFO_ERROR;
248 	tegra_slink_writel(tspi, val_write, SLINK_STATUS);
249 }
250 
251 static unsigned long tegra_slink_get_packed_size(struct tegra_slink_data *tspi,
252 				  struct spi_transfer *t)
253 {
254 	unsigned long val;
255 
256 	switch (tspi->bytes_per_word) {
257 	case 0:
258 		val = SLINK_PACK_SIZE_4;
259 		break;
260 	case 1:
261 		val = SLINK_PACK_SIZE_8;
262 		break;
263 	case 2:
264 		val = SLINK_PACK_SIZE_16;
265 		break;
266 	case 4:
267 		val = SLINK_PACK_SIZE_32;
268 		break;
269 	default:
270 		val = 0;
271 	}
272 	return val;
273 }
274 
275 static unsigned tegra_slink_calculate_curr_xfer_param(
276 	struct spi_device *spi, struct tegra_slink_data *tspi,
277 	struct spi_transfer *t)
278 {
279 	unsigned remain_len = t->len - tspi->cur_pos;
280 	unsigned max_word;
281 	unsigned bits_per_word;
282 	unsigned max_len;
283 	unsigned total_fifo_words;
284 
285 	bits_per_word = t->bits_per_word;
286 	tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
287 
288 	if (bits_per_word == 8 || bits_per_word == 16) {
289 		tspi->is_packed = 1;
290 		tspi->words_per_32bit = 32/bits_per_word;
291 	} else {
292 		tspi->is_packed = 0;
293 		tspi->words_per_32bit = 1;
294 	}
295 	tspi->packed_size = tegra_slink_get_packed_size(tspi, t);
296 
297 	if (tspi->is_packed) {
298 		max_len = min(remain_len, tspi->max_buf_size);
299 		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
300 		total_fifo_words = max_len/4;
301 	} else {
302 		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
303 		max_word = min(max_word, tspi->max_buf_size/4);
304 		tspi->curr_dma_words = max_word;
305 		total_fifo_words = max_word;
306 	}
307 	return total_fifo_words;
308 }
309 
310 static unsigned tegra_slink_fill_tx_fifo_from_client_txbuf(
311 	struct tegra_slink_data *tspi, struct spi_transfer *t)
312 {
313 	unsigned nbytes;
314 	unsigned tx_empty_count;
315 	unsigned long fifo_status;
316 	unsigned max_n_32bit;
317 	unsigned i, count;
318 	unsigned long x;
319 	unsigned int written_words;
320 	unsigned fifo_words_left;
321 	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
322 
323 	fifo_status = tegra_slink_readl(tspi, SLINK_STATUS2);
324 	tx_empty_count = SLINK_TX_FIFO_EMPTY_COUNT(fifo_status);
325 
326 	if (tspi->is_packed) {
327 		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
328 		written_words = min(fifo_words_left, tspi->curr_dma_words);
329 		nbytes = written_words * tspi->bytes_per_word;
330 		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
331 		for (count = 0; count < max_n_32bit; count++) {
332 			x = 0;
333 			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
334 				x |= (*tx_buf++) << (i*8);
335 			tegra_slink_writel(tspi, x, SLINK_TX_FIFO);
336 		}
337 	} else {
338 		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
339 		written_words = max_n_32bit;
340 		nbytes = written_words * tspi->bytes_per_word;
341 		for (count = 0; count < max_n_32bit; count++) {
342 			x = 0;
343 			for (i = 0; nbytes && (i < tspi->bytes_per_word);
344 							i++, nbytes--)
345 				x |= ((*tx_buf++) << i*8);
346 			tegra_slink_writel(tspi, x, SLINK_TX_FIFO);
347 		}
348 	}
349 	tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
350 	return written_words;
351 }
352 
353 static unsigned int tegra_slink_read_rx_fifo_to_client_rxbuf(
354 		struct tegra_slink_data *tspi, struct spi_transfer *t)
355 {
356 	unsigned rx_full_count;
357 	unsigned long fifo_status;
358 	unsigned i, count;
359 	unsigned long x;
360 	unsigned int read_words = 0;
361 	unsigned len;
362 	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
363 
364 	fifo_status = tegra_slink_readl(tspi, SLINK_STATUS2);
365 	rx_full_count = SLINK_RX_FIFO_FULL_COUNT(fifo_status);
366 	if (tspi->is_packed) {
367 		len = tspi->curr_dma_words * tspi->bytes_per_word;
368 		for (count = 0; count < rx_full_count; count++) {
369 			x = tegra_slink_readl(tspi, SLINK_RX_FIFO);
370 			for (i = 0; len && (i < 4); i++, len--)
371 				*rx_buf++ = (x >> i*8) & 0xFF;
372 		}
