xref: /openbmc/linux/drivers/spi/spi-tegra114.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 /*
2  * SPI driver for NVIDIA's Tegra114 SPI Controller.
3  *
4  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/kthread.h>
30 #include <linux/module.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/reset.h>
36 #include <linux/spi/spi.h>
37 
38 #define SPI_COMMAND1				0x000
39 #define SPI_BIT_LENGTH(x)			(((x) & 0x1f) << 0)
40 #define SPI_PACKED				(1 << 5)
41 #define SPI_TX_EN				(1 << 11)
42 #define SPI_RX_EN				(1 << 12)
43 #define SPI_BOTH_EN_BYTE			(1 << 13)
44 #define SPI_BOTH_EN_BIT				(1 << 14)
45 #define SPI_LSBYTE_FE				(1 << 15)
46 #define SPI_LSBIT_FE				(1 << 16)
47 #define SPI_BIDIROE				(1 << 17)
48 #define SPI_IDLE_SDA_DRIVE_LOW			(0 << 18)
49 #define SPI_IDLE_SDA_DRIVE_HIGH			(1 << 18)
50 #define SPI_IDLE_SDA_PULL_LOW			(2 << 18)
51 #define SPI_IDLE_SDA_PULL_HIGH			(3 << 18)
52 #define SPI_IDLE_SDA_MASK			(3 << 18)
53 #define SPI_CS_SW_VAL				(1 << 20)
54 #define SPI_CS_SW_HW				(1 << 21)
55 /* SPI_CS_POL_INACTIVE bits are default high */
56 						/* n from 0 to 3 */
57 #define SPI_CS_POL_INACTIVE(n)			(1 << (22 + (n)))
58 #define SPI_CS_POL_INACTIVE_MASK		(0xF << 22)
59 
60 #define SPI_CS_SEL_0				(0 << 26)
61 #define SPI_CS_SEL_1				(1 << 26)
62 #define SPI_CS_SEL_2				(2 << 26)
63 #define SPI_CS_SEL_3				(3 << 26)
64 #define SPI_CS_SEL_MASK				(3 << 26)
65 #define SPI_CS_SEL(x)				(((x) & 0x3) << 26)
66 #define SPI_CONTROL_MODE_0			(0 << 28)
67 #define SPI_CONTROL_MODE_1			(1 << 28)
68 #define SPI_CONTROL_MODE_2			(2 << 28)
69 #define SPI_CONTROL_MODE_3			(3 << 28)
70 #define SPI_CONTROL_MODE_MASK			(3 << 28)
71 #define SPI_MODE_SEL(x)				(((x) & 0x3) << 28)
72 #define SPI_M_S					(1 << 30)
73 #define SPI_PIO					(1 << 31)
74 
75 #define SPI_COMMAND2				0x004
76 #define SPI_TX_TAP_DELAY(x)			(((x) & 0x3F) << 6)
77 #define SPI_RX_TAP_DELAY(x)			(((x) & 0x3F) << 0)
78 
79 #define SPI_CS_TIMING1				0x008
80 #define SPI_SETUP_HOLD(setup, hold)		(((setup) << 4) | (hold))
81 #define SPI_CS_SETUP_HOLD(reg, cs, val)			\
82 		((((val) & 0xFFu) << ((cs) * 8)) |	\
83 		((reg) & ~(0xFFu << ((cs) * 8))))
84 
85 #define SPI_CS_TIMING2				0x00C
86 #define CYCLES_BETWEEN_PACKETS_0(x)		(((x) & 0x1F) << 0)
87 #define CS_ACTIVE_BETWEEN_PACKETS_0		(1 << 5)
88 #define CYCLES_BETWEEN_PACKETS_1(x)		(((x) & 0x1F) << 8)
89 #define CS_ACTIVE_BETWEEN_PACKETS_1		(1 << 13)
90 #define CYCLES_BETWEEN_PACKETS_2(x)		(((x) & 0x1F) << 16)
91 #define CS_ACTIVE_BETWEEN_PACKETS_2		(1 << 21)
92 #define CYCLES_BETWEEN_PACKETS_3(x)		(((x) & 0x1F) << 24)
93 #define CS_ACTIVE_BETWEEN_PACKETS_3		(1 << 29)
94 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)		\
95 		(reg = (((val) & 0x1) << ((cs) * 8 + 5)) |	\
96 			((reg) & ~(1 << ((cs) * 8 + 5))))
97 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)		\
98 		(reg = (((val) & 0xF) << ((cs) * 8)) |		\
99 			((reg) & ~(0xF << ((cs) * 8))))
100 
101 #define SPI_TRANS_STATUS			0x010
102 #define SPI_BLK_CNT(val)			(((val) >> 0) & 0xFFFF)
103 #define SPI_SLV_IDLE_COUNT(val)			(((val) >> 16) & 0xFF)
104 #define SPI_RDY					(1 << 30)
105 
106 #define SPI_FIFO_STATUS				0x014
107 #define SPI_RX_FIFO_EMPTY			(1 << 0)
108 #define SPI_RX_FIFO_FULL			(1 << 1)
109 #define SPI_TX_FIFO_EMPTY			(1 << 2)
110 #define SPI_TX_FIFO_FULL			(1 << 3)
111 #define SPI_RX_FIFO_UNF				(1 << 4)
112 #define SPI_RX_FIFO_OVF				(1 << 5)
113 #define SPI_TX_FIFO_UNF				(1 << 6)
114 #define SPI_TX_FIFO_OVF				(1 << 7)
115 #define SPI_ERR					(1 << 8)
116 #define SPI_TX_FIFO_FLUSH			(1 << 14)
117 #define SPI_RX_FIFO_FLUSH			(1 << 15)
118 #define SPI_TX_FIFO_EMPTY_COUNT(val)		(((val) >> 16) & 0x7F)
119 #define SPI_RX_FIFO_FULL_COUNT(val)		(((val) >> 23) & 0x7F)
120 #define SPI_FRAME_END				(1 << 30)
121 #define SPI_CS_INACTIVE				(1 << 31)
122 
123 #define SPI_FIFO_ERROR				(SPI_RX_FIFO_UNF | \
124 			SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125 #define SPI_FIFO_EMPTY			(SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
126 
127 #define SPI_TX_DATA				0x018
128 #define SPI_RX_DATA				0x01C
129 
130 #define SPI_DMA_CTL				0x020
131 #define SPI_TX_TRIG_1				(0 << 15)
132 #define SPI_TX_TRIG_4				(1 << 15)
133 #define SPI_TX_TRIG_8				(2 << 15)
134 #define SPI_TX_TRIG_16				(3 << 15)
135 #define SPI_TX_TRIG_MASK			(3 << 15)
136 #define SPI_RX_TRIG_1				(0 << 19)
137 #define SPI_RX_TRIG_4				(1 << 19)
138 #define SPI_RX_TRIG_8				(2 << 19)
139 #define SPI_RX_TRIG_16				(3 << 19)
140 #define SPI_RX_TRIG_MASK			(3 << 19)
141 #define SPI_IE_TX				(1 << 28)
142 #define SPI_IE_RX				(1 << 29)
143 #define SPI_CONT				(1 << 30)
144 #define SPI_DMA					(1 << 31)
145 #define SPI_DMA_EN				SPI_DMA
146 
147 #define SPI_DMA_BLK				0x024
148 #define SPI_DMA_BLK_SET(x)			(((x) & 0xFFFF) << 0)
149 
150 #define SPI_TX_FIFO				0x108
151 #define SPI_RX_FIFO				0x188
152 #define SPI_INTR_MASK				0x18c
153 #define SPI_INTR_ALL_MASK			(0x1fUL << 25)
154 #define MAX_CHIP_SELECT				4
155 #define SPI_FIFO_DEPTH				64
156 #define DATA_DIR_TX				(1 << 0)
157 #define DATA_DIR_RX				(1 << 1)
158 
159 #define SPI_DMA_TIMEOUT				(msecs_to_jiffies(1000))
160 #define DEFAULT_SPI_DMA_BUF_LEN			(16*1024)
161 #define TX_FIFO_EMPTY_COUNT_MAX			SPI_TX_FIFO_EMPTY_COUNT(0x40)
162 #define RX_FIFO_FULL_COUNT_ZERO			SPI_RX_FIFO_FULL_COUNT(0)
163 #define MAX_HOLD_CYCLES				16
164 #define SPI_DEFAULT_SPEED			25000000
165 
166 struct tegra_spi_soc_data {
