xref: /openbmc/linux/drivers/spi/spi-tegra114.c (revision afc98d90)
1 /*
2  * SPI driver for NVIDIA's Tegra114 SPI Controller.
3  *
4  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/kthread.h>
31 #include <linux/module.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/reset.h>
37 #include <linux/spi/spi.h>
38 
39 #define SPI_COMMAND1				0x000
40 #define SPI_BIT_LENGTH(x)			(((x) & 0x1f) << 0)
41 #define SPI_PACKED				(1 << 5)
42 #define SPI_TX_EN				(1 << 11)
43 #define SPI_RX_EN				(1 << 12)
44 #define SPI_BOTH_EN_BYTE			(1 << 13)
45 #define SPI_BOTH_EN_BIT				(1 << 14)
46 #define SPI_LSBYTE_FE				(1 << 15)
47 #define SPI_LSBIT_FE				(1 << 16)
48 #define SPI_BIDIROE				(1 << 17)
49 #define SPI_IDLE_SDA_DRIVE_LOW			(0 << 18)
50 #define SPI_IDLE_SDA_DRIVE_HIGH			(1 << 18)
51 #define SPI_IDLE_SDA_PULL_LOW			(2 << 18)
52 #define SPI_IDLE_SDA_PULL_HIGH			(3 << 18)
53 #define SPI_IDLE_SDA_MASK			(3 << 18)
54 #define SPI_CS_SS_VAL				(1 << 20)
55 #define SPI_CS_SW_HW				(1 << 21)
56 /* SPI_CS_POL_INACTIVE bits are default high */
57 						/* n from 0 to 3 */
58 #define SPI_CS_POL_INACTIVE(n)			(1 << (22 + (n)))
59 #define SPI_CS_POL_INACTIVE_MASK		(0xF << 22)
60 
61 #define SPI_CS_SEL_0				(0 << 26)
62 #define SPI_CS_SEL_1				(1 << 26)
63 #define SPI_CS_SEL_2				(2 << 26)
64 #define SPI_CS_SEL_3				(3 << 26)
65 #define SPI_CS_SEL_MASK				(3 << 26)
66 #define SPI_CS_SEL(x)				(((x) & 0x3) << 26)
67 #define SPI_CONTROL_MODE_0			(0 << 28)
68 #define SPI_CONTROL_MODE_1			(1 << 28)
69 #define SPI_CONTROL_MODE_2			(2 << 28)
70 #define SPI_CONTROL_MODE_3			(3 << 28)
71 #define SPI_CONTROL_MODE_MASK			(3 << 28)
72 #define SPI_MODE_SEL(x)				(((x) & 0x3) << 28)
73 #define SPI_M_S					(1 << 30)
74 #define SPI_PIO					(1 << 31)
75 
76 #define SPI_COMMAND2				0x004
77 #define SPI_TX_TAP_DELAY(x)			(((x) & 0x3F) << 6)
78 #define SPI_RX_TAP_DELAY(x)			(((x) & 0x3F) << 0)
79 
80 #define SPI_CS_TIMING1				0x008
81 #define SPI_SETUP_HOLD(setup, hold)		(((setup) << 4) | (hold))
82 #define SPI_CS_SETUP_HOLD(reg, cs, val)			\
83 		((((val) & 0xFFu) << ((cs) * 8)) |	\
84 		((reg) & ~(0xFFu << ((cs) * 8))))
85 
86 #define SPI_CS_TIMING2				0x00C
87 #define CYCLES_BETWEEN_PACKETS_0(x)		(((x) & 0x1F) << 0)
88 #define CS_ACTIVE_BETWEEN_PACKETS_0		(1 << 5)
89 #define CYCLES_BETWEEN_PACKETS_1(x)		(((x) & 0x1F) << 8)
90 #define CS_ACTIVE_BETWEEN_PACKETS_1		(1 << 13)
91 #define CYCLES_BETWEEN_PACKETS_2(x)		(((x) & 0x1F) << 16)
92 #define CS_ACTIVE_BETWEEN_PACKETS_2		(1 << 21)
93 #define CYCLES_BETWEEN_PACKETS_3(x)		(((x) & 0x1F) << 24)
94 #define CS_ACTIVE_BETWEEN_PACKETS_3		(1 << 29)
95 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)		\
96 		(reg = (((val) & 0x1) << ((cs) * 8 + 5)) |	\
97 			((reg) & ~(1 << ((cs) * 8 + 5))))
98 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)		\
99 		(reg = (((val) & 0xF) << ((cs) * 8)) |		\
100 			((reg) & ~(0xF << ((cs) * 8))))
101 
102 #define SPI_TRANS_STATUS			0x010
103 #define SPI_BLK_CNT(val)			(((val) >> 0) & 0xFFFF)
104 #define SPI_SLV_IDLE_COUNT(val)			(((val) >> 16) & 0xFF)
105 #define SPI_RDY					(1 << 30)
106 
107 #define SPI_FIFO_STATUS				0x014
108 #define SPI_RX_FIFO_EMPTY			(1 << 0)
109 #define SPI_RX_FIFO_FULL			(1 << 1)
110 #define SPI_TX_FIFO_EMPTY			(1 << 2)
111 #define SPI_TX_FIFO_FULL			(1 << 3)
112 #define SPI_RX_FIFO_UNF				(1 << 4)
113 #define SPI_RX_FIFO_OVF				(1 << 5)
114 #define SPI_TX_FIFO_UNF				(1 << 6)
115 #define SPI_TX_FIFO_OVF				(1 << 7)
116 #define SPI_ERR					(1 << 8)
117 #define SPI_TX_FIFO_FLUSH			(1 << 14)
118 #define SPI_RX_FIFO_FLUSH			(1 << 15)
119 #define SPI_TX_FIFO_EMPTY_COUNT(val)		(((val) >> 16) & 0x7F)