373 		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
374 		read_words += tspi->curr_dma_words;
375 	} else {
376 		for (count = 0; count < rx_full_count; count++) {
377 			x = tegra_slink_readl(tspi, SLINK_RX_FIFO);
378 			for (i = 0; (i < tspi->bytes_per_word); i++)
379 				*rx_buf++ = (x >> (i*8)) & 0xFF;
380 		}
381 		tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
382 		read_words += rx_full_count;
383 	}
384 	return read_words;
385 }
386 
387 static void tegra_slink_copy_client_txbuf_to_spi_txbuf(
388 		struct tegra_slink_data *tspi, struct spi_transfer *t)
389 {
390 	unsigned len;
391 
392 	/* Make the dma buffer to read by cpu */
393 	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
394 				tspi->dma_buf_size, DMA_TO_DEVICE);
395 
396 	if (tspi->is_packed) {
397 		len = tspi->curr_dma_words * tspi->bytes_per_word;
398 		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
399 	} else {
400 		unsigned int i;
401 		unsigned int count;
402 		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
403 		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
404 		unsigned int x;
405 
406 		for (count = 0; count < tspi->curr_dma_words; count++) {
407 			x = 0;
408 			for (i = 0; consume && (i < tspi->bytes_per_word);
409 							i++, consume--)
410 				x |= ((*tx_buf++) << i * 8);
411 			tspi->tx_dma_buf[count] = x;
412 		}
413 	}
414 	tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
415 
416 	/* Make the dma buffer to read by dma */
417 	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
418 				tspi->dma_buf_size, DMA_TO_DEVICE);
419 }
420 
421 static void tegra_slink_copy_spi_rxbuf_to_client_rxbuf(
422 		struct tegra_slink_data *tspi, struct spi_transfer *t)
423 {
424 	unsigned len;
425 
426 	/* Make the dma buffer to read by cpu */
427 	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
428 		tspi->dma_buf_size, DMA_FROM_DEVICE);
429 
430 	if (tspi->is_packed) {
431 		len = tspi->curr_dma_words * tspi->bytes_per_word;
432 		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
433 	} else {
434 		unsigned int i;
435 		unsigned int count;
436 		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
437 		unsigned int x;
438 		unsigned int rx_mask, bits_per_word;
439 
440 		bits_per_word = t->bits_per_word;
441 		rx_mask = (1 << bits_per_word) - 1;
442 		for (count = 0; count < tspi->curr_dma_words; count++) {
443 			x = tspi->rx_dma_buf[count];
444 			x &= rx_mask;
445 			for (i = 0; (i < tspi->bytes_per_word); i++)
446 				*rx_buf++ = (x >> (i*8)) & 0xFF;
447 		}
448 	}
449 	tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
450 
451 	/* Make the dma buffer to read by dma */
452 	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
453 		tspi->dma_buf_size, DMA_FROM_DEVICE);
454 }
455 
456 static void tegra_slink_dma_complete(void *args)
457 {
458 	struct completion *dma_complete = args;
459 
460 	complete(dma_complete);
461 }
462 
463 static int tegra_slink_start_tx_dma(struct tegra_slink_data *tspi, int len)
464 {
465 	reinit_completion(&tspi->tx_dma_complete);
466 	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
467 				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
468 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
469 	if (!tspi->tx_dma_desc) {
470 		dev_err(tspi->dev, "Not able to get desc for Tx\n");
471 		return -EIO;
472 	}
473 
474 	tspi->tx_dma_desc->callback = tegra_slink_dma_complete;
475 	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
476 
477 	dmaengine_submit(tspi->tx_dma_desc);
478 	dma_async_issue_pending(tspi->tx_dma_chan);
479 	return 0;
480 }
481 
482 static int tegra_slink_start_rx_dma(struct tegra_slink_data *tspi, int len)
483 {
484 	reinit_completion(&tspi->rx_dma_complete);
485 	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
486 				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
487 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
488 	if (!tspi->rx_dma_desc) {
489 		dev_err(tspi->dev, "Not able to get desc for Rx\n");
490 		return -EIO;
491 	}
492 