167 	bool has_intr_mask_reg;
168 };
169 
170 struct tegra_spi_data {
171 	struct device				*dev;
172 	struct spi_master			*master;
173 	spinlock_t				lock;
174 
175 	struct clk				*clk;
176 	struct reset_control			*rst;
177 	void __iomem				*base;
178 	phys_addr_t				phys;
179 	unsigned				irq;
180 	u32					cur_speed;
181 
182 	struct spi_device			*cur_spi;
183 	struct spi_device			*cs_control;
184 	unsigned				cur_pos;
185 	unsigned				words_per_32bit;
186 	unsigned				bytes_per_word;
187 	unsigned				curr_dma_words;
188 	unsigned				cur_direction;
189 
190 	unsigned				cur_rx_pos;
191 	unsigned				cur_tx_pos;
192 
193 	unsigned				dma_buf_size;
194 	unsigned				max_buf_size;
195 	bool					is_curr_dma_xfer;
196 
197 	struct completion			rx_dma_complete;
198 	struct completion			tx_dma_complete;
199 
200 	u32					tx_status;
201 	u32					rx_status;
202 	u32					status_reg;
203 	bool					is_packed;
204 
205 	u32					command1_reg;
206 	u32					dma_control_reg;
207 	u32					def_command1_reg;
208 
209 	struct completion			xfer_completion;
210 	struct spi_transfer			*curr_xfer;
211 	struct dma_chan				*rx_dma_chan;
212 	u32					*rx_dma_buf;
213 	dma_addr_t				rx_dma_phys;
214 	struct dma_async_tx_descriptor		*rx_dma_desc;
215 
216 	struct dma_chan				*tx_dma_chan;
217 	u32					*tx_dma_buf;
218 	dma_addr_t				tx_dma_phys;
219 	struct dma_async_tx_descriptor		*tx_dma_desc;
220 	const struct tegra_spi_soc_data		*soc_data;
221 };
222 
223 static int tegra_spi_runtime_suspend(struct device *dev);
224 static int tegra_spi_runtime_resume(struct device *dev);
225 
226 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
227 		unsigned long reg)
228 {
229 	return readl(tspi->base + reg);
230 }
231 
232 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
233 		u32 val, unsigned long reg)
234 {
235 	writel(val, tspi->base + reg);
236 
237 	/* Read back register to make sure that register writes completed */
238 	if (reg != SPI_TX_FIFO)
239 		readl(tspi->base + SPI_COMMAND1);
240 }
241 
242 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
243 {
244 	u32 val;
245 
246 	/* Write 1 to clear status register */
247 	val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
248 	tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
249 
250 	/* Clear fifo status error if any */
251 	val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
252 	if (val & SPI_ERR)
253 		tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
254 				SPI_FIFO_STATUS);
255 }
256 
257 static unsigned tegra_spi_calculate_curr_xfer_param(
258 	struct spi_device *spi, struct tegra_spi_data *tspi,
259 	struct spi_transfer *t)
260 {
261 	unsigned remain_len = t->len - tspi->cur_pos;
262 	unsigned max_word;
263 	unsigned bits_per_word = t->bits_per_word;
264 	unsigned max_len;
265 	unsigned total_fifo_words;
266 
267 	tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
268 
269 	if ((bits_per_word == 8 || bits_per_word == 16 ||
270 	     bits_per_word == 32) && t->len > 3) {
271 		tspi->is_packed = 1;
272 		tspi->words_per_32bit = 32/bits_per_word;
273 	} else {
274 		tspi->is_packed = 0;
275 		tspi->words_per_32bit = 1;
276 	}
277 
278 	if (tspi->is_packed) {
279 		max_len = min(remain_len, tspi->max_buf_size);
280 		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
281 		total_fifo_words = (max_len + 3) / 4;
282 	} else {
283 		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
284 		max_word = min(max_word, tspi->max_buf_size/4);
285 		tspi->curr_dma_words = max_word;
286 		total_fifo_words = max_word;
287 	}
288 	return total_fifo_words;
289 }
290 
291 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
292 	struct tegra_spi_data *tspi, struct spi_transfer *t)
293 {
294 	unsigned nbytes;
295 	unsigned tx_empty_count;
296 	u32 fifo_status;
297 	unsigned max_n_32bit;
298 	unsigned i, count;
299 	unsigned int written_words;
300 	unsigned fifo_words_left;
301 	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
302 
303 	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
304 	tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
305 
306 	if (tspi->is_packed) {
307 		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
308 		written_words = min(fifo_words_left, tspi->curr_dma_words);
309 		nbytes = written_words * tspi->bytes_per_word;
310 		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
311 		for (count = 0; count < max_n_32bit; count++) {
312 			u32 x = 0;
313 
314 			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
315 				x |= (u32)(*tx_buf++) << (i * 8);
316 			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
317 		}
318 
319 		tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
320 	} else {
321 		unsigned int write_bytes;
322 		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
323 		written_words = max_n_32bit;
324 		nbytes = written_words * tspi->bytes_per_word;
325 		if (nbytes > t->len - tspi->cur_pos)
326 			nbytes = t->len - tspi->cur_pos;
327 		write_bytes = nbytes;
328 		for (count = 0; count < max_n_32bit; count++) {
329 			u32 x = 0;
330 
331 			for (i = 0; nbytes && (i < tspi->bytes_per_word);
332 							i++, nbytes--)
333 				x |= (u32)(*tx_buf++) << (i * 8);
334 			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
335 		}
336 
337 		tspi->cur_tx_pos += write_bytes;
338 	}
339 
340 	return written_words;
341 }
342 
343 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
