1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SPI driver for Nvidia's Tegra20 Serial Flash Controller. 4 * 5 * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved. 6 * 7 * Author: Laxman Dewangan <ldewangan@nvidia.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/completion.h> 12 #include <linux/delay.h> 13 #include <linux/err.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/kernel.h> 17 #include <linux/kthread.h> 18 #include <linux/module.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/reset.h> 24 #include <linux/spi/spi.h> 25 26 #define SPI_COMMAND 0x000 27 #define SPI_GO BIT(30) 28 #define SPI_M_S BIT(28) 29 #define SPI_ACTIVE_SCLK_MASK (0x3 << 26) 30 #define SPI_ACTIVE_SCLK_DRIVE_LOW (0 << 26) 31 #define SPI_ACTIVE_SCLK_DRIVE_HIGH (1 << 26) 32 #define SPI_ACTIVE_SCLK_PULL_LOW (2 << 26) 33 #define SPI_ACTIVE_SCLK_PULL_HIGH (3 << 26) 34 35 #define SPI_CK_SDA_FALLING (1 << 21) 36 #define SPI_CK_SDA_RISING (0 << 21) 37 #define SPI_CK_SDA_MASK (1 << 21) 38 #define SPI_ACTIVE_SDA (0x3 << 18) 39 #define SPI_ACTIVE_SDA_DRIVE_LOW (0 << 18) 40 #define SPI_ACTIVE_SDA_DRIVE_HIGH (1 << 18) 41 #define SPI_ACTIVE_SDA_PULL_LOW (2 << 18) 42 #define SPI_ACTIVE_SDA_PULL_HIGH (3 << 18) 43 44 #define SPI_CS_POL_INVERT BIT(16) 45 #define SPI_TX_EN BIT(15) 46 #define SPI_RX_EN BIT(14) 47 #define SPI_CS_VAL_HIGH BIT(13) 48 #define SPI_CS_VAL_LOW 0x0 49 #define SPI_CS_SW BIT(12) 50 #define SPI_CS_HW 0x0 51 #define SPI_CS_DELAY_MASK (7 << 9) 52 #define SPI_CS3_EN BIT(8) 53 #define SPI_CS2_EN BIT(7) 54 #define SPI_CS1_EN BIT(6) 55 #define SPI_CS0_EN BIT(5) 56 57 #define SPI_CS_MASK (SPI_CS3_EN | SPI_CS2_EN | \ 58 SPI_CS1_EN | SPI_CS0_EN) 59 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0) 60 61 #define SPI_MODES (SPI_ACTIVE_SCLK_MASK | SPI_CK_SDA_MASK) 62 63 #define SPI_STATUS 0x004 64 #define SPI_BSY BIT(31) 65 #define SPI_RDY BIT(30) 66 #define SPI_TXF_FLUSH BIT(29) 67 #define SPI_RXF_FLUSH BIT(28) 68 #define SPI_RX_UNF BIT(27) 69 #define SPI_TX_OVF BIT(26) 70 #define SPI_RXF_EMPTY BIT(25) 71 #define SPI_RXF_FULL BIT(24) 72 #define SPI_TXF_EMPTY BIT(23) 73 #define SPI_TXF_FULL BIT(22) 74 #define SPI_BLK_CNT(count) (((count) & 0xffff) + 1) 75 76 #define SPI_FIFO_ERROR (SPI_RX_UNF | SPI_TX_OVF) 77 #define SPI_FIFO_EMPTY (SPI_TX_EMPTY | SPI_RX_EMPTY) 78 79 #define SPI_RX_CMP 0x8 80 #define SPI_DMA_CTL 0x0C 81 #define SPI_DMA_EN BIT(31) 82 #define SPI_IE_RXC BIT(27) 83 #define SPI_IE_TXC BIT(26) 84 #define SPI_PACKED BIT(20) 85 #define SPI_RX_TRIG_MASK (0x3 << 18) 86 #define SPI_RX_TRIG_1W (0x0 << 18) 87 #define SPI_RX_TRIG_4W (0x1 << 18) 88 #define SPI_TX_TRIG_MASK (0x3 << 16) 89 #define SPI_TX_TRIG_1W (0x0 << 16) 90 #define SPI_TX_TRIG_4W (0x1 << 16) 91 #define SPI_DMA_BLK_COUNT(count) (((count) - 1) & 0xFFFF) 92 93 #define SPI_TX_FIFO 0x10 94 #define SPI_RX_FIFO 0x20 95 96 #define DATA_DIR_TX (1 << 0) 97 #define DATA_DIR_RX (1 << 1) 98 99 #define