1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SPI driver for Nvidia's Tegra20 Serial Flash Controller. 4 * 5 * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved. 6 * 7 * Author: Laxman Dewangan <ldewangan@nvidia.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/completion.h> 12 #include <linux/delay.h> 13 #include <linux/err.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/kernel.h> 17 #include <linux/kthread.h> 18 #include <linux/module.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/reset.h> 24 #include <linux/spi/spi.h> 25 26 #define SPI_COMMAND 0x000 27 #define SPI_GO BIT(30) 28 #define SPI_M_S BIT(28) 29 #define SPI_ACTIVE_SCLK_MASK (0x3 << 26) 30 #define SPI_ACTIVE_SCLK_DRIVE_LOW (0 << 26) 31 #define SPI_ACTIVE_SCLK_DRIVE_HIGH (1 << 26) 32 #define SPI_ACTIVE_SCLK_PULL_LOW (2 << 26) 33 #define SPI_ACTIVE_SCLK_PULL_HIGH (3 << 26) 34 35 #define SPI_CK_SDA_FALLING (1 << 21) 36 #define SPI_CK_SDA_RISING (0 << 21) 37 #define SPI_CK_SDA_MASK (1 << 21) 38 #define SPI_ACTIVE_SDA (0x3 << 18) 39 #define SPI_ACTIVE_SDA_DRIVE_LOW (0 << 18) 40 #define SPI_ACTIVE_SDA_DRIVE_HIGH (1 << 18) 41 #define SPI_ACTIVE_SDA_PULL_LOW (2 << 18) 42 #define SPI_ACTIVE_SDA_PULL_HIGH (3 << 18) 43 44 #define SPI_CS_POL_INVERT BIT(16) 45 #define SPI_TX_EN BIT(15) 46 #define SPI_RX_EN BIT(14) 47 #define SPI_CS_VAL_HIGH BIT(13) 48 #define SPI_CS_VAL_LOW 0x0 49 #define SPI_CS_SW BIT(12) 50 #define SPI_CS_HW 0x0 51 #define SPI_CS_DELAY_MASK (7 << 9) 52 #define SPI_CS3_EN BIT(8) 53 #define SPI_CS2_EN BIT(7) 54 #define SPI_CS1_EN BIT(6) 55 #define SPI_CS0_EN BIT(5) 56 57 #define SPI_CS_MASK (SPI_CS3_EN | SPI_CS2_EN | \ 58 SPI_CS1_EN | SPI_CS0_EN) 59 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0) 60 61 #define SPI_MODES (SPI_ACTIVE_SCLK_MASK | SPI_CK_SDA_MASK) 62 63 #define SPI_STATUS 0x004 64 #define SPI_BSY BIT(31) 65 #define SPI_RDY BIT(30) 66 #define SPI_TXF_FLUSH BIT(29) 67 #define SPI_RXF_FLUSH BIT(28) 68 #define SPI_RX_UNF BIT(27) 69 #define SPI_TX_OVF BIT(26) 70 #define SPI_RXF_EMPTY BIT(25) 71 #define SPI_RXF_FULL BIT(24) 72 #define SPI_TXF_EMPTY BIT(23) 73 #define SPI_TXF_FULL BIT(22) 74 #define SPI_BLK_CNT(count) (((count) & 0xffff) + 1) 75 76 #define SPI_FIFO_ERROR (SPI_RX_UNF | SPI_TX_OVF) 77 #define SPI_FIFO_EMPTY (SPI_TX_EMPTY | SPI_RX_EMPTY) 78 79 #define SPI_RX_CMP 0x8 80 #define SPI_DMA_CTL 0x0C 81 #define SPI_DMA_EN BIT(31) 82 #define SPI_IE_RXC BIT(27) 83 #define SPI_IE_TXC BIT(26) 84 #define SPI_PACKED BIT(20) 85 #define SPI_RX_TRIG_MASK (0x3 << 18) 86 #define SPI_RX_TRIG_1W (0x0 << 18) 87 #define SPI_RX_TRIG_4W (0x1 << 18) 88 #define SPI_TX_TRIG_MASK (0x3 << 16) 89 #define SPI_TX_TRIG_1W (0x0 << 16) 90 #define SPI_TX_TRIG_4W (0x1 << 16) 91 #define SPI_DMA_BLK_COUNT(count) (((count) - 1) & 0xFFFF) 92 93 #define SPI_TX_FIFO 0x10 94 #define SPI_RX_FIFO 0x20 95 96 #define DATA_DIR_TX (1 << 0) 97 #define DATA_DIR_RX (1 << 1) 98 99 #define MAX_CHIP_SELECT 