344 		struct tegra_spi_data *tspi, struct spi_transfer *t)
345 {
346 	unsigned rx_full_count;
347 	u32 fifo_status;
348 	unsigned i, count;
349 	unsigned int read_words = 0;
350 	unsigned len;
351 	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
352 
353 	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
354 	rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
355 	if (tspi->is_packed) {
356 		len = tspi->curr_dma_words * tspi->bytes_per_word;
357 		for (count = 0; count < rx_full_count; count++) {
358 			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
359 
360 			for (i = 0; len && (i < 4); i++, len--)
361 				*rx_buf++ = (x >> i*8) & 0xFF;
362 		}
363 		read_words += tspi->curr_dma_words;
364 		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
365 	} else {
366 		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
367 		u8 bytes_per_word = tspi->bytes_per_word;
368 		unsigned int read_bytes;
369 
370 		len = rx_full_count * bytes_per_word;
371 		if (len > t->len - tspi->cur_pos)
372 			len = t->len - tspi->cur_pos;
373 		read_bytes = len;
374 		for (count = 0; count < rx_full_count; count++) {
375 			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
376 
377 			for (i = 0; len && (i < bytes_per_word); i++, len--)
378 				*rx_buf++ = (x >> (i*8)) & 0xFF;
379 		}
380 		read_words += rx_full_count;
381 		tspi->cur_rx_pos += read_bytes;
382 	}
383 
384 	return read_words;
385 }
386 
387 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
388 		struct tegra_spi_data *tspi, struct spi_transfer *t)
389 {
390 	/* Make the dma buffer to read by cpu */
391 	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
392 				tspi->dma_buf_size, DMA_TO_DEVICE);
393 
394 	if (tspi->is_packed) {
395 		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
396 
397 		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
398 		tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
399 	} else {
400 		unsigned int i;
401 		unsigned int count;
402 		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
403 		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
404 		unsigned int write_bytes;
405 
406 		if (consume > t->len - tspi->cur_pos)
407 			consume = t->len - tspi->cur_pos;
408 		write_bytes = consume;
409 		for (count = 0; count < tspi->curr_dma_words; count++) {
410 			u32 x = 0;
411 
412 			for (i = 0; consume && (i < tspi->bytes_per_word);
413 							i++, consume--)
414 				x |= (u32)(*tx_buf++) << (i * 8);
415 			tspi->tx_dma_buf[count] = x;
416 		}
417 
418 		tspi->cur_tx_pos += write_bytes;
419 	}
420 
421 	/* Make the dma buffer to read by dma */
422 	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
423 				tspi->dma_buf_size, DMA_TO_DEVICE);
424 }
425 
426 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
427 		struct tegra_spi_data *tspi, struct spi_transfer *t)
428 {
429 	/* Make the dma buffer to read by cpu */
430 	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
431 		tspi->dma_buf_size, DMA_FROM_DEVICE);
432 
433 	if (tspi->is_packed) {
434 		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
435 
436 		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
437 		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
438 	} else {
439 		unsigned int i;
440 		unsigned int count;
441 		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
442 		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
443 		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
444 		unsigned int read_bytes;
445 
446 		if (consume > t->len - tspi->cur_pos)
447 			consume = t->len - tspi->cur_pos;
448 		read_bytes = consume;
449 		for (count = 0; count < tspi->curr_dma_words; count++) {
450 			u32 x = tspi->rx_dma_buf[count] & rx_mask;
451 
452 			for (i = 0; consume && (i < tspi->bytes_per_word);
453 							i++, consume--)
454 				*rx_buf++ = (x >> (i*8)) & 0xFF;
455 		}
456 
457 		tspi->cur_rx_pos += read_bytes;
458 	}
459 
460 	/* Make the dma buffer to read by dma */
461 	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
462 		tspi->dma_buf_size, DMA_FROM_DEVICE);
463 }
464 
465 static void tegra_spi_dma_complete(void *args)
466 {
467 	struct completion *dma_complete = args;
468 
469 	complete(dma_complete);
470 }
471 
472 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
473 {
474 	reinit_completion(&tspi->tx_dma_complete);
475 	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
476 				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
477 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
478 	if (!tspi->tx_dma_desc) {
479 		dev_err(tspi->dev, "Not able to get desc for Tx\n");
480 		return -EIO;
481 	}
482 
483 	tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
484 	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
485 
486 	dmaengine_submit(tspi->tx_dma_desc);
487 	dma_async_issue_pending(tspi->tx_dma_chan);
488 	return 0;
489 }
490 
491 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
492 {
493 	reinit_completion(&tspi->rx_dma_complete);
494 	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
495 				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
496 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
497 	if (!tspi->rx_dma_desc) {
498 		dev_err(tspi->dev, "Not able to get desc for Rx\n");
499 		return -EIO;
500 	}
501 
502 	tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
503 	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
504 
505 	dmaengine_submit(tspi->rx_dma_desc);