MAX_CHIP_SELECT 4 100 #define SPI_FIFO_DEPTH 4 101 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 102 103 struct tegra_sflash_data { 104 struct device *dev; 105 struct spi_master *master; 106 spinlock_t lock; 107 108 struct clk *clk; 109 struct reset_control *rst; 110 void __iomem *base; 111 unsigned irq; 112 u32 cur_speed; 113 114 struct spi_device *cur_spi; 115 unsigned cur_pos; 116 unsigned cur_len; 117 unsigned bytes_per_word; 118 unsigned cur_direction; 119 unsigned curr_xfer_words; 120 121 unsigned cur_rx_pos; 122 unsigned cur_tx_pos; 123 124 u32 tx_status; 125 u32 rx_status; 126 u32 status_reg; 127 128 u32 def_command_reg; 129 u32 command_reg; 130 u32 dma_control_reg; 131 132 struct completion xfer_completion; 133 struct spi_transfer *curr_xfer; 134 }; 135 136 static int tegra_sflash_runtime_suspend(struct device *dev); 137 static int tegra_sflash_runtime_resume(struct device *dev); 138 139 static inline u32 tegra_sflash_readl(struct tegra_sflash_data *tsd, 140 unsigned long reg) 141 { 142 return readl(tsd->base + reg); 143 } 144 145 static inline void tegra_sflash_writel(struct tegra_sflash_data *tsd, 146 u32 val, unsigned long reg) 147 { 148 writel(val, tsd->base + reg); 149 } 150 151 static void tegra_sflash_clear_status(struct tegra_sflash_data *tsd) 152 { 153 /* Write 1 to clear status register */ 154 tegra_sflash_writel(tsd, SPI_RDY | SPI_FIFO_ERROR, SPI_STATUS); 155 } 156 157 static unsigned tegra_sflash_calculate_curr_xfer_param( 158 struct spi_device *spi, struct tegra_sflash_data *tsd, 159 struct spi_transfer *t) 160 { 161 unsigned remain_len = t->len - tsd->cur_pos; 162 unsigned max_word; 163 164 tsd->bytes_per_word = DIV_ROUND_UP(t->bits_per_word, 8); 165 max_word = remain_len / tsd->bytes_per_word; 166 if (max_word > SPI_FIFO_DEPTH) 167 max_word = SPI_FIFO_DEPTH; 168 tsd->curr_xfer_words = max_word; 169 return max_word; 170 } 171 172 static unsigned tegra_sflash_fill_tx_fifo_from_client_txbuf( 173 struct tegra_sflash_data *tsd, struct spi_transfer *t) 174 { 175 unsigned nbytes; 176 u32 status; 177 unsigned max_n_32bit = tsd->curr_xfer_words; 178 u8 *tx_buf = (u8 *)t->tx_buf + tsd->cur_tx_pos; 179 180 if (max_n_32bit > SPI_FIFO_DEPTH) 181 max_n_32bit = SPI_FIFO_DEPTH; 182 nbytes = max_n_32bit * tsd->bytes_per_word; 183 184 status = tegra_sflash_readl(tsd, SPI_STATUS); 185 while (!(status & SPI_TXF_FULL)) { 186 int i; 187 u32 x = 0; 188 189 for (i = 0; nbytes && (i < tsd->bytes_per_word); 190 i++, nbytes--) 191 x |= (u32)(*tx_buf++) << (i * 8); 192 tegra_sflash_writel(tsd, x, SPI_TX_FIFO); 193 if (!nbytes) 194 break; 195 196 status = tegra_sflash_readl(tsd, SPI_STATUS); 197 } 198 tsd->cur_tx_pos += max_n_32bit * tsd->bytes_per_word; 199 return max_n_32bit; 200 } 201 202 static int tegra_sflash_read_rx_fifo_to_client_rxbuf( 203 struct tegra_sflash_data *tsd, struct spi_transfer *t) 204 { 205 u32 status; 206 unsigned int read_words = 0; 207 u8 *rx_buf = (u8 *)t->rx_buf + tsd->cur_rx_pos; 208 209 status = tegra_sflash_readl(tsd, SPI_STATUS); 210 while (!