4 100 #define SPI_FIFO_DEPTH 4 101 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 102 103 struct tegra_sflash_data { 104 struct device *dev; 105 struct spi_master *master; 106 spinlock_t lock; 107 108 struct clk *clk; 109 struct reset_control *rst; 110 void __iomem *base; 111 unsigned irq; 112 u32 cur_speed; 113 114 struct spi_device *cur_spi; 115 unsigned cur_pos; 116 unsigned cur_len; 117 unsigned bytes_per_word; 118 unsigned cur_direction; 119 unsigned curr_xfer_words; 120 121 unsigned cur_rx_pos; 122 unsigned cur_tx_pos; 123 124 u32 tx_status; 125 u32 rx_status; 126 u32 status_reg; 127 128 u32 def_command_reg; 129 u32 command_reg; 130 u32 dma_control_reg; 131 132 struct completion xfer_completion; 133 struct spi_transfer *curr_xfer; 134 }; 135 136 static int tegra_sflash_runtime_suspend(struct device *dev); 137 static int tegra_sflash_runtime_resume(struct device *dev); 138 139 static inline u32 tegra_sflash_readl(struct tegra_sflash_data *tsd, 140 unsigned long reg) 141 { 142 return readl(tsd->base + reg); 143 } 144 145 static inline void tegra_sflash_writel(struct tegra_sflash_data *tsd, 146 u32 val, unsigned long reg) 147 { 148 writel(val, tsd->base + reg); 149 } 150 151 static void tegra_sflash_clear_status(struct tegra_sflash_data *tsd) 152 { 153 /* Write 1 to clear status register */ 154 tegra_sflash_writel(tsd, SPI_RDY | SPI_FIFO_ERROR, SPI_STATUS); 155 } 156 157 static unsigned tegra_sflash_calculate_curr_xfer_param( 158 struct spi_device *spi, struct tegra_sflash_data *tsd, 159 struct spi_transfer *t) 160 { 161 unsigned remain_len = t->len - tsd->cur_pos; 162 unsigned max_word; 163 164 tsd->bytes_per_word = DIV_ROUND_UP(t->bits_per_word, 8); 165 max_word = remain_len / tsd->bytes_per_word; 166 if (max_word > SPI_FIFO_DEPTH) 167 max_word = SPI_FIFO_DEPTH; 168 tsd->curr_xfer_words = max_word; 169 return max_word; 170 } 171 172 static unsigned tegra_sflash_fill_tx_fifo_from_client_txbuf( 173 struct tegra_sflash_data *tsd, struct spi_transfer *t) 174 { 175 unsigned nbytes; 176 u32 status; 177 unsigned max_n_32bit = tsd->curr_xfer_words; 178 u8 *tx_buf = (u8 *)t->tx_buf + tsd->cur_tx_pos; 179 180 if (max_n_32bit > SPI_FIFO_DEPTH) 181 max_n_32bit = SPI_FIFO_DEPTH; 182 nbytes = max_n_32bit * tsd->bytes_per_word; 183 184 status = tegra_sflash_readl(tsd, SPI_STATUS); 185 while (!(status & SPI_TXF_FULL)) { 186 int i; 187 u32 x = 0; 188 189 for (i = 0; nbytes && (i < tsd->bytes_per_word); 190 i++, nbytes--) 191 x |= (u32)(*tx_buf++) << (i * 8); 192 tegra_sflash_writel(tsd, x, SPI_TX_FIFO); 193 if (!nbytes) 194 break; 195 196 status = tegra_sflash_readl(tsd, SPI_STATUS); 197 } 198 tsd->cur_tx_pos += max_n_32bit * tsd->bytes_per_word; 199 return max_n_32bit; 200 } 201 202 static int tegra_sflash_read_rx_fifo_to_client_rxbuf( 203 struct tegra_sflash_data *tsd, struct spi_transfer *t) 204 { 205 u32 status; 206 unsigned int read_words = 0; 207 u8 *rx_buf = (u8 *)t->rx_buf + tsd->cur_rx_pos; 208 209 status = tegra_sflash_readl(tsd, SPI_STATUS); 210 while (!