506 	dma_async_issue_pending(tspi->rx_dma_chan);
507 	return 0;
508 }
509 
510 static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
511 {
512 	unsigned long timeout = jiffies + HZ;
513 	u32 status;
514 
515 	status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
516 	if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
517 		status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
518 		tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
519 		while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
520 			status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
521 			if (time_after(jiffies, timeout)) {
522 				dev_err(tspi->dev,
523 					"timeout waiting for fifo flush\n");
524 				return -EIO;
525 			}
526 
527 			udelay(1);
528 		}
529 	}
530 
531 	return 0;
532 }
533 
534 static int tegra_spi_start_dma_based_transfer(
535 		struct tegra_spi_data *tspi, struct spi_transfer *t)
536 {
537 	u32 val;
538 	unsigned int len;
539 	int ret = 0;
540 	u8 dma_burst;
541 	struct dma_slave_config dma_sconfig = {0};
542 
543 	val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
544 	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
545 
546 	if (tspi->is_packed)
547 		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
548 					4) * 4;
549 	else
550 		len = tspi->curr_dma_words * 4;
551 
552 	/* Set attention level based on length of transfer */
553 	if (len & 0xF) {
554 		val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
555 		dma_burst = 1;
556 	} else if (((len) >> 4) & 0x1) {
557 		val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
558 		dma_burst = 4;
559 	} else {
560 		val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
561 		dma_burst = 8;
562 	}
563 
564 	if (!tspi->soc_data->has_intr_mask_reg) {
565 		if (tspi->cur_direction & DATA_DIR_TX)
566 			val |= SPI_IE_TX;
567 
568 		if (tspi->cur_direction & DATA_DIR_RX)
569 			val |= SPI_IE_RX;
570 	}
571 
572 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
573 	tspi->dma_control_reg = val;
574 
575 	dma_sconfig.device_fc = true;
576 	if (tspi->cur_direction & DATA_DIR_TX) {
577 		dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
578 		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
579 		dma_sconfig.dst_maxburst = dma_burst;
580 		ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
581 		if (ret < 0) {
582 			dev_err(tspi->dev,
583 				"DMA slave config failed: %d\n", ret);
584 			return ret;
585 		}
586 
587 		tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
588 		ret = tegra_spi_start_tx_dma(tspi, len);
589 		if (ret < 0) {
590 			dev_err(tspi->dev,
591 				"Starting tx dma failed, err %d\n", ret);
592 			return ret;
593 		}
594 	}
595 
596 	if (tspi->cur_direction & DATA_DIR_RX) {
597 		dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
598 		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599 		dma_sconfig.src_maxburst = dma_burst;
600 		ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
601 		if (ret < 0) {
602 			dev_err(tspi->dev,
603 				"DMA slave config failed: %d\n", ret);
604 			return ret;
605 		}
606 
607 		/* Make the dma buffer to read by dma */
608 		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
609 				tspi->dma_buf_size, DMA_FROM_DEVICE);
610 
611 		ret = tegra_spi_start_rx_dma(tspi, len);
612 		if (ret < 0) {
613 			dev_err(tspi->dev,
614 				"Starting rx dma failed, err %d\n", ret);
615 			if (tspi->cur_direction & DATA_DIR_TX)
616 				dmaengine_terminate_all(tspi->tx_dma_chan);
617 			return ret;
618 		}
619 	}
620 	tspi->is_curr_dma_xfer = true;
621 	tspi->dma_control_reg = val;
622 
623 	val |= SPI_DMA_EN;
624 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
625 	return ret;
626 }
627 
628 static int tegra_spi_start_cpu_based_transfer(
629 		struct tegra_spi_data *tspi, struct spi_transfer *t)
630 {
631 	u32 val;
632 	unsigned cur_words;
633 
634 	if (tspi->cur_direction & DATA_DIR_TX)
635 		cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
636 	else
637 		cur_words = tspi->curr_dma_words;
638 
639 	val = SPI_DMA_BLK_SET(cur_words - 1);
640 	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
641 
642 	val = 0;
643 	if (tspi->cur_direction & DATA_DIR_TX)
644 		val |= SPI_IE_TX;
645 
646 	if (tspi->cur_direction & DATA_DIR_RX)
647 		val |= SPI_IE_RX;
648 
649 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
650 	tspi->dma_control_reg = val;
651 
652 	tspi->is_curr_dma_xfer = false;
653 
654 	val = tspi->command1_reg;
655 	val |= SPI_PIO;
656 	tegra_spi_writel(tspi, val, SPI_COMMAND1);
657 	return 0;
658 }
659 
660 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
661 			bool dma_to_memory)
662 {
663 	struct dma_chan *dma_chan;
664 	u32 *dma_buf;
665 	dma_addr_t dma_phys;
666 	int ret;
667 
668 	dma_chan = dma_request_slave_channel_reason(tspi->dev,
669 					dma_to_memory ? "rx" : "tx");
670 	if (IS_ERR(dma_chan)) {
671 		ret = PTR_ERR(dma_chan);
672 		if (ret != -EPROBE_DEFER)
673 			dev_err(tspi->dev,
674 				"Dma channel is not available: %d\n", ret);
675 		return ret;
676 	}
677 
678 	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
679 				&dma_phys, GFP_KERNEL);
680 	if (!dma_buf) {
681 		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
682 		dma_release_channel(dma_chan);
683 		return -ENOMEM;
684 	}
685 
686 	if (dma_to_memory) {
687 		tspi->rx_dma_chan = dma_chan;
688 		tspi->rx_dma_buf = dma_buf;
689 		tspi->rx_dma_phys = dma_phys;