(status & SPI_RXF_EMPTY)) { 211 int i; 212 u32 x = tegra_sflash_readl(tsd, SPI_RX_FIFO); 213 214 for (i = 0; (i < tsd->bytes_per_word); i++) 215 *rx_buf++ = (x >> (i*8)) & 0xFF; 216 read_words++; 217 status = tegra_sflash_readl(tsd, SPI_STATUS); 218 } 219 tsd->cur_rx_pos += read_words * tsd->bytes_per_word; 220 return 0; 221 } 222 223 static int tegra_sflash_start_cpu_based_transfer( 224 struct tegra_sflash_data *tsd, struct spi_transfer *t) 225 { 226 u32 val = 0; 227 unsigned cur_words; 228 229 if (tsd->cur_direction & DATA_DIR_TX) 230 val |= SPI_IE_TXC; 231 232 if (tsd->cur_direction & DATA_DIR_RX) 233 val |= SPI_IE_RXC; 234 235 tegra_sflash_writel(tsd, val, SPI_DMA_CTL); 236 tsd->dma_control_reg = val; 237 238 if (tsd->cur_direction & DATA_DIR_TX) 239 cur_words = tegra_sflash_fill_tx_fifo_from_client_txbuf(tsd, t); 240 else 241 cur_words = tsd->curr_xfer_words; 242 val |= SPI_DMA_BLK_COUNT(cur_words); 243 tegra_sflash_writel(tsd, val, SPI_DMA_CTL); 244 tsd->dma_control_reg = val; 245 val |= SPI_DMA_EN; 246 tegra_sflash_writel(tsd, val, SPI_DMA_CTL); 247 return 0; 248 } 249 250 static int tegra_sflash_start_transfer_one(struct spi_device *spi, 251 struct spi_transfer *t, bool is_first_of_msg, 252 bool is_single_xfer) 253 { 254 struct tegra_sflash_data *tsd = spi_master_get_devdata(spi->master); 255 u32 speed; 256 u32 command; 257 258 speed = t->speed_hz; 259 if (speed != tsd->cur_speed) { 260 clk_set_rate(tsd->clk, speed); 261 tsd->cur_speed = speed; 262 } 263 264 tsd->cur_spi = spi; 265 tsd->cur_pos = 0; 266 tsd->cur_rx_pos = 0; 267 tsd->cur_tx_pos = 0; 268 tsd->curr_xfer = t; 269 tegra_sflash_calculate_curr_xfer_param(spi, tsd, t); 270 if (is_first_of_msg) { 271 command = tsd->def_command_reg; 272 command |= SPI_BIT_LENGTH(t->bits_per_word - 1); 273 command |= SPI_CS_VAL_HIGH; 274 275 command &= ~SPI_MODES; 276 if (spi->mode & SPI_CPHA) 277 command |= SPI_CK_SDA_FALLING; 278 279 if (spi->mode & SPI_CPOL) 280 command |= SPI_ACTIVE_SCLK_DRIVE_HIGH; 281 else 282 command |= SPI_ACTIVE_SCLK_DRIVE_LOW; 283 command |= SPI_CS0_EN << spi->chip_select; 284 } else { 285 command = tsd->command_reg; 286 command &= ~SPI_BIT_LENGTH(~0); 287 command |= SPI_BIT_LENGTH(t->bits_per_word - 1); 288 command &= ~(SPI_RX_EN | SPI_TX_EN); 289 } 290 291 tsd->cur_direction = 0; 292 if (t->rx_buf) { 293 command |= SPI_RX_EN; 294 tsd->cur_direction |= DATA_DIR_RX; 295 } 296 if (t->tx_buf) { 297 command |= SPI_TX_EN; 298 tsd->cur_direction |= DATA_DIR_TX; 299 } 300 tegra_sflash_writel(tsd, command, SPI_COMMAND); 301 tsd->command_reg = command; 302 303 return tegra_sflash_start_cpu_based_transfer(tsd, t); 304 } 305 306 static int tegra_sflash_transfer_one_message(struct spi_master *master, 307 struct spi_message *msg) 308 { 309 bool is_first_msg = true; 310 int single_xfer; 