(status & SPI_RXF_EMPTY)) { 211 int i; 212 u32 x = tegra_sflash_readl(tsd, SPI_RX_FIFO); 213 214 for (i = 0; (i < tsd->bytes_per_word); i++) 215 *rx_buf++ = (x >> (i*8)) & 0xFF; 216 read_words++; 217 status = tegra_sflash_readl(tsd, SPI_STATUS); 218 } 219 tsd->cur_rx_pos += read_words * tsd->bytes_per_word; 220 return 0; 221 } 222 223 static int tegra_sflash_start_cpu_based_transfer( 224 struct tegra_sflash_data *tsd, struct spi_transfer *t) 225 { 226 u32 val = 0; 227 unsigned cur_words; 228 229 if (tsd->cur_direction & DATA_DIR_TX) 230 val |= SPI_IE_TXC; 231 232 if (tsd->cur_direction & DATA_DIR_RX) 233 val |= SPI_IE_RXC; 234 235 tegra_sflash_writel(tsd, val, SPI_DMA_CTL); 236 tsd->dma_control_reg = val; 237 238 if (tsd->cur_direction & DATA_DIR_TX) 239 cur_words = tegra_sflash_fill_tx_fifo_from_client_txbuf(tsd, t); 240 else 241 cur_words = tsd->curr_xfer_words; 242 val |= SPI_DMA_BLK_COUNT(cur_words); 243 tegra_sflash_writel(tsd, val, SPI_DMA_CTL); 244 tsd->dma_control_reg = val; 245 val |= SPI_DMA_EN; 246 tegra_sflash_writel(tsd, val, SPI_DMA_CTL); 247 return 0; 248 } 249 250 static int tegra_sflash_start_transfer_one(struct spi_device *spi, 251 struct spi_transfer *t, bool is_first_of_msg, 252 bool is_single_xfer) 253 { 254 struct tegra_sflash_data *tsd = spi_master_get_devdata(spi->master); 255 u32 speed; 256 u32 command; 257 258 speed = t->speed_hz; 259 if (speed != tsd->cur_speed) { 260 clk_set_rate(tsd->clk, speed); 261 tsd->cur_speed = speed; 262 } 263 264 tsd->cur_spi = spi; 265 tsd->cur_pos = 0; 266 tsd->cur_rx_pos = 0; 267 tsd->cur_tx_pos = 0; 268 tsd->curr_xfer = t; 269 tegra_sflash_calculate_curr_xfer_param(spi, tsd, t); 270 if (is_first_of_msg) { 271 command = tsd->def_command_reg; 272 command |= SPI_BIT_LENGTH(t->bits_per_word - 1); 273 command |= SPI_CS_VAL_HIGH; 274 275 command &= ~SPI_MODES; 276 if (spi->mode & SPI_CPHA) 277 command |= SPI_CK_SDA_FALLING; 278 279 if (spi->mode & SPI_CPOL) 280 command |= SPI_ACTIVE_SCLK_DRIVE_HIGH; 281 else 282 command |= SPI_ACTIVE_SCLK_DRIVE_LOW; 283 command |= SPI_CS0_EN << spi->chip_select; 284 } else { 285 command = tsd->command_reg; 286 command &= ~SPI_BIT_LENGTH(~0); 287 command |= SPI_BIT_LENGTH(t->bits_per_word - 1); 288 command &= ~(SPI_RX_EN | SPI_TX_EN); 289 } 290 291 tsd->cur_direction = 0; 292 if (t->rx_buf) { 293 command |= SPI_RX_EN; 294 tsd->cur_direction |= DATA_DIR_RX; 295 } 296 if (t->tx_buf) { 297 command |= SPI_TX_EN; 298 tsd->cur_direction |= DATA_DIR_TX; 299 } 300 tegra_sflash_writel(tsd, command, SPI_COMMAND); 301 tsd->command_reg = command; 302 303 return tegra_sflash_start_cpu_based_transfer(tsd, t); 304 } 305 306 static int tegra_sflash_transfer_one_message(struct spi_master *master, 307 struct spi_message *msg) 308 { 309 bool is_first_msg = true; 310 int single_xfer; 311 struct tegra_sflash_data *tsd = spi_master_get_devdata(master); 312 struct spi_transfer *xfer; 313 struct spi_device *spi = msg->spi; 314 int ret; 315 316 msg->status = 0; 317 msg->actual_length = 0; 318 single_xfer = list_is_singular(&msg->transfers); 319 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 320 reinit_completion(&tsd->xfer_completion); 321 ret = tegra_sflash_start_transfer_one(spi, xfer, 322 is_first_msg, single_xfer); 323 if (ret < 0) { 324 dev_err(tsd->dev, 325 "spi can not start transfer, err %d\n", ret); 326 goto exit; 327 } 328 is_first_msg = false; 329 ret = wait_for_completion_timeout(&tsd->xfer_completion, 330 SPI_DMA_TIMEOUT); 331 if (WARN_ON(ret == 0)) { 332 dev_err(tsd->dev, 333 "spi transfer timeout, err %d\n", ret); 334 ret = -EIO; 335 goto exit; 336 } 337 338 if (tsd->tx_status || tsd->rx_status) { 339 dev_err(tsd->dev, "Error in Transfer\n"); 340 ret = -EIO; 341 goto exit; 342 } 343 msg->actual_length += xfer->len; 344 if (xfer->cs_change && xfer->delay_usecs) { 345 tegra_sflash_writel(tsd, tsd->def_command_reg, 346 SPI_COMMAND); 347 udelay(xfer->delay_usecs); 348 } 349 } 350 ret = 0; 351 exit: 352 tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND); 353 msg->status = ret; 354 spi_finalize_current_message(master); 355 return ret; 356 } 357 358 static irqreturn_t handle_cpu_based_xfer(struct tegra_sflash_data *tsd) 359 { 360 struct spi_transfer *t = tsd->curr_xfer; 361 unsigned long flags; 362 363 spin_lock_irqsave(&tsd->lock, flags); 364 if (tsd->tx_status || tsd->rx_status || (tsd->status_reg & SPI_BSY)) { 365 dev_err(tsd->dev, 366 "CpuXfer ERROR bit set 0x%x\n", tsd->status_reg); 367 dev_err(tsd->dev, 368 "CpuXfer 0x%08x:0x%08x\n", tsd->command_reg, 369 tsd->dma_control_reg); 370 reset_control_assert(tsd->rst); 371 udelay(2); 372 reset_control_deassert(tsd->rst); 373 complete(&tsd->xfer_completion); 374 goto exit; 375 } 376 377 if (tsd->cur_direction & DATA_DIR_RX) 378 tegra_sflash_read_rx_fifo_to_client_rxbuf(tsd, t); 379 380 if (tsd->cur_direction & DATA_DIR_TX) 381 tsd->cur_pos = tsd->cur_tx_pos; 382 else 383 tsd->cur_pos = tsd->cur_rx_pos; 384 385 if (tsd->cur_pos == t->len) { 386 complete(&tsd->xfer_completion); 387 goto exit; 388 } 389 390 tegra_sflash_calculate_curr_xfer_param(tsd->cur_spi, tsd, t); 391 tegra_sflash_start_cpu_based_transfer(tsd, t); 392 exit: 393 spin_unlock_irqrestore(&tsd->lock, flags); 394 return IRQ_HANDLED; 395 } 396 397 static irqreturn_t tegra_sflash_isr(int irq, void *context_data) 398 { 399 struct tegra_sflash_data *tsd = context_data; 400 401 tsd->status_reg = tegra_sflash_readl(tsd, SPI_STATUS); 402 if (tsd->cur_direction & DATA_DIR_TX) 403 tsd->tx_status = tsd->status_reg & SPI_TX_OVF; 404 405 if (tsd->cur_direction & DATA_DIR_RX) 406 tsd->rx_status = tsd->status_reg & SPI_RX_UNF; 407 tegra_sflash_clear_status(tsd); 408 409 return handle_cpu_based_xfer(tsd); 410 } 411 412 static const struct of_device_id