690 	} else {
691 		tspi->tx_dma_chan = dma_chan;
692 		tspi->tx_dma_buf = dma_buf;
693 		tspi->tx_dma_phys = dma_phys;
694 	}
695 	return 0;
696 }
697 
698 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
699 	bool dma_to_memory)
700 {
701 	u32 *dma_buf;
702 	dma_addr_t dma_phys;
703 	struct dma_chan *dma_chan;
704 
705 	if (dma_to_memory) {
706 		dma_buf = tspi->rx_dma_buf;
707 		dma_chan = tspi->rx_dma_chan;
708 		dma_phys = tspi->rx_dma_phys;
709 		tspi->rx_dma_chan = NULL;
710 		tspi->rx_dma_buf = NULL;
711 	} else {
712 		dma_buf = tspi->tx_dma_buf;
713 		dma_chan = tspi->tx_dma_chan;
714 		dma_phys = tspi->tx_dma_phys;
715 		tspi->tx_dma_buf = NULL;
716 		tspi->tx_dma_chan = NULL;
717 	}
718 	if (!dma_chan)
719 		return;
720 
721 	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
722 	dma_release_channel(dma_chan);
723 }
724 
725 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
726 		struct spi_transfer *t, bool is_first_of_msg)
727 {
728 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
729 	u32 speed = t->speed_hz;
730 	u8 bits_per_word = t->bits_per_word;
731 	u32 command1;
732 	int req_mode;
733 
734 	if (speed != tspi->cur_speed) {
735 		clk_set_rate(tspi->clk, speed);
736 		tspi->cur_speed = speed;
737 	}
738 
739 	tspi->cur_spi = spi;
740 	tspi->cur_pos = 0;
741 	tspi->cur_rx_pos = 0;
742 	tspi->cur_tx_pos = 0;
743 	tspi->curr_xfer = t;
744 
745 	if (is_first_of_msg) {
746 		tegra_spi_clear_status(tspi);
747 
748 		command1 = tspi->def_command1_reg;
749 		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
750 
751 		command1 &= ~SPI_CONTROL_MODE_MASK;
752 		req_mode = spi->mode & 0x3;
753 		if (req_mode == SPI_MODE_0)
754 			command1 |= SPI_CONTROL_MODE_0;
755 		else if (req_mode == SPI_MODE_1)
756 			command1 |= SPI_CONTROL_MODE_1;
757 		else if (req_mode == SPI_MODE_2)
758 			command1 |= SPI_CONTROL_MODE_2;
759 		else if (req_mode == SPI_MODE_3)
760 			command1 |= SPI_CONTROL_MODE_3;
761 
762 		if (spi->mode & SPI_LSB_FIRST)
763 			command1 |= SPI_LSBIT_FE;
764 		else
765 			command1 &= ~SPI_LSBIT_FE;
766 
767 		if (spi->mode & SPI_3WIRE)
768 			command1 |= SPI_BIDIROE;
769 		else
770 			command1 &= ~SPI_BIDIROE;
771 
772 		if (tspi->cs_control) {
773 			if (tspi->cs_control != spi)
774 				tegra_spi_writel(tspi, command1, SPI_COMMAND1);
775 			tspi->cs_control = NULL;
776 		} else
777 			tegra_spi_writel(tspi, command1, SPI_COMMAND1);
778 
779 		command1 |= SPI_CS_SW_HW;
780 		if (spi->mode & SPI_CS_HIGH)
781 			command1 |= SPI_CS_SW_VAL;
782 		else
783 			command1 &= ~SPI_CS_SW_VAL;
784 
785 		tegra_spi_writel(tspi, 0, SPI_COMMAND2);
786 	} else {
787 		command1 = tspi->command1_reg;
788 		command1 &= ~SPI_BIT_LENGTH(~0);
789 		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
790 	}
791 
792 	return command1;
793 }
794 
795 static int tegra_spi_start_transfer_one(struct spi_device *spi,
796 		struct spi_transfer *t, u32 command1)
797 {
798 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
799 	unsigned total_fifo_words;
800 	int ret;
801 
802 	total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
803 
804 	if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
805 		command1 |= SPI_BOTH_EN_BIT;
806 	else
807 		command1 &= ~SPI_BOTH_EN_BIT;
808 
809 	if (tspi->is_packed)
810 		command1 |= SPI_PACKED;
811 	else
812 		command1 &= ~SPI_PACKED;
813 
814 	command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
815 	tspi->cur_direction = 0;
816 	if (t->rx_buf) {
817 		command1 |= SPI_RX_EN;
818 		tspi->cur_direction |= DATA_DIR_RX;
819 	}
820 	if (t->tx_buf) {
821 		command1 |= SPI_TX_EN;
822 		tspi->cur_direction |= DATA_DIR_TX;
823 	}
824 	command1 |= SPI_CS_SEL(spi->chip_select);
825 	tegra_spi_writel(tspi, command1, SPI_COMMAND1);
826 	tspi->command1_reg = command1;
827 
828 	dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
829 		tspi->def_command1_reg, (unsigned)command1);
830 
831 	ret = tegra_spi_flush_fifos(tspi);
832 	if (ret < 0)
833 		return ret;
834 	if (total_fifo_words > SPI_FIFO_DEPTH)
835 		ret = tegra_spi_start_dma_based_transfer(tspi, t);
836 	else
837 		ret = tegra_spi_start_cpu_based_transfer(tspi, t);
838 	return ret;
839 }
840 
841 static int tegra_spi_setup(struct spi_device *spi)
842 {
843 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
844 	u32 val;
845 	unsigned long flags;
846 	int ret;
847 
848 	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
849 		spi->bits_per_word,
850 		spi->mode & SPI_CPOL ? "" : "~",
851 		spi->mode & SPI_CPHA ? "" : "~",
852 		spi->max_speed_hz);
853 
854 	ret = pm_runtime_get_sync(tspi->dev);
855 	if (ret < 0) {
856 		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
857 		return ret;
858 	}
859 
860 	if (tspi->soc_data->has_intr_mask_reg) {
861 		val = tegra_spi_readl(tspi, SPI_INTR_MASK);
862 		val &= ~SPI_INTR_ALL_MASK;
863 		tegra_spi_writel(tspi, val, SPI_INTR_MASK);
864 	}
865 
866 	spin_lock_irqsave(&tspi->lock, flags);
867 	val = tspi->def_command1_reg;
868 	if (spi->mode & SPI_CS_HIGH)
869 		val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
870 	else
871 		val |= SPI_CS_POL_INACTIVE(spi->chip_select);
872 	tspi->def_command1_reg = val;
873 	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
874 	spin_unlock_irqrestore(&tspi->lock, flags);
875 
876 	pm_runtime_put(tspi->dev);
877 	return 0;
878 }
879 
880 static void tegra_spi_transfer_delay(int delay)
881 {
882 	if (!delay)