493 	tspi->rx_dma_desc->callback = tegra_slink_dma_complete;
494 	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
495 
496 	dmaengine_submit(tspi->rx_dma_desc);
497 	dma_async_issue_pending(tspi->rx_dma_chan);
498 	return 0;
499 }
500 
501 static int tegra_slink_start_dma_based_transfer(
502 		struct tegra_slink_data *tspi, struct spi_transfer *t)
503 {
504 	unsigned long val;
505 	unsigned long test_val;
506 	unsigned int len;
507 	int ret = 0;
508 	unsigned long status;
509 
510 	/* Make sure that Rx and Tx fifo are empty */
511 	status = tegra_slink_readl(tspi, SLINK_STATUS);
512 	if ((status & SLINK_FIFO_EMPTY) != SLINK_FIFO_EMPTY) {
513 		dev_err(tspi->dev,
514 			"Rx/Tx fifo are not empty status 0x%08lx\n", status);
515 		return -EIO;
516 	}
517 
518 	val = SLINK_DMA_BLOCK_SIZE(tspi->curr_dma_words - 1);
519 	val |= tspi->packed_size;
520 	if (tspi->is_packed)
521 		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
522 					4) * 4;
523 	else
524 		len = tspi->curr_dma_words * 4;
525 
526 	/* Set attention level based on length of transfer */
527 	if (len & 0xF)
528 		val |= SLINK_TX_TRIG_1 | SLINK_RX_TRIG_1;
529 	else if (((len) >> 4) & 0x1)
530 		val |= SLINK_TX_TRIG_4 | SLINK_RX_TRIG_4;
531 	else
532 		val |= SLINK_TX_TRIG_8 | SLINK_RX_TRIG_8;
533 
534 	if (tspi->cur_direction & DATA_DIR_TX)
535 		val |= SLINK_IE_TXC;
536 
537 	if (tspi->cur_direction & DATA_DIR_RX)
538 		val |= SLINK_IE_RXC;
539 
540 	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
541 	tspi->dma_control_reg = val;
542 
543 	if (tspi->cur_direction & DATA_DIR_TX) {
544 		tegra_slink_copy_client_txbuf_to_spi_txbuf(tspi, t);
545 		wmb();
546 		ret = tegra_slink_start_tx_dma(tspi, len);
547 		if (ret < 0) {
548 			dev_err(tspi->dev,
549 				"Starting tx dma failed, err %d\n", ret);
550 			return ret;
551 		}
552 
553 		/* Wait for tx fifo to be fill before starting slink */
554 		test_val = tegra_slink_readl(tspi, SLINK_STATUS);
555 		while (!(test_val & SLINK_TX_FULL))
556 			test_val = tegra_slink_readl(tspi, SLINK_STATUS);
557 	}
558 
559 	if (tspi->cur_direction & DATA_DIR_RX) {
560 		/* Make the dma buffer to read by dma */
561 		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
562 				tspi->dma_buf_size, DMA_FROM_DEVICE);
563 
564 		ret = tegra_slink_start_rx_dma(tspi, len);
565 		if (ret < 0) {
566 			dev_err(tspi->dev,
567 				"Starting rx dma failed, err %d\n", ret);
568 			if (tspi->cur_direction & DATA_DIR_TX)
569 				dmaengine_terminate_all(tspi->tx_dma_chan);
570 			return ret;
571 		}
572 	}
573 	tspi->is_curr_dma_xfer = true;
574 	if (tspi->is_packed) {
575 		val |= SLINK_PACKED;
576 		tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
577 		/* HW need small delay after settign Packed mode */
578 		udelay(1);
579 	}
580 	tspi->dma_control_reg = val;
581 
582 	val |= SLINK_DMA_EN;
583 	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
584 	return ret;
585 }
586 
587 static int tegra_slink_start_cpu_based_transfer(
588 		struct tegra_slink_data *tspi, struct spi_transfer *t)
589 {
590 	unsigned long val;
591 	unsigned cur_words;
592 
593 	val = tspi->packed_size;
594 	if (tspi->cur_direction & DATA_DIR_TX)
595 		val |= SLINK_IE_TXC;
596 
597 	if (tspi->cur_direction & DATA_DIR_RX)
598 		val |= SLINK_IE_RXC;
599 
600 	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
601 	tspi->dma_control_reg = val;
602 
603 	if (tspi->cur_direction & DATA_DIR_TX)
604 		cur_words = tegra_slink_fill_tx_fifo_from_client_txbuf(tspi, t);
605 	else
606 		cur_words = tspi->curr_dma_words;
607 	val |= SLINK_DMA_BLOCK_SIZE(cur_words - 1);
608 	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
609 	tspi->dma_control_reg = val;
610 
611 	tspi->is_curr_dma_xfer = false;
612 	if (tspi->is_packed) {
613 		val |= SLINK_PACKED;
614 		tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
615 		udelay(1);
616 		wmb();
617 	}
618 	tspi->dma_control_reg = val;
619 	val |= SLINK_DMA_EN;
620 	tegra_slink_writel(tspi, val, SLINK_DMA_CTL);
621 	return 0;
622 }
623 