311 struct tegra_sflash_data *tsd = spi_master_get_devdata(master); 312 struct spi_transfer *xfer; 313 struct spi_device *spi = msg->spi; 314 int ret; 315 316 msg->status = 0; 317 msg->actual_length = 0; 318 single_xfer = list_is_singular(&msg->transfers); 319 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 320 reinit_completion(&tsd->xfer_completion); 321 ret = tegra_sflash_start_transfer_one(spi, xfer, 322 is_first_msg, single_xfer); 323 if (ret < 0) { 324 dev_err(tsd->dev, 325 "spi can not start transfer, err %d\n", ret); 326 goto exit; 327 } 328 is_first_msg = false; 329 ret = wait_for_completion_timeout(&tsd->xfer_completion, 330 SPI_DMA_TIMEOUT); 331 if (WARN_ON(ret == 0)) { 332 dev_err(tsd->dev, 333 "spi transfer timeout, err %d\n", ret); 334 ret = -EIO; 335 goto exit; 336 } 337 338 if (tsd->tx_status || tsd->rx_status) { 339 dev_err(tsd->dev, "Error in Transfer\n"); 340 ret = -EIO; 341 goto exit; 342 } 343 msg->actual_length += xfer->len; 344 if (xfer->cs_change && 345 (xfer->delay_usecs || xfer->delay.value)) { 346 tegra_sflash_writel(tsd, tsd->def_command_reg, 347 SPI_COMMAND); 348 spi_transfer_delay_exec(xfer); 349 } 350 } 351 ret = 0; 352 exit: 353 tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND); 354 msg->status = ret; 355 spi_finalize_current_message(master); 356 return ret; 357 } 358 359 static irqreturn_t handle_cpu_based_xfer(struct tegra_sflash_data *tsd) 360 { 361 struct spi_transfer *t = tsd->curr_xfer; 362 unsigned long flags; 363 364 spin_lock_irqsave(&tsd->lock, flags); 365 if (tsd->tx_status || tsd->rx_status || (tsd->status_reg & SPI_BSY)) { 366 dev_err(tsd->dev, 367 "CpuXfer ERROR bit set 0x%x\n", tsd->status_reg); 368 dev_err(tsd->dev, 369 "CpuXfer 0x%08x:0x%08x\n", tsd->command_reg, 370 tsd->dma_control_reg); 371 reset_control_assert(tsd->rst); 372 udelay(2); 373 reset_control_deassert(tsd->rst); 374 complete(&tsd->xfer_completion); 375 goto exit; 376 } 377 378 if (tsd->cur_direction & DATA_DIR_RX) 379 tegra_sflash_read_rx_fifo_to_client_rxbuf(tsd, t); 380 381 if (tsd->cur_direction & DATA_DIR_TX) 382 tsd->cur_pos = tsd->cur_tx_pos; 383 else 384 tsd->cur_pos = tsd->cur_rx_pos; 385 386 if (tsd->cur_pos == t->len) { 387 complete(&tsd->xfer_completion); 388 goto exit; 389 } 390 391 tegra_sflash_calculate_curr_xfer_param(tsd->cur_spi, tsd, t); 392 tegra_sflash_start_cpu_based_transfer(tsd, t); 393 exit: 394 spin_unlock_irqrestore(&tsd->lock, flags); 395 return IRQ_HANDLED; 396 } 397 398 static irqreturn_t tegra_sflash_isr(int irq, void *context_data) 399 { 400 struct tegra_sflash_data *tsd = context_data; 401 402 tsd->status_reg = tegra_sflash_readl(tsd, SPI_STATUS); 403 if (tsd->cur_direction & DATA_DIR_TX) 404 tsd->tx_status = tsd->status_reg & SPI_TX_OVF; 405 406 if (tsd->cur_direction & DATA_DIR_RX) 407 tsd->rx_status = tsd->status_reg & SPI_RX_UNF; 408 tegra_sflash_clear_status(tsd); 409 410 return handle_cpu_based_xfer(tsd); 