120 #define SPI_RX_FIFO_FULL_COUNT(val)		(((val) >> 23) & 0x7F)
121 #define SPI_FRAME_END				(1 << 30)
122 #define SPI_CS_INACTIVE				(1 << 31)
123 
124 #define SPI_FIFO_ERROR				(SPI_RX_FIFO_UNF | \
125 			SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
126 #define SPI_FIFO_EMPTY			(SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
127 
128 #define SPI_TX_DATA				0x018
129 #define SPI_RX_DATA				0x01C
130 
131 #define SPI_DMA_CTL				0x020
132 #define SPI_TX_TRIG_1				(0 << 15)
133 #define SPI_TX_TRIG_4				(1 << 15)
134 #define SPI_TX_TRIG_8				(2 << 15)
135 #define SPI_TX_TRIG_16				(3 << 15)
136 #define SPI_TX_TRIG_MASK			(3 << 15)
137 #define SPI_RX_TRIG_1				(0 << 19)
138 #define SPI_RX_TRIG_4				(1 << 19)
139 #define SPI_RX_TRIG_8				(2 << 19)
140 #define SPI_RX_TRIG_16				(3 << 19)
141 #define SPI_RX_TRIG_MASK			(3 << 19)
142 #define SPI_IE_TX				(1 << 28)
143 #define SPI_IE_RX				(1 << 29)
144 #define SPI_CONT				(1 << 30)
145 #define SPI_DMA					(1 << 31)
146 #define SPI_DMA_EN				SPI_DMA
147 
148 #define SPI_DMA_BLK				0x024
149 #define SPI_DMA_BLK_SET(x)			(((x) & 0xFFFF) << 0)
150 
151 #define SPI_TX_FIFO				0x108
152 #define SPI_RX_FIFO				0x188
153 #define MAX_CHIP_SELECT				4
154 #define SPI_FIFO_DEPTH				64
155 #define DATA_DIR_TX				(1 << 0)
156 #define DATA_DIR_RX				(1 << 1)
157 
158 #define SPI_DMA_TIMEOUT				(msecs_to_jiffies(1000))
159 #define DEFAULT_SPI_DMA_BUF_LEN			(16*1024)
160 #define TX_FIFO_EMPTY_COUNT_MAX			SPI_TX_FIFO_EMPTY_COUNT(0x40)
161 #define RX_FIFO_FULL_COUNT_ZERO			SPI_RX_FIFO_FULL_COUNT(0)
162 #define MAX_HOLD_CYCLES				16
163 #define SPI_DEFAULT_SPEED			25000000
164 
165 struct tegra_spi_data {
166 	struct device				*dev;
167 	struct spi_master			*master;
168 	spinlock_t				lock;
169 
170 	struct clk				*clk;
171 	struct reset_control			*rst;
172 	void __iomem				*base;
173 	phys_addr_t				phys;
174 	unsigned				irq;
175 	u32					spi_max_frequency;
176 	u32					cur_speed;
177 
178 	struct spi_device			*cur_spi;
179 	struct spi_device			*cs_control;
180 	unsigned				cur_pos;
181 	unsigned				words_per_32bit;
182 	unsigned				bytes_per_word;
183 	unsigned				curr_dma_words;
184 	unsigned				cur_direction;
185 
186 	unsigned				cur_rx_pos;
187 	unsigned				cur_tx_pos;
188 
189 	unsigned				dma_buf_size;
190 	unsigned				max_buf_size;
191 	bool					is_curr_dma_xfer;
192 
193 	struct completion			rx_dma_complete;
194 	struct completion			tx_dma_complete;
195 
196 	u32					tx_status;
197 	u32					rx_status;
198 	u32					status_reg;
199 	bool					is_packed;
200 
201 	u32					command1_reg;
202 	u32					dma_control_reg;
203 	u32					def_command1_reg;
204 
205 	struct completion			xfer_completion;
206 	struct spi_transfer			*curr_xfer;
207 	struct dma_chan				*rx_dma_chan;
208 	u32					*rx_dma_buf;
209 	dma_addr_t				rx_dma_phys;
210 	struct dma_async_tx_descriptor		*rx_dma_desc;
211 
212 	struct dma_chan				*tx_dma_chan;
213 	u32					*tx_dma_buf;
214 	dma_addr_t				tx_dma_phys;
215 	struct dma_async_tx_descriptor		*tx_dma_desc;
216 };
217 
218 static int tegra_spi_runtime_suspend(struct device *dev);
219 static int tegra_spi_runtime_resume(struct device *dev);
220 
221 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
222 		unsigned long reg)
223 {
224 	return readl(tspi->base + reg);
225 }
226 
227 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
228 		u32 val, unsigned long reg)
229 {
230 	writel(val, tspi->base + reg);
231 
232 	/* Read back register to make sure that register writes completed */
233 	if (reg != SPI_TX_FIFO)
234 		readl(tspi->base + SPI_COMMAND1);