883 		return;
884 
885 	if (delay >= 1000)
886 		mdelay(delay / 1000);
887 
888 	udelay(delay % 1000);
889 }
890 
891 static void tegra_spi_transfer_end(struct spi_device *spi)
892 {
893 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
894 	int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
895 
896 	if (cs_val)
897 		tspi->command1_reg |= SPI_CS_SW_VAL;
898 	else
899 		tspi->command1_reg &= ~SPI_CS_SW_VAL;
900 	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
901 	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
902 }
903 
904 static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
905 {
906 	dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
907 	dev_dbg(tspi->dev, "Command1:    0x%08x | Command2:    0x%08x\n",
908 		tegra_spi_readl(tspi, SPI_COMMAND1),
909 		tegra_spi_readl(tspi, SPI_COMMAND2));
910 	dev_dbg(tspi->dev, "DMA_CTL:     0x%08x | DMA_BLK:     0x%08x\n",
911 		tegra_spi_readl(tspi, SPI_DMA_CTL),
912 		tegra_spi_readl(tspi, SPI_DMA_BLK));
913 	dev_dbg(tspi->dev, "TRANS_STAT:  0x%08x | FIFO_STATUS: 0x%08x\n",
914 		tegra_spi_readl(tspi, SPI_TRANS_STATUS),
915 		tegra_spi_readl(tspi, SPI_FIFO_STATUS));
916 }
917 
918 static int tegra_spi_transfer_one_message(struct spi_master *master,
919 			struct spi_message *msg)
920 {
921 	bool is_first_msg = true;
922 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
923 	struct spi_transfer *xfer;
924 	struct spi_device *spi = msg->spi;
925 	int ret;
926 	bool skip = false;
927 
928 	msg->status = 0;
929 	msg->actual_length = 0;
930 
931 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
932 		u32 cmd1;
933 
934 		reinit_completion(&tspi->xfer_completion);
935 
936 		cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
937 
938 		if (!xfer->len) {
939 			ret = 0;
940 			skip = true;
941 			goto complete_xfer;
942 		}
943 
944 		ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
945 		if (ret < 0) {
946 			dev_err(tspi->dev,
947 				"spi can not start transfer, err %d\n", ret);
948 			goto complete_xfer;
949 		}
950 
951 		is_first_msg = false;
952 		ret = wait_for_completion_timeout(&tspi->xfer_completion,
953 						SPI_DMA_TIMEOUT);
954 		if (WARN_ON(ret == 0)) {
955 			dev_err(tspi->dev,
956 				"spi transfer timeout, err %d\n", ret);
957 			if (tspi->is_curr_dma_xfer &&
958 			    (tspi->cur_direction & DATA_DIR_TX))
959 				dmaengine_terminate_all(tspi->tx_dma_chan);
960 			if (tspi->is_curr_dma_xfer &&
961 			    (tspi->cur_direction & DATA_DIR_RX))
962 				dmaengine_terminate_all(tspi->rx_dma_chan);
963 			ret = -EIO;
964 			tegra_spi_dump_regs(tspi);
965 			tegra_spi_flush_fifos(tspi);
966 			reset_control_assert(tspi->rst);
967 			udelay(2);
968 			reset_control_deassert(tspi->rst);
969 			goto complete_xfer;
970 		}
971 
972 		if (tspi->tx_status ||  tspi->rx_status) {
973 			dev_err(tspi->dev, "Error in Transfer\n");
974 			ret = -EIO;
975 			tegra_spi_dump_regs(tspi);
976 			goto complete_xfer;
977 		}
978 		msg->actual_length += xfer->len;
979 
980 complete_xfer:
981 		if (ret < 0 || skip) {
982 			tegra_spi_transfer_end(spi);
983 			tegra_spi_transfer_delay(xfer->delay_usecs);
984 			goto exit;
985 		} else if (list_is_last(&xfer->transfer_list,
986 					&msg->transfers)) {
987 			if (xfer->cs_change)
988 				tspi->cs_control = spi;
989 			else {
990 				tegra_spi_transfer_end(spi);
991 				tegra_spi_transfer_delay(xfer->delay_usecs);
992 			}
993 		} else if (xfer->cs_change) {
994 			tegra_spi_transfer_end(spi);
995 			tegra_spi_transfer_delay(xfer->delay_usecs);
996 		}
997 
998 	}
999 	ret = 0;
1000 exit:
1001 	msg->status = ret;
1002 	spi_finalize_current_message(master);
1003 	return ret;
1004 }
1005 
1006 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
1007 {
1008 	struct spi_transfer *t = tspi->curr_xfer;
1009 	unsigned long flags;
1010 
1011 	spin_lock_irqsave(&tspi->lock, flags);
1012 	if (tspi->tx_status ||  tspi->rx_status) {
1013 		dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
1014 			tspi->status_reg);
1015 		dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
1016 			tspi->command1_reg, tspi->dma_control_reg);
1017 		tegra_spi_dump_regs(tspi);
1018 		tegra_spi_flush_fifos(tspi);
1019 		complete(&tspi->xfer_completion);
1020 		spin_unlock_irqrestore(&tspi->lock, flags);
1021 		reset_control_assert(tspi->rst);
1022 		udelay(2);
1023 		reset_control_deassert(tspi->rst);
1024 		return IRQ_HANDLED;
1025 	}
1026 
1027 	if (tspi->cur_direction & DATA_DIR_RX)
1028 		tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
1029 
1030 	if (tspi->cur_direction & DATA_DIR_TX)
1031 		tspi->cur_pos = tspi->cur_tx_pos;
1032 	else
1033 		tspi->cur_pos = tspi->cur_rx_pos;
1034 
1035 	if (tspi->cur_pos == t->len) {
1036 		complete(&tspi->xfer_completion);
1037 		goto exit;
1038 	}
1039 
1040 	tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
1041 	tegra_spi_start_cpu_based_transfer(tspi, t);
1042 exit:
1043 	spin_unlock_irqrestore(&tspi->lock, flags);
1044 	return IRQ_HANDLED;
1045 }
1046 
1047 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
1048 {
1049 	struct spi_transfer *t = tspi->curr_xfer;
1050 	long wait_status;
1051 	int err = 0;
1052 	unsigned total_fifo_words;
1053 	unsigned long flags;
1054 
1055 	/* Abort dmas if any error */
1056 	if (tspi->cur_direction & DATA_DIR_TX) {
1057 		if (tspi->tx_status) {
1058 			dmaengine_terminate_all(tspi->tx_dma_chan);
1059 			err += 1;
1060 		} else {