411 } 412 413 static const struct of_device_id tegra_sflash_of_match[] = { 414 { .compatible = "nvidia,tegra20-sflash", }, 415 {} 416 }; 417 MODULE_DEVICE_TABLE(of, tegra_sflash_of_match); 418 419 static int tegra_sflash_probe(struct platform_device *pdev) 420 { 421 struct spi_master *master; 422 struct tegra_sflash_data *tsd; 423 int ret; 424 const struct of_device_id *match; 425 426 match = of_match_device(tegra_sflash_of_match, &pdev->dev); 427 if (!match) { 428 dev_err(&pdev->dev, "Error: No device match found\n"); 429 return -ENODEV; 430 } 431 432 master = spi_alloc_master(&pdev->dev, sizeof(*tsd)); 433 if (!master) { 434 dev_err(&pdev->dev, "master allocation failed\n"); 435 return -ENOMEM; 436 } 437 438 /* the spi->mode bits understood by this driver: */ 439 master->mode_bits = SPI_CPOL | SPI_CPHA; 440 master->transfer_one_message = tegra_sflash_transfer_one_message; 441 master->auto_runtime_pm = true; 442 master->num_chipselect = MAX_CHIP_SELECT; 443 444 platform_set_drvdata(pdev, master); 445 tsd = spi_master_get_devdata(master); 446 tsd->master = master; 447 tsd->dev = &pdev->dev; 448 spin_lock_init(&tsd->lock); 449 450 if (of_property_read_u32(tsd->dev->of_node, "spi-max-frequency", 451 &master->max_speed_hz)) 452 master->max_speed_hz = 25000000; /* 25MHz */ 453 454 tsd->base = devm_platform_ioremap_resource(pdev, 0); 455 if (IS_ERR(tsd->base)) { 456 ret = PTR_ERR(tsd->base); 457 goto exit_free_master; 458 } 459 460 tsd->irq = platform_get_irq(pdev, 0); 461 ret = request_irq(tsd->irq, tegra_sflash_isr, 0, 462 dev_name(&pdev->dev), tsd); 463 if (ret < 0) { 464 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n", 465 tsd->irq); 466 goto exit_free_master; 467 } 468 469 tsd->clk = devm_clk_get(&pdev->dev, NULL); 470 if (IS_ERR(tsd->clk)) { 471 dev_err(&pdev->dev, "can not get clock\n"); 472 ret = PTR_ERR(tsd->clk); 473 goto exit_free_irq; 474 } 475 476 tsd->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi"); 477 if (IS_ERR(tsd->rst)) { 478 dev_err(&pdev->dev, "can not get reset\n"); 479 ret = PTR_ERR(tsd->rst); 480 goto exit_free_irq; 481 } 482 483 init_completion(&tsd->xfer_completion); 484 pm_runtime_enable(&pdev->dev); 485 if (!pm_runtime_enabled(&pdev->dev)) { 486 ret = tegra_sflash_runtime_resume(&pdev->dev); 487 if (ret) 488 goto exit_pm_disable; 489 } 490 491 ret = pm_runtime_get_sync(&pdev->dev); 492 if (ret < 0) { 493 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); 494 goto exit_pm_disable; 495 } 496 497 /* Reset controller */ 498 reset_control_assert(tsd->rst); 499 udelay(2); 500 reset_control_deassert(tsd->rst); 501 502 tsd->def_command_reg = SPI_M_S | SPI_CS_SW; 503 tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND); 504 pm_runtime_put(&pdev->dev); 505 506 master->dev.of_node = pdev->dev.of_node; 507 ret = devm_spi_register_master(&pdev->dev, master); 508 if (ret < 0) { 509 dev_err(&pdev->dev, "can not register