235 }
236 
237 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
238 {
239 	u32 val;
240 
241 	/* Write 1 to clear status register */
242 	val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
243 	tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
244 
245 	/* Clear fifo status error if any */
246 	val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
247 	if (val & SPI_ERR)
248 		tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
249 				SPI_FIFO_STATUS);
250 }
251 
252 static unsigned tegra_spi_calculate_curr_xfer_param(
253 	struct spi_device *spi, struct tegra_spi_data *tspi,
254 	struct spi_transfer *t)
255 {
256 	unsigned remain_len = t->len - tspi->cur_pos;
257 	unsigned max_word;
258 	unsigned bits_per_word = t->bits_per_word;
259 	unsigned max_len;
260 	unsigned total_fifo_words;
261 
262 	tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
263 
264 	if (bits_per_word == 8 || bits_per_word == 16) {
265 		tspi->is_packed = 1;
266 		tspi->words_per_32bit = 32/bits_per_word;
267 	} else {
268 		tspi->is_packed = 0;
269 		tspi->words_per_32bit = 1;
270 	}
271 
272 	if (tspi->is_packed) {
273 		max_len = min(remain_len, tspi->max_buf_size);
274 		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
275 		total_fifo_words = (max_len + 3) / 4;
276 	} else {
277 		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
278 		max_word = min(max_word, tspi->max_buf_size/4);
279 		tspi->curr_dma_words = max_word;
280 		total_fifo_words = max_word;
281 	}
282 	return total_fifo_words;
283 }
284 
285 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
286 	struct tegra_spi_data *tspi, struct spi_transfer *t)
287 {
288 	unsigned nbytes;
289 	unsigned tx_empty_count;
290 	u32 fifo_status;
291 	unsigned max_n_32bit;
292 	unsigned i, count;
293 	unsigned int written_words;
294 	unsigned fifo_words_left;
295 	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
296 
297 	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
298 	tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
299 
300 	if (tspi->is_packed) {
301 		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
302 		written_words = min(fifo_words_left, tspi->curr_dma_words);
303 		nbytes = written_words * tspi->bytes_per_word;
304 		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
305 		for (count = 0; count < max_n_32bit; count++) {
306 			u32 x = 0;
307 			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
308 				x |= (u32)(*tx_buf++) << (i * 8);
309 			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
310 		}
311 	} else {
312 		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
313 		written_words = max_n_32bit;
314 		nbytes = written_words * tspi->bytes_per_word;
315 		for (count = 0; count < max_n_32bit; count++) {
316 			u32 x = 0;
317 			for (i = 0; nbytes && (i < tspi->bytes_per_word);
318 							i++, nbytes--)
319 				x |= (u32)(*tx_buf++) << (i * 8);
320 			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
321 		}
322 	}
323 	tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
324 	return written_words;
325 }
326 
327 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
328 		struct tegra_spi_data *tspi, struct spi_transfer *t)
329 {
330 	unsigned rx_full_count;
331 	u32 fifo_status;
332 	unsigned i, count;
333 	unsigned int read_words = 0;
334 	unsigned len;
335 	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
336 
337 	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
338 	rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
339 	if (tspi->is_packed) {
340 		len = tspi->curr_dma_words * tspi->bytes_per_word;