624 static int tegra_slink_init_dma_param(struct tegra_slink_data *tspi,
625 			bool dma_to_memory)
626 {
627 	struct dma_chan *dma_chan;
628 	u32 *dma_buf;
629 	dma_addr_t dma_phys;
630 	int ret;
631 	struct dma_slave_config dma_sconfig;
632 	dma_cap_mask_t mask;
633 
634 	dma_cap_zero(mask);
635 	dma_cap_set(DMA_SLAVE, mask);
636 	dma_chan = dma_request_channel(mask, NULL, NULL);
637 	if (!dma_chan) {
638 		dev_err(tspi->dev,
639 			"Dma channel is not available, will try later\n");
640 		return -EPROBE_DEFER;
641 	}
642 
643 	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
644 				&dma_phys, GFP_KERNEL);
645 	if (!dma_buf) {
646 		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
647 		dma_release_channel(dma_chan);
648 		return -ENOMEM;
649 	}
650 
651 	dma_sconfig.slave_id = tspi->dma_req_sel;
652 	if (dma_to_memory) {
653 		dma_sconfig.src_addr = tspi->phys + SLINK_RX_FIFO;
654 		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
655 		dma_sconfig.src_maxburst = 0;
656 	} else {
657 		dma_sconfig.dst_addr = tspi->phys + SLINK_TX_FIFO;
658 		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
659 		dma_sconfig.dst_maxburst = 0;
660 	}
661 
662 	ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
663 	if (ret)
664 		goto scrub;
665 	if (dma_to_memory) {
666 		tspi->rx_dma_chan = dma_chan;
667 		tspi->rx_dma_buf = dma_buf;
668 		tspi->rx_dma_phys = dma_phys;
669 	} else {
670 		tspi->tx_dma_chan = dma_chan;
671 		tspi->tx_dma_buf = dma_buf;
672 		tspi->tx_dma_phys = dma_phys;
673 	}
674 	return 0;
675 
676 scrub:
677 	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
678 	dma_release_channel(dma_chan);
679 	return ret;
680 }
681 
682 static void tegra_slink_deinit_dma_param(struct tegra_slink_data *tspi,
683 	bool dma_to_memory)
684 {
685 	u32 *dma_buf;
686 	dma_addr_t dma_phys;
687 	struct dma_chan *dma_chan;
688 
689 	if (dma_to_memory) {
690 		dma_buf = tspi->rx_dma_buf;
691 		dma_chan = tspi->rx_dma_chan;
692 		dma_phys = tspi->rx_dma_phys;
693 		tspi->rx_dma_chan = NULL;
694 		tspi->rx_dma_buf = NULL;
695 	} else {
696 		dma_buf = tspi->tx_dma_buf;
697 		dma_chan = tspi->tx_dma_chan;
698 		dma_phys = tspi->tx_dma_phys;
699 		tspi->tx_dma_buf = NULL;
700 		tspi->tx_dma_chan = NULL;
701 	}
702 	if (!dma_chan)
703 		return;
704 
705 	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
706 	dma_release_channel(dma_chan);
707 }
708 
709 static int tegra_slink_start_transfer_one(struct spi_device *spi,
710 		struct spi_transfer *t)
711 {
712 	struct tegra_slink_data *tspi = spi_master_get_devdata(spi->master);
713 	u32 speed;
714 	u8 bits_per_word;
715 	unsigned total_fifo_words;
716 	int ret;
717 	unsigned long command;
718 	unsigned long command2;
719 
720 	bits_per_word = t->bits_per_word;
721 	speed = t->speed_hz;
722 	if (speed != tspi->cur_speed) {
723 		clk_set_rate(tspi->clk, speed * 4);
724 		tspi->cur_speed = speed;
725 	}
726 
727 	tspi->cur_spi = spi;
728 	tspi->cur_pos = 0;
729 	tspi->cur_rx_pos = 0;
730 	tspi->cur_tx_pos = 0;
731 	tspi->curr_xfer = t;
732 	total_fifo_words = tegra_slink_calculate_curr_xfer_param(spi, tspi, t);
733 
734 	command = tspi->command_reg;
735 	command &= ~SLINK_BIT_LENGTH(~0);
736 	command |= SLINK_BIT_LENGTH(bits_per_word - 1);
737 
738 	command2 = tspi->command2_reg;
739 	command2 &= ~(SLINK_RXEN | SLINK_TXEN);
740 
741 	tegra_slink_writel(tspi, command, SLINK_COMMAND);
742 	tspi->command_reg = command;
743 
744 	tspi->cur_direction = 0;
745 	if (t->rx_buf) {
746 		command2 |= SLINK_RXEN;
747 		tspi->cur_direction |= DATA_DIR_RX;
748 	}
749 	if (t->tx_buf) {
750 		command2 |= SLINK_TXEN;
751 		tspi->cur_direction |= DATA_DIR_TX;
752 	}
753 	tegra_slink_writel(tspi, command2, SLINK_COMMAND2);
754 	tspi->command2_reg = command2;
755 
756 	if (total_fifo_words > SLINK_FIFO_DEPTH)
757 		ret = tegra_slink_start_dma_based_transfer(tspi, t);
758 	else
759 		ret = tegra_slink_start_cpu_based_transfer(tspi, t);
760 	return ret;
761 }
762 
763 static int tegra_slink_setup(struct spi_device *spi)
764 {