to master err %d\n", ret); 510 goto exit_pm_disable; 511 } 512 return ret; 513 514 exit_pm_disable: 515 pm_runtime_disable(&pdev->dev); 516 if (!pm_runtime_status_suspended(&pdev->dev)) 517 tegra_sflash_runtime_suspend(&pdev->dev); 518 exit_free_irq: 519 free_irq(tsd->irq, tsd); 520 exit_free_master: 521 spi_master_put(master); 522 return ret; 523 } 524 525 static int tegra_sflash_remove(struct platform_device *pdev) 526 { 527 struct spi_master *master = platform_get_drvdata(pdev); 528 struct tegra_sflash_data *tsd = spi_master_get_devdata(master); 529 530 free_irq(tsd->irq, tsd); 531 532 pm_runtime_disable(&pdev->dev); 533 if (!pm_runtime_status_suspended(&pdev->dev)) 534 tegra_sflash_runtime_suspend(&pdev->dev); 535 536 return 0; 537 } 538 539 #ifdef CONFIG_PM_SLEEP 540 static int tegra_sflash_suspend(struct device *dev) 541 { 542 struct spi_master *master = dev_get_drvdata(dev); 543 544 return spi_master_suspend(master); 545 } 546 547 static int tegra_sflash_resume(struct device *dev) 548 { 549 struct spi_master *master = dev_get_drvdata(dev); 550 struct tegra_sflash_data *tsd = spi_master_get_devdata(master); 551 int ret; 552 553 ret = pm_runtime_get_sync(dev); 554 if (ret < 0) { 555 dev_err(dev, "pm runtime failed, e = %d\n", ret); 556 return ret; 557 } 558 tegra_sflash_writel(tsd, tsd->command_reg, SPI_COMMAND); 559 pm_runtime_put(dev); 560 561 return spi_master_resume(master); 562 } 563 #endif 564 565 static int tegra_sflash_runtime_suspend(struct device *dev) 566 { 567 struct spi_master *master = dev_get_drvdata(dev); 568 struct tegra_sflash_data *tsd = spi_master_get_devdata(master); 569 570 /* Flush all write which are in PPSB queue by reading back */ 571 tegra_sflash_readl(tsd, SPI_COMMAND); 572 573 clk_disable_unprepare(tsd->clk); 574 return 0; 575 } 576 577 static int tegra_sflash_runtime_resume(struct device *dev) 578 { 579 struct spi_master *master = dev_get_drvdata(dev); 580 struct tegra_sflash_data *tsd = spi_master_get_devdata(master); 581 int ret; 582 583 ret = clk_prepare_enable(tsd->clk); 584 if (ret < 0) { 585 dev_err(tsd->dev, "clk_prepare failed: %d\n", ret); 586 return ret; 587 } 588 return 0; 589 } 590 591 static const struct dev_pm_ops slink_pm_ops = { 592 SET_RUNTIME_PM_OPS(tegra_sflash_runtime_suspend, 593 tegra_sflash_runtime_resume, NULL) 594 SET_SYSTEM_SLEEP_PM_OPS(tegra_sflash_suspend, tegra_sflash_resume) 595 }; 596 static struct platform_driver tegra_sflash_driver = { 597 .driver = { 598 .name = "spi-tegra-sflash", 599 .pm = &slink_pm_ops, 600 .of_match_table = tegra_sflash_of_match, 601 }, 602 .probe = tegra_sflash_probe, 603 .remove = tegra_sflash_remove, 604 }; 605 module_platform_driver(tegra_sflash_driver); 606 607 MODULE_ALIAS("platform:spi-tegra-sflash"); 608 MODULE_DESCRIPTION("NVIDIA Tegra20 Serial Flash Controller Driver"); 609 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>"); 610 MODULE_LICENSE("GPL v2"); 611