341 		for (count = 0; count < rx_full_count; count++) {
342 			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
343 			for (i = 0; len && (i < 4); i++, len--)
344 				*rx_buf++ = (x >> i*8) & 0xFF;
345 		}
346 		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
347 		read_words += tspi->curr_dma_words;
348 	} else {
349 		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
350 		for (count = 0; count < rx_full_count; count++) {
351 			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
352 			for (i = 0; (i < tspi->bytes_per_word); i++)
353 				*rx_buf++ = (x >> (i*8)) & 0xFF;
354 		}
355 		tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
356 		read_words += rx_full_count;
357 	}
358 	return read_words;
359 }
360 
361 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
362 		struct tegra_spi_data *tspi, struct spi_transfer *t)
363 {
364 	/* Make the dma buffer to read by cpu */
365 	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
366 				tspi->dma_buf_size, DMA_TO_DEVICE);
367 
368 	if (tspi->is_packed) {
369 		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
370 		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
371 	} else {
372 		unsigned int i;
373 		unsigned int count;
374 		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
375 		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
376 
377 		for (count = 0; count < tspi->curr_dma_words; count++) {
378 			u32 x = 0;
379 			for (i = 0; consume && (i < tspi->bytes_per_word);
380 							i++, consume--)
381 				x |= (u32)(*tx_buf++) << (i * 8);
382 			tspi->tx_dma_buf[count] = x;
383 		}
384 	}
385 	tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
386 
387 	/* Make the dma buffer to read by dma */
388 	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
389 				tspi->dma_buf_size, DMA_TO_DEVICE);
390 }
391 
392 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
393 		struct tegra_spi_data *tspi, struct spi_transfer *t)
394 {
395 	/* Make the dma buffer to read by cpu */
396 	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
397 		tspi->dma_buf_size, DMA_FROM_DEVICE);
398 
399 	if (tspi->is_packed) {
400 		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
401 		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
402 	} else {
403 		unsigned int i;
404 		unsigned int count;
405 		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
406 		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
407 
408 		for (count = 0; count < tspi->curr_dma_words; count++) {
409 			u32 x = tspi->rx_dma_buf[count] & rx_mask;
410 			for (i = 0; (i < tspi->bytes_per_word); i++)
411 				*rx_buf++ = (x >> (i*8)) & 0xFF;
412 		}
413 	}
414 	tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
415 
416 	/* Make the dma buffer to read by dma */
417 	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
418 		tspi->dma_buf_size, DMA_FROM_DEVICE);
419 }
420 
421 static void tegra_spi_dma_complete(void *args)
422 {
423 	struct completion *dma_complete = args;
424 
425 	complete(dma_complete);
426 }
427 
428 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
429 {
430 	reinit_completion(&tspi->tx_dma_complete);
431 	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
432 				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
433 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
434 	if (!tspi->tx_dma_desc) {
435 		dev_err(tspi->dev, "Not able to get desc for Tx\n");
436 		return -EIO;
437 	}
438 
439 	tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
440 	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
441 
442 	dmaengine_submit(tspi->tx_dma_desc);