765 	struct tegra_slink_data *tspi = spi_master_get_devdata(spi->master);
766 	unsigned long val;
767 	unsigned long flags;
768 	int ret;
769 	unsigned int cs_pol_bit[MAX_CHIP_SELECT] = {
770 			SLINK_CS_POLARITY,
771 			SLINK_CS_POLARITY1,
772 			SLINK_CS_POLARITY2,
773 			SLINK_CS_POLARITY3,
774 	};
775 
776 	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
777 		spi->bits_per_word,
778 		spi->mode & SPI_CPOL ? "" : "~",
779 		spi->mode & SPI_CPHA ? "" : "~",
780 		spi->max_speed_hz);
781 
782 	BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);
783 
784 	/* Set speed to the spi max fequency if spi device has not set */
785 	spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency;
786 	ret = pm_runtime_get_sync(tspi->dev);
787 	if (ret < 0) {
788 		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
789 		return ret;
790 	}
791 
792 	spin_lock_irqsave(&tspi->lock, flags);
793 	val = tspi->def_command_reg;
794 	if (spi->mode & SPI_CS_HIGH)
795 		val |= cs_pol_bit[spi->chip_select];
796 	else
797 		val &= ~cs_pol_bit[spi->chip_select];
798 	tspi->def_command_reg = val;
799 	tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
800 	spin_unlock_irqrestore(&tspi->lock, flags);
801 
802 	pm_runtime_put(tspi->dev);
803 	return 0;
804 }
805 
806 static int tegra_slink_prepare_message(struct spi_master *master,
807 				       struct spi_message *msg)
808 {
809 	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
810 	struct spi_device *spi = msg->spi;
811 
812 	tegra_slink_clear_status(tspi);
813 
814 	tspi->command_reg = tspi->def_command_reg;
815 	tspi->command_reg |= SLINK_CS_SW | SLINK_CS_VALUE;
816 
817 	tspi->command2_reg = tspi->def_command2_reg;
818 	tspi->command2_reg |= SLINK_SS_EN_CS(spi->chip_select);
819 
820 	tspi->command_reg &= ~SLINK_MODES;
821 	if (spi->mode & SPI_CPHA)
822 		tspi->command_reg |= SLINK_CK_SDA;
823 
824 	if (spi->mode & SPI_CPOL)
825 		tspi->command_reg |= SLINK_IDLE_SCLK_DRIVE_HIGH;
826 	else
827 		tspi->command_reg |= SLINK_IDLE_SCLK_DRIVE_LOW;
828 
829 	return 0;
830 }
831 
832 static int tegra_slink_transfer_one(struct spi_master *master,
833 				    struct spi_device *spi,
834 				    struct spi_transfer *xfer)
835 {
836 	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
837 	int ret;
838 
839 	reinit_completion(&tspi->xfer_completion);
840 	ret = tegra_slink_start_transfer_one(spi, xfer);
841 	if (ret < 0) {
842 		dev_err(tspi->dev,
843 			"spi can not start transfer, err %d\n", ret);
844 		return ret;
845 	}
846 
847 	ret = wait_for_completion_timeout(&tspi->xfer_completion,
848 					  SLINK_DMA_TIMEOUT);
849 	if (WARN_ON(ret == 0)) {
850 		dev_err(tspi->dev,
851 			"spi trasfer timeout, err %d\n", ret);
852 		return -EIO;
853 	}
854 
855 	if (tspi->tx_status)
856 		return tspi->tx_status;
857 	if (tspi->rx_status)
858 		return tspi->rx_status;
859 
860 	return 0;
861 }
862 
863 static int tegra_slink_unprepare_message(struct spi_master *master,
864 					 struct spi_message *msg)
865 {
866 	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
867 
868 	tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
869 	tegra_slink_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2);
870 
871 	return 0;
872 }
873 
874 static irqreturn_t handle_cpu_based_xfer(struct tegra_slink_data *tspi)
875 {
876 	struct spi_transfer *t = tspi->curr_xfer;
877 	unsigned long flags;
878 
879 	spin_lock_irqsave(&tspi->lock, flags);
880 	if (tspi->tx_status ||  tspi->rx_status ||
881 				(tspi->status_reg & SLINK_BSY)) {
882 		dev_err(tspi->dev,
883 			"CpuXfer ERROR bit set 0x%x\n", tspi->status_reg);
884 		dev_err(tspi->dev,
885 			"CpuXfer 0x%08x:0x%08x:0x%08x\n", tspi->command_reg,
886 				tspi->command2_reg, tspi->dma_control_reg);
887 		tegra_periph_reset_assert(tspi->clk);
888 		udelay(2);
889 		tegra_periph_reset_deassert(tspi->clk);
890 		complete(&tspi->xfer_completion);
891 		goto exit;
892 	}
893 
894 	if (tspi->cur_direction & DATA_DIR_RX)
895 		tegra_slink_read_rx_fifo_to_client_rxbuf(tspi, t);