tegra_sflash_of_match[] = { 413 { .compatible = "nvidia,tegra20-sflash", }, 414 {} 415 }; 416 MODULE_DEVICE_TABLE(of, tegra_sflash_of_match); 417 418 static int tegra_sflash_probe(struct platform_device *pdev) 419 { 420 struct spi_master *master; 421 struct tegra_sflash_data *tsd; 422 struct resource *r; 423 int ret; 424 const struct of_device_id *match; 425 426 match = of_match_device(tegra_sflash_of_match, &pdev->dev); 427 if (!match) { 428 dev_err(&pdev->dev, "Error: No device match found\n"); 429 return -ENODEV; 430 } 431 432 master = spi_alloc_master(&pdev->dev, sizeof(*tsd)); 433 if (!master) { 434 dev_err(&pdev->dev, "master allocation failed\n"); 435 return -ENOMEM; 436 } 437 438 /* the spi->mode bits understood by this driver: */ 439 master->mode_bits = SPI_CPOL | SPI_CPHA; 440 master->transfer_one_message = tegra_sflash_transfer_one_message; 441 master->auto_runtime_pm = true; 442 master->num_chipselect = MAX_CHIP_SELECT; 443 444 platform_set_drvdata(pdev, master); 445 tsd = spi_master_get_devdata(master); 446 tsd->master = master; 447 tsd->dev = &pdev->dev; 448 spin_lock_init(&tsd->lock); 449 450 if (of_property_read_u32(tsd->dev->of_node, "spi-max-frequency", 451 &master->max_speed_hz)) 452 master->max_speed_hz = 25000000; /* 25MHz */ 453 454 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 455 tsd->base = devm_ioremap_resource(&pdev->dev, r); 456 if (IS_ERR(tsd->base)) { 457 ret = PTR_ERR(tsd->base); 458 goto exit_free_master; 459 } 460 461 tsd->irq = platform_get_irq(pdev, 0); 462 ret = request_irq(tsd->irq, tegra_sflash_isr, 0, 463 dev_name(&pdev->dev), tsd); 464 if (ret < 0) { 465 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n", 466 tsd->irq); 467 goto exit_free_master; 468 } 469 470 tsd->clk = devm_clk_get(&pdev->dev, NULL); 471 if (IS_ERR(tsd->clk)) { 472 dev_err(&pdev->dev, "can not get clock\n"); 473 ret = PTR_ERR(tsd->clk); 474 goto exit_free_irq; 475 } 476 477 tsd->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi"); 478 if (IS_ERR(tsd->rst)) { 479 dev_err(&pdev->dev, "can not get reset\n"); 480 ret = PTR_ERR(tsd->rst); 481 goto exit_free_irq; 482 } 483 484 init_completion(&tsd->xfer_completion); 485 pm_runtime_enable(&pdev->dev); 486 if (!pm_runtime_enabled(&pdev->dev)) { 487 ret = tegra_sflash_runtime_resume(&pdev->dev); 488 if (ret) 489 goto exit_pm_disable; 490 } 491 492 ret = pm_runtime_get_sync(&pdev->dev); 493 if (ret < 0) { 494 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); 495 goto exit_pm_disable; 496 } 497 498 /* Reset controller */ 499 reset_control_assert(tsd->rst); 500 udelay(2); 501 reset_control_deassert(tsd->rst); 502 503 tsd->def_command_reg = SPI_M_S | SPI_CS_SW; 504 tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND); 505 pm_runtime_put(&pdev->dev); 506 507 master->dev.of_node = pdev->dev.of_node; 508 ret = devm_spi_register_master(&pdev->dev, master); 509 if (ret < 0) { 510 dev_err(&pdev->dev, "can not