443 	dma_async_issue_pending(tspi->tx_dma_chan);
444 	return 0;
445 }
446 
447 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
448 {
449 	reinit_completion(&tspi->rx_dma_complete);
450 	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
451 				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
452 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
453 	if (!tspi->rx_dma_desc) {
454 		dev_err(tspi->dev, "Not able to get desc for Rx\n");
455 		return -EIO;
456 	}
457 
458 	tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
459 	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
460 
461 	dmaengine_submit(tspi->rx_dma_desc);
462 	dma_async_issue_pending(tspi->rx_dma_chan);
463 	return 0;
464 }
465 
466 static int tegra_spi_start_dma_based_transfer(
467 		struct tegra_spi_data *tspi, struct spi_transfer *t)
468 {
469 	u32 val;
470 	unsigned int len;
471 	int ret = 0;
472 	u32 status;
473 
474 	/* Make sure that Rx and Tx fifo are empty */
475 	status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
476 	if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
477 		dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
478 			(unsigned)status);
479 		return -EIO;
480 	}
481 
482 	val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
483 	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
484 
485 	if (tspi->is_packed)
486 		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
487 					4) * 4;
488 	else
489 		len = tspi->curr_dma_words * 4;
490 
491 	/* Set attention level based on length of transfer */
492 	if (len & 0xF)
493 		val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
494 	else if (((len) >> 4) & 0x1)
495 		val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
496 	else
497 		val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
498 
499 	if (tspi->cur_direction & DATA_DIR_TX)
500 		val |= SPI_IE_TX;
501 
502 	if (tspi->cur_direction & DATA_DIR_RX)
503 		val |= SPI_IE_RX;
504 
505 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
506 	tspi->dma_control_reg = val;
507 
508 	if (tspi->cur_direction & DATA_DIR_TX) {
509 		tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
510 		ret = tegra_spi_start_tx_dma(tspi, len);
511 		if (ret < 0) {
512 			dev_err(tspi->dev,
513 				"Starting tx dma failed, err %d\n", ret);
514 			return ret;
515 		}
516 	}
517 
518 	if (tspi->cur_direction & DATA_DIR_RX) {
519 		/* Make the dma buffer to read by dma */
520 		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
521 				tspi->dma_buf_size, DMA_FROM_DEVICE);
522 
523 		ret = tegra_spi_start_rx_dma(tspi, len);
524 		if (ret < 0) {
525 			dev_err(tspi->dev,
526 				"Starting rx dma failed, err %d\n", ret);
527 			if (tspi->cur_direction & DATA_DIR_TX)
528 				dmaengine_terminate_all(tspi->tx_dma_chan);
529 			return ret;
530 		}
531 	}
532 	tspi->is_curr_dma_xfer = true;
533 	tspi->dma_control_reg = val;
534 
535 	val |= SPI_DMA_EN;
536 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
537 	return ret;
538 }
539 
540 static int tegra_spi_start_cpu_based_transfer(
541 		struct tegra_spi_data *tspi, struct spi_transfer *t)
542 {
543 	u32 val;
544 	unsigned cur_words;
545 
546 	if (tspi->cur_direction & DATA_DIR_TX)
547 		cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
548 	else
549 		cur_words = tspi->curr_dma_words;
550 
551 	val = SPI_DMA_BLK_SET(cur_words - 1);
552 	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
553 
554 	val = 0;
555 	if (tspi->cur_direction & DATA_DIR_TX)
556 		val |= SPI_IE_TX;
557 
558 	if (tspi->cur_direction & DATA_DIR_RX)
559 		val |= SPI_IE_RX;
560 