896 
897 	if (tspi->cur_direction & DATA_DIR_TX)
898 		tspi->cur_pos = tspi->cur_tx_pos;
899 	else
900 		tspi->cur_pos = tspi->cur_rx_pos;
901 
902 	if (tspi->cur_pos == t->len) {
903 		complete(&tspi->xfer_completion);
904 		goto exit;
905 	}
906 
907 	tegra_slink_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
908 	tegra_slink_start_cpu_based_transfer(tspi, t);
909 exit:
910 	spin_unlock_irqrestore(&tspi->lock, flags);
911 	return IRQ_HANDLED;
912 }
913 
914 static irqreturn_t handle_dma_based_xfer(struct tegra_slink_data *tspi)
915 {
916 	struct spi_transfer *t = tspi->curr_xfer;
917 	long wait_status;
918 	int err = 0;
919 	unsigned total_fifo_words;
920 	unsigned long flags;
921 
922 	/* Abort dmas if any error */
923 	if (tspi->cur_direction & DATA_DIR_TX) {
924 		if (tspi->tx_status) {
925 			dmaengine_terminate_all(tspi->tx_dma_chan);
926 			err += 1;
927 		} else {
928 			wait_status = wait_for_completion_interruptible_timeout(
929 				&tspi->tx_dma_complete, SLINK_DMA_TIMEOUT);
930 			if (wait_status <= 0) {
931 				dmaengine_terminate_all(tspi->tx_dma_chan);
932 				dev_err(tspi->dev, "TxDma Xfer failed\n");
933 				err += 1;
934 			}
935 		}
936 	}
937 
938 	if (tspi->cur_direction & DATA_DIR_RX) {
939 		if (tspi->rx_status) {
940 			dmaengine_terminate_all(tspi->rx_dma_chan);
941 			err += 2;
942 		} else {
943 			wait_status = wait_for_completion_interruptible_timeout(
944 				&tspi->rx_dma_complete, SLINK_DMA_TIMEOUT);
945 			if (wait_status <= 0) {
946 				dmaengine_terminate_all(tspi->rx_dma_chan);
947 				dev_err(tspi->dev, "RxDma Xfer failed\n");
948 				err += 2;
949 			}
950 		}
951 	}
952 
953 	spin_lock_irqsave(&tspi->lock, flags);
954 	if (err) {
955 		dev_err(tspi->dev,
956 			"DmaXfer: ERROR bit set 0x%x\n", tspi->status_reg);
957 		dev_err(tspi->dev,
958 			"DmaXfer 0x%08x:0x%08x:0x%08x\n", tspi->command_reg,
959 				tspi->command2_reg, tspi->dma_control_reg);
960 		tegra_periph_reset_assert(tspi->clk);
961 		udelay(2);
962 		tegra_periph_reset_deassert(tspi->clk);
963 		complete(&tspi->xfer_completion);
964 		spin_unlock_irqrestore(&tspi->lock, flags);
965 		return IRQ_HANDLED;
966 	}
967 
968 	if (tspi->cur_direction & DATA_DIR_RX)
969 		tegra_slink_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
970 
971 	if (tspi->cur_direction & DATA_DIR_TX)
972 		tspi->cur_pos = tspi->cur_tx_pos;
973 	else
974 		tspi->cur_pos = tspi->cur_rx_pos;
975 
976 	if (tspi->cur_pos == t->len) {
977 		complete(&tspi->xfer_completion);
978 		goto exit;
979 	}
980 
981 	/* Continue transfer in current message */
982 	total_fifo_words = tegra_slink_calculate_curr_xfer_param(tspi->cur_spi,
983 							tspi, t);
984 	if (total_fifo_words > SLINK_FIFO_DEPTH)
985 		err = tegra_slink_start_dma_based_transfer(tspi, t);
986 	else
987 		err = tegra_slink_start_cpu_based_transfer(tspi, t);
988 
989 exit:
990 	spin_unlock_irqrestore(&tspi->lock, flags);
991 	return IRQ_HANDLED;
992 }
993 
994 static irqreturn_t tegra_slink_isr_thread(int irq, void *context_data)
995 {
996 	struct tegra_slink_data *tspi = context_data;
997 
998 	if (!tspi->is_curr_dma_xfer)
999 		return handle_cpu_based_xfer(tspi);
1000 	return handle_dma_based_xfer(tspi);
1001 }
1002 
1003 static irqreturn_t tegra_slink_isr(int irq, void *context_data)
1004 {
1005 	struct tegra_slink_data *tspi = context_data;
1006 
1007 	tspi->status_reg = tegra_slink_readl(tspi, SLINK_STATUS);
1008 	if (tspi->cur_direction & DATA_DIR_TX)
1009 		tspi->tx_status = tspi->status_reg &
1010 					(SLINK_TX_OVF | SLINK_TX_UNF);
1011 
1012 	if (tspi->cur_direction & DATA_DIR_RX)
1013 		tspi->rx_status = tspi->status_reg &
1014 					(SLINK_RX_OVF | SLINK_RX_UNF);
1015 	tegra_slink_clear_status(tspi);
1016 
1017 	return IRQ_WAKE_THREAD;
1018 }
1019 
1020 static void tegra_slink_parse_dt(struct tegra_slink_data *tspi)
1021 {
1022 	struct device_node *np = tspi->dev->of_node;
1023 	u32 of_dma[2];
1024 
1025 	if (of_property_read_u32_array(np, "nvidia,dma-request-selector",
1026 				of_dma, 2) >= 0)