1061 			wait_status = wait_for_completion_interruptible_timeout(
1062 				&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
1063 			if (wait_status <= 0) {
1064 				dmaengine_terminate_all(tspi->tx_dma_chan);
1065 				dev_err(tspi->dev, "TxDma Xfer failed\n");
1066 				err += 1;
1067 			}
1068 		}
1069 	}
1070 
1071 	if (tspi->cur_direction & DATA_DIR_RX) {
1072 		if (tspi->rx_status) {
1073 			dmaengine_terminate_all(tspi->rx_dma_chan);
1074 			err += 2;
1075 		} else {
1076 			wait_status = wait_for_completion_interruptible_timeout(
1077 				&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
1078 			if (wait_status <= 0) {
1079 				dmaengine_terminate_all(tspi->rx_dma_chan);
1080 				dev_err(tspi->dev, "RxDma Xfer failed\n");
1081 				err += 2;
1082 			}
1083 		}
1084 	}
1085 
1086 	spin_lock_irqsave(&tspi->lock, flags);
1087 	if (err) {
1088 		dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
1089 			tspi->status_reg);
1090 		dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
1091 			tspi->command1_reg, tspi->dma_control_reg);
1092 		tegra_spi_dump_regs(tspi);
1093 		tegra_spi_flush_fifos(tspi);
1094 		complete(&tspi->xfer_completion);
1095 		spin_unlock_irqrestore(&tspi->lock, flags);
1096 		reset_control_assert(tspi->rst);
1097 		udelay(2);
1098 		reset_control_deassert(tspi->rst);
1099 		return IRQ_HANDLED;
1100 	}
1101 
1102 	if (tspi->cur_direction & DATA_DIR_RX)
1103 		tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1104 
1105 	if (tspi->cur_direction & DATA_DIR_TX)
1106 		tspi->cur_pos = tspi->cur_tx_pos;
1107 	else
1108 		tspi->cur_pos = tspi->cur_rx_pos;
1109 
1110 	if (tspi->cur_pos == t->len) {
1111 		complete(&tspi->xfer_completion);
1112 		goto exit;
1113 	}
1114 
1115 	/* Continue transfer in current message */
1116 	total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1117 							tspi, t);
1118 	if (total_fifo_words > SPI_FIFO_DEPTH)
1119 		err = tegra_spi_start_dma_based_transfer(tspi, t);
1120 	else
1121 		err = tegra_spi_start_cpu_based_transfer(tspi, t);
1122 
1123 exit:
1124 	spin_unlock_irqrestore(&tspi->lock, flags);
1125 	return IRQ_HANDLED;
1126 }
1127 
1128 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1129 {
1130 	struct tegra_spi_data *tspi = context_data;
1131 
1132 	if (!tspi->is_curr_dma_xfer)
1133 		return handle_cpu_based_xfer(tspi);
1134 	return handle_dma_based_xfer(tspi);
1135 }
1136 
1137 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1138 {
1139 	struct tegra_spi_data *tspi = context_data;
1140 
1141 	tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1142 	if (tspi->cur_direction & DATA_DIR_TX)
1143 		tspi->tx_status = tspi->status_reg &
1144 					(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1145 
1146 	if (tspi->cur_direction & DATA_DIR_RX)
1147 		tspi->rx_status = tspi->status_reg &
1148 					(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1149 	tegra_spi_clear_status(tspi);
1150 
1151 	return IRQ_WAKE_THREAD;
1152 }
1153 
1154 static struct tegra_spi_soc_data tegra114_spi_soc_data = {
1155 	.has_intr_mask_reg = false,
1156 };
1157 
1158 static struct tegra_spi_soc_data tegra124_spi_soc_data = {
1159 	.has_intr_mask_reg = false,
1160 };
1161 
1162 static struct tegra_spi_soc_data tegra210_spi_soc_data = {
1163 	.has_intr_mask_reg = true,
1164 };
1165 
1166 static const struct of_device_id tegra_spi_of_match[] = {
1167 	{
1168 		.compatible = "nvidia,tegra114-spi",
1169 		.data	    = &tegra114_spi_soc_data,
1170 	}, {
1171 		.compatible = "nvidia,tegra124-spi",
1172 		.data	    = &tegra124_spi_soc_data,
1173 	}, {
1174 		.compatible = "nvidia,tegra210-spi",
1175 		.data	    = &tegra210_spi_soc_data,
1176 	},
1177 	{}
1178 };
1179 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1180 
1181 static int tegra_spi_probe(struct platform_device *pdev)
1182 {
1183 	struct spi_master	*master;
1184 	struct tegra_spi_data	*tspi;
1185 	struct resource		*r;
1186 	int ret, spi_irq;
1187 	int bus_num;
1188 
1189 	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1190 	if (!master) {
1191 		dev_err(&pdev->dev, "master allocation failed\n");
1192 		return -ENOMEM;
1193 	}
1194 	platform_set_drvdata(pdev, master);
1195 	tspi = spi_master_get_devdata(master);
1196 
1197 	if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1198 				 &master->max_speed_hz))
1199 		master->max_speed_hz = 25000000; /* 25MHz */
1200 
1201 	/* the spi->mode bits understood by this driver: */
1202 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
1203 			    SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
1204 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1205 	master->setup = tegra_spi_setup;
1206 	master->transfer_one_message = tegra_spi_transfer_one_message;
1207 	master->num_chipselect = MAX_CHIP_SELECT;
1208 	master->auto_runtime_pm = true;
1209 	bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
1210 	if (bus_num >= 0)
1211 		master->bus_num = bus_num;
1212 
1213 	tspi->master = master;
1214 	tspi->dev = &pdev->dev;
1215 	spin_lock_init(&tspi->lock);
1216 
1217 	tspi->soc_data = of_device_get_match_data(&pdev->dev);
1218 	if (!tspi->soc_data) {
1219 		dev_err(&pdev->dev, "unsupported tegra\n");
1220 		ret = -ENODEV;
1221 		goto exit_free_master;
1222 	}
1223 
1224 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1225 	tspi->base = devm_ioremap_resource(&pdev->dev, r);
1226 	if (IS_ERR(tspi->base)) {
1227 		ret = PTR_ERR(tspi->base);