register to master err %d\n", ret); 511 goto exit_pm_disable; 512 } 513 return ret; 514 515 exit_pm_disable: 516 pm_runtime_disable(&pdev->dev); 517 if (!pm_runtime_status_suspended(&pdev->dev)) 518 tegra_sflash_runtime_suspend(&pdev->dev); 519 exit_free_irq: 520 free_irq(tsd->irq, tsd); 521 exit_free_master: 522 spi_master_put(master); 523 return ret; 524 } 525 526 static int tegra_sflash_remove(struct platform_device *pdev) 527 { 528 struct spi_master *master = platform_get_drvdata(pdev); 529 struct tegra_sflash_data *tsd = spi_master_get_devdata(master); 530 531 free_irq(tsd->irq, tsd); 532 533 pm_runtime_disable(&pdev->dev); 534 if (!pm_runtime_status_suspended(&pdev->dev)) 535 tegra_sflash_runtime_suspend(&pdev->dev); 536 537 return 0; 538 } 539 540 #ifdef CONFIG_PM_SLEEP 541 static int tegra_sflash_suspend(struct device *dev) 542 { 543 struct spi_master *master = dev_get_drvdata(dev); 544 545 return spi_master_suspend(master); 546 } 547 548 static int tegra_sflash_resume(struct device *dev) 549 { 550 struct spi_master *master = dev_get_drvdata(dev); 551 struct tegra_sflash_data *tsd = spi_master_get_devdata(master); 552 int ret; 553 554 ret = pm_runtime_get_sync(dev); 555 if (ret < 0) { 556 dev_err(dev, "pm runtime failed, e = %d\n", ret); 557 return ret; 558 } 559 tegra_sflash_writel(tsd, tsd->command_reg, SPI_COMMAND); 560 pm_runtime_put(dev); 561 562 return spi_master_resume(master); 563 } 564 #endif 565 566 static int tegra_sflash_runtime_suspend(struct device *dev) 567 { 568 struct spi_master *master = dev_get_drvdata(dev); 569 struct tegra_sflash_data *tsd = spi_master_get_devdata(master); 570 571 /* Flush all write which are in PPSB queue by reading back */ 572 tegra_sflash_readl(tsd, SPI_COMMAND); 573 574 clk_disable_unprepare(tsd->clk); 575 return 0; 576 } 577 578 static int tegra_sflash_runtime_resume(struct device *dev) 579 { 580 struct spi_master *master = dev_get_drvdata(dev); 581 struct tegra_sflash_data *tsd = spi_master_get_devdata(master); 582 int ret; 583 584 ret = clk_prepare_enable(tsd->clk); 585 if (ret < 0) { 586 dev_err(tsd->dev, "clk_prepare failed: %d\n", ret); 587 return ret; 588 } 589 return 0; 590 } 591 592 static const struct dev_pm_ops slink_pm_ops = { 593 SET_RUNTIME_PM_OPS(tegra_sflash_runtime_suspend, 594 tegra_sflash_runtime_resume, NULL) 595 SET_SYSTEM_SLEEP_PM_OPS(tegra_sflash_suspend, tegra_sflash_resume) 596 }; 597 static struct platform_driver tegra_sflash_driver = { 598 .driver = { 599 .name = "spi-tegra-sflash", 600 .pm = &slink_pm_ops, 601 .of_match_table = tegra_sflash_of_match, 602 }, 603 .probe = tegra_sflash_probe, 604 .remove = tegra_sflash_remove, 605 }; 606 module_platform_driver(tegra_sflash_driver); 607 608 MODULE_ALIAS("platform:spi-tegra-sflash"); 609 MODULE_DESCRIPTION("NVIDIA Tegra20 Serial Flash Controller Driver"); 610 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>"); 611 MODULE_LICENSE("GPL v2"); 612