1027 		tspi->dma_req_sel = of_dma[1];
1028 
1029 	if (of_property_read_u32(np, "spi-max-frequency",
1030 					&tspi->spi_max_frequency))
1031 		tspi->spi_max_frequency = 25000000; /* 25MHz */
1032 }
1033 
1034 static const struct tegra_slink_chip_data tegra30_spi_cdata = {
1035 	.cs_hold_time = true,
1036 };
1037 
1038 static const struct tegra_slink_chip_data tegra20_spi_cdata = {
1039 	.cs_hold_time = false,
1040 };
1041 
1042 static struct of_device_id tegra_slink_of_match[] = {
1043 	{ .compatible = "nvidia,tegra30-slink", .data = &tegra30_spi_cdata, },
1044 	{ .compatible = "nvidia,tegra20-slink", .data = &tegra20_spi_cdata, },
1045 	{}
1046 };
1047 MODULE_DEVICE_TABLE(of, tegra_slink_of_match);
1048 
1049 static int tegra_slink_probe(struct platform_device *pdev)
1050 {
1051 	struct spi_master	*master;
1052 	struct tegra_slink_data	*tspi;
1053 	struct resource		*r;
1054 	int ret, spi_irq;
1055 	const struct tegra_slink_chip_data *cdata = NULL;
1056 	const struct of_device_id *match;
1057 
1058 	match = of_match_device(tegra_slink_of_match, &pdev->dev);
1059 	if (!match) {
1060 		dev_err(&pdev->dev, "Error: No device match found\n");
1061 		return -ENODEV;
1062 	}
1063 	cdata = match->data;
1064 
1065 	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1066 	if (!master) {
1067 		dev_err(&pdev->dev, "master allocation failed\n");
1068 		return -ENOMEM;
1069 	}
1070 
1071 	/* the spi->mode bits understood by this driver: */
1072 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1073 	master->setup = tegra_slink_setup;
1074 	master->prepare_message = tegra_slink_prepare_message;
1075 	master->transfer_one = tegra_slink_transfer_one;
1076 	master->unprepare_message = tegra_slink_unprepare_message;
1077 	master->auto_runtime_pm = true;
1078 	master->num_chipselect = MAX_CHIP_SELECT;
1079 	master->bus_num = -1;
1080 
1081 	platform_set_drvdata(pdev, master);
1082 	tspi = spi_master_get_devdata(master);
1083 	tspi->master = master;
1084 	tspi->dev = &pdev->dev;
1085 	tspi->chip_data = cdata;
1086 	spin_lock_init(&tspi->lock);
1087 
1088 	tegra_slink_parse_dt(tspi);
1089 
1090 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1091 	if (!r) {
1092 		dev_err(&pdev->dev, "No IO memory resource\n");
1093 		ret = -ENODEV;
1094 		goto exit_free_master;
1095 	}
1096 	tspi->phys = r->start;
1097 	tspi->base = devm_ioremap_resource(&pdev->dev, r);
1098 	if (IS_ERR(tspi->base)) {
1099 		ret = PTR_ERR(tspi->base);
1100 		goto exit_free_master;
1101 	}
1102 
1103 	spi_irq = platform_get_irq(pdev, 0);
1104 	tspi->irq = spi_irq;
1105 	ret = request_threaded_irq(tspi->irq, tegra_slink_isr,
1106 			tegra_slink_isr_thread, IRQF_ONESHOT,
1107 			dev_name(&pdev->dev), tspi);
1108 	if (ret < 0) {
1109 		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1110 					tspi->irq);
1111 		goto exit_free_master;
1112 	}
1113 
1114 	tspi->clk = devm_clk_get(&pdev->dev, NULL);
1115 	if (IS_ERR(tspi->clk)) {
1116 		dev_err(&pdev->dev, "can not get clock\n");
1117 		ret = PTR_ERR(tspi->clk);
1118 		goto exit_free_irq;
1119 	}
1120 
1121 	tspi->max_buf_size = SLINK_FIFO_DEPTH << 2;
1122 	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1123 
1124 	if (tspi->dma_req_sel) {
1125 		ret = tegra_slink_init_dma_param(tspi, true);
1126 		if (ret < 0) {
1127 			dev_err(&pdev->dev, "RxDma Init failed, err %d\n", ret);
1128 			goto exit_free_irq;
1129 		}
1130 
1131 		ret = tegra_slink_init_dma_param(tspi, false);
1132 		if (ret < 0) {
1133 			dev_err(&pdev->dev, "TxDma Init failed, err %d\n", ret);
1134 			goto exit_rx_dma_free;
1135 		}
1136 		tspi->max_buf_size = tspi->dma_buf_size;
1137 		init_completion(&tspi->tx_dma_complete);
1138 		init_completion(&tspi->rx_dma_complete);
1139 	}
1140 
1141 	init_completion(&tspi->xfer_completion);
1142 
1143 	pm_runtime_enable(&pdev->dev);
1144 	if (!pm_runtime_enabled(&pdev->dev)) {
1145 		ret = tegra_slink_runtime_resume(&pdev->dev);
1146 		if (ret)
1147 			goto exit_pm_disable;
1148 	}
1149 
1150 	ret = pm_runtime_get_sync(&pdev->dev);