1228 		goto exit_free_master;
1229 	}
1230 	tspi->phys = r->start;
1231 
1232 	spi_irq = platform_get_irq(pdev, 0);
1233 	tspi->irq = spi_irq;
1234 
1235 	tspi->clk = devm_clk_get(&pdev->dev, "spi");
1236 	if (IS_ERR(tspi->clk)) {
1237 		dev_err(&pdev->dev, "can not get clock\n");
1238 		ret = PTR_ERR(tspi->clk);
1239 		goto exit_free_master;
1240 	}
1241 
1242 	tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
1243 	if (IS_ERR(tspi->rst)) {
1244 		dev_err(&pdev->dev, "can not get reset\n");
1245 		ret = PTR_ERR(tspi->rst);
1246 		goto exit_free_master;
1247 	}
1248 
1249 	tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1250 	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1251 
1252 	ret = tegra_spi_init_dma_param(tspi, true);
1253 	if (ret < 0)
1254 		goto exit_free_master;
1255 	ret = tegra_spi_init_dma_param(tspi, false);
1256 	if (ret < 0)
1257 		goto exit_rx_dma_free;
1258 	tspi->max_buf_size = tspi->dma_buf_size;
1259 	init_completion(&tspi->tx_dma_complete);
1260 	init_completion(&tspi->rx_dma_complete);
1261 
1262 	init_completion(&tspi->xfer_completion);
1263 
1264 	pm_runtime_enable(&pdev->dev);
1265 	if (!pm_runtime_enabled(&pdev->dev)) {
1266 		ret = tegra_spi_runtime_resume(&pdev->dev);
1267 		if (ret)
1268 			goto exit_pm_disable;
1269 	}
1270 
1271 	ret = pm_runtime_get_sync(&pdev->dev);
1272 	if (ret < 0) {
1273 		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1274 		goto exit_pm_disable;
1275 	}
1276 
1277 	reset_control_assert(tspi->rst);
1278 	udelay(2);
1279 	reset_control_deassert(tspi->rst);
1280 	tspi->def_command1_reg  = SPI_M_S;
1281 	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1282 	pm_runtime_put(&pdev->dev);
1283 	ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1284 				   tegra_spi_isr_thread, IRQF_ONESHOT,
1285 				   dev_name(&pdev->dev), tspi);
1286 	if (ret < 0) {
1287 		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1288 			tspi->irq);
1289 		goto exit_pm_disable;
1290 	}
1291 
1292 	master->dev.of_node = pdev->dev.of_node;
1293 	ret = devm_spi_register_master(&pdev->dev, master);
1294 	if (ret < 0) {
1295 		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1296 		goto exit_free_irq;
1297 	}
1298 	return ret;
1299 
1300 exit_free_irq:
1301 	free_irq(spi_irq, tspi);
1302 exit_pm_disable:
1303 	pm_runtime_disable(&pdev->dev);
1304 	if (!pm_runtime_status_suspended(&pdev->dev))
1305 		tegra_spi_runtime_suspend(&pdev->dev);
1306 	tegra_spi_deinit_dma_param(tspi, false);
1307 exit_rx_dma_free:
1308 	tegra_spi_deinit_dma_param(tspi, true);
1309 exit_free_master:
1310 	spi_master_put(master);
1311 	return ret;
1312 }
1313 
1314 static int tegra_spi_remove(struct platform_device *pdev)
1315 {
1316 	struct spi_master *master = platform_get_drvdata(pdev);
1317 	struct tegra_spi_data	*tspi = spi_master_get_devdata(master);
1318 
1319 	free_irq(tspi->irq, tspi);
1320 
1321 	if (tspi->tx_dma_chan)
1322 		tegra_spi_deinit_dma_param(tspi, false);
1323 
1324 	if (tspi->rx_dma_chan)
1325 		tegra_spi_deinit_dma_param(tspi, true);
1326 
1327 	pm_runtime_disable(&pdev->dev);
1328 	if (!pm_runtime_status_suspended(&pdev->dev))
1329 		tegra_spi_runtime_suspend(&pdev->dev);
1330 
1331 	return 0;
1332 }
1333 
1334 #ifdef CONFIG_PM_SLEEP
1335 static int tegra_spi_suspend(struct device *dev)
1336 {
1337 	struct spi_master *master = dev_get_drvdata(dev);
1338 
1339 	return spi_master_suspend(master);
1340 }
1341 
1342 static int tegra_spi_resume(struct device *dev)
1343 {
1344 	struct spi_master *master = dev_get_drvdata(dev);
1345 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1346 	int ret;
1347 
1348 	ret = pm_runtime_get_sync(dev);
1349 	if (ret < 0) {
1350 		dev_err(dev, "pm runtime failed, e = %d\n", ret);
1351 		return ret;
1352 	}
1353 	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1354 	pm_runtime_put(dev);
1355 
1356 	return spi_master_resume(master);
1357 }
1358 #endif
1359 
1360 static int tegra_spi_runtime_suspend(struct device *dev)
1361 {
1362 	struct spi_master *master = dev_get_drvdata(dev);
1363 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1364 
1365 	/* Flush all write which are in PPSB queue by reading back */
1366 	tegra_spi_readl(tspi, SPI_COMMAND1);
1367 
1368 	clk_disable_unprepare(tspi->clk);
1369 	return 0;
1370 }
1371 
1372 static int tegra_spi_runtime_resume(struct device *dev)
1373 {
1374 	struct spi_master *master = dev_get_drvdata(dev);
1375 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1376 	int ret;
1377 
1378 	ret = clk_prepare_enable(tspi->clk);
1379 	if (ret < 0) {
1380 		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1381 		return ret;
1382 	}
1383 	return 0;
1384 }
1385 
1386 static const struct dev_pm_ops tegra_spi_pm_ops = {
1387 	SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1388 		tegra_spi_runtime_resume, NULL)
1389 	SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1390 };
1391 static struct platform_driver tegra_spi_driver = {
1392 	.driver = {
1393 		.name		= "spi-tegra114",
1394 		.pm		= &tegra_spi_pm_ops,
1395 		.of_match_table	= tegra_spi_of_match,
1396 	},
1397 	.probe =	tegra_spi_probe,
1398 	.remove =	tegra_spi_remove,
1399 };
1400 module_platform_driver(tegra_spi_driver);
1401 
1402 MODULE_ALIAS("platform:spi-tegra114");
1403 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1404 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1405 MODULE_LICENSE("GPL v2");
1406