1151 	if (ret < 0) {
1152 		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1153 		goto exit_pm_disable;
1154 	}
1155 	tspi->def_command_reg  = SLINK_M_S;
1156 	tspi->def_command2_reg = SLINK_CS_ACTIVE_BETWEEN;
1157 	tegra_slink_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
1158 	tegra_slink_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2);
1159 	pm_runtime_put(&pdev->dev);
1160 
1161 	master->dev.of_node = pdev->dev.of_node;
1162 	ret = devm_spi_register_master(&pdev->dev, master);
1163 	if (ret < 0) {
1164 		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1165 		goto exit_pm_disable;
1166 	}
1167 	return ret;
1168 
1169 exit_pm_disable:
1170 	pm_runtime_disable(&pdev->dev);
1171 	if (!pm_runtime_status_suspended(&pdev->dev))
1172 		tegra_slink_runtime_suspend(&pdev->dev);
1173 	tegra_slink_deinit_dma_param(tspi, false);
1174 exit_rx_dma_free:
1175 	tegra_slink_deinit_dma_param(tspi, true);
1176 exit_free_irq:
1177 	free_irq(spi_irq, tspi);
1178 exit_free_master:
1179 	spi_master_put(master);
1180 	return ret;
1181 }
1182 
1183 static int tegra_slink_remove(struct platform_device *pdev)
1184 {
1185 	struct spi_master *master = platform_get_drvdata(pdev);
1186 	struct tegra_slink_data	*tspi = spi_master_get_devdata(master);
1187 
1188 	free_irq(tspi->irq, tspi);
1189 
1190 	if (tspi->tx_dma_chan)
1191 		tegra_slink_deinit_dma_param(tspi, false);
1192 
1193 	if (tspi->rx_dma_chan)
1194 		tegra_slink_deinit_dma_param(tspi, true);
1195 
1196 	pm_runtime_disable(&pdev->dev);
1197 	if (!pm_runtime_status_suspended(&pdev->dev))
1198 		tegra_slink_runtime_suspend(&pdev->dev);
1199 
1200 	return 0;
1201 }
1202 
1203 #ifdef CONFIG_PM_SLEEP
1204 static int tegra_slink_suspend(struct device *dev)
1205 {
1206 	struct spi_master *master = dev_get_drvdata(dev);
1207 
1208 	return spi_master_suspend(master);
1209 }
1210 
1211 static int tegra_slink_resume(struct device *dev)
1212 {
1213 	struct spi_master *master = dev_get_drvdata(dev);
1214 	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
1215 	int ret;
1216 
1217 	ret = pm_runtime_get_sync(dev);
1218 	if (ret < 0) {
1219 		dev_err(dev, "pm runtime failed, e = %d\n", ret);
1220 		return ret;
1221 	}
1222 	tegra_slink_writel(tspi, tspi->command_reg, SLINK_COMMAND);
1223 	tegra_slink_writel(tspi, tspi->command2_reg, SLINK_COMMAND2);
1224 	pm_runtime_put(dev);
1225 
1226 	return spi_master_resume(master);
1227 }
1228 #endif
1229 
1230 static int tegra_slink_runtime_suspend(struct device *dev)
1231 {
1232 	struct spi_master *master = dev_get_drvdata(dev);
1233 	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
1234 
1235 	/* Flush all write which are in PPSB queue by reading back */
1236 	tegra_slink_readl(tspi, SLINK_MAS_DATA);
1237 
1238 	clk_disable_unprepare(tspi->clk);
1239 	return 0;
1240 }
1241 
1242 static int tegra_slink_runtime_resume(struct device *dev)
1243 {
1244 	struct spi_master *master = dev_get_drvdata(dev);
1245 	struct tegra_slink_data *tspi = spi_master_get_devdata(master);
1246 	int ret;
1247 
1248 	ret = clk_prepare_enable(tspi->clk);
1249 	if (ret < 0) {
1250 		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1251 		return ret;
1252 	}
1253 	return 0;
1254 }
1255 
1256 static const struct dev_pm_ops slink_pm_ops = {
1257 	SET_RUNTIME_PM_OPS(tegra_slink_runtime_suspend,
1258 		tegra_slink_runtime_resume, NULL)
1259 	SET_SYSTEM_SLEEP_PM_OPS(tegra_slink_suspend, tegra_slink_resume)
1260 };
1261 static struct platform_driver tegra_slink_driver = {
1262 	.driver = {
1263 		.name		= "spi-tegra-slink",
1264 		.owner		= THIS_MODULE,
1265 		.pm		= &slink_pm_ops,
1266 		.of_match_table	= tegra_slink_of_match,
1267 	},
1268 	.probe =	tegra_slink_probe,
1269 	.remove =	tegra_slink_remove,
1270 };
1271 module_platform_driver(tegra_slink_driver);
1272 
1273 MODULE_ALIAS("platform:spi-tegra-slink");
1274 MODULE_DESCRIPTION("NVIDIA Tegra20/Tegra30 SLINK Controller Driver");
1275 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1276 MODULE_LICENSE("GPL v2");
1277