561 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
562 	tspi->dma_control_reg = val;
563 
564 	tspi->is_curr_dma_xfer = false;
565 
566 	val |= SPI_DMA_EN;
567 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
568 	return 0;
569 }
570 
571 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
572 			bool dma_to_memory)
573 {
574 	struct dma_chan *dma_chan;
575 	u32 *dma_buf;
576 	dma_addr_t dma_phys;
577 	int ret;
578 	struct dma_slave_config dma_sconfig;
579 
580 	dma_chan = dma_request_slave_channel_reason(tspi->dev,
581 					dma_to_memory ? "rx" : "tx");
582 	if (IS_ERR(dma_chan)) {
583 		ret = PTR_ERR(dma_chan);
584 		if (ret != -EPROBE_DEFER)
585 			dev_err(tspi->dev,
586 				"Dma channel is not available: %d\n", ret);
587 		return ret;
588 	}
589 
590 	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
591 				&dma_phys, GFP_KERNEL);
592 	if (!dma_buf) {
593 		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
594 		dma_release_channel(dma_chan);
595 		return -ENOMEM;
596 	}
597 
598 	if (dma_to_memory) {
599 		dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
600 		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
601 		dma_sconfig.src_maxburst = 0;
602 	} else {
603 		dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
604 		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
605 		dma_sconfig.dst_maxburst = 0;
606 	}
607 
608 	ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
609 	if (ret)
610 		goto scrub;
611 	if (dma_to_memory) {
612 		tspi->rx_dma_chan = dma_chan;
613 		tspi->rx_dma_buf = dma_buf;
614 		tspi->rx_dma_phys = dma_phys;
615 	} else {
616 		tspi->tx_dma_chan = dma_chan;
617 		tspi->tx_dma_buf = dma_buf;
618 		tspi->tx_dma_phys = dma_phys;
619 	}
620 	return 0;
621 
622 scrub:
623 	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
624 	dma_release_channel(dma_chan);
625 	return ret;
626 }
627 
628 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
629 	bool dma_to_memory)
630 {
631 	u32 *dma_buf;
632 	dma_addr_t dma_phys;
633 	struct dma_chan *dma_chan;
634 
635 	if (dma_to_memory) {
636 		dma_buf = tspi->rx_dma_buf;
637 		dma_chan = tspi->rx_dma_chan;
638 		dma_phys = tspi->rx_dma_phys;
639 		tspi->rx_dma_chan = NULL;
640 		tspi->rx_dma_buf = NULL;
641 	} else {
642 		dma_buf = tspi->tx_dma_buf;
643 		dma_chan = tspi->tx_dma_chan;
644 		dma_phys = tspi->tx_dma_phys;
645 		tspi->tx_dma_buf = NULL;
646 		tspi->tx_dma_chan = NULL;
647 	}
648 	if (!dma_chan)
649 		return;
650 
651 	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
652 	dma_release_channel(dma_chan);
653 }
654 
655 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
656 		struct spi_transfer *t, bool is_first_of_msg)
657 {
658 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
659 	u32 speed = t->speed_hz;
660 	u8 bits_per_word = t->bits_per_word;
661 	u32 command1;
662 	int req_mode;
663 
664 	if (speed != tspi->cur_speed) {
665 		clk_set_rate(tspi->clk, speed);
666 		tspi->cur_speed = speed;
667 	}
668 
669 	tspi->cur_spi = spi;
670 	tspi->cur_pos = 0;
671 	tspi->cur_rx_pos = 0;
672 	tspi->cur_tx_pos = 0;
673 	tspi->curr_xfer = t;
674 
675 	if (is_first_of_msg) {
676 		tegra_spi_clear_status(tspi);
677 
678 		command1 = tspi->def_command1_reg;
679 		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
680 
681 		command1 &= ~SPI_CONTROL_MODE_MASK;
682 		req_mode = spi->mode & 0x3;
683 		if (req_mode == SPI_MODE_0)
684 			command1 |= SPI_CONTROL_MODE_0;
685 		else if (req_mode == SPI_MODE_1)
686 			command1 |= SPI_CONTROL_MODE_1;
687 		else if (req_mode == SPI_MODE_2)
688 			command1 |= SPI_CONTROL_MODE_2;
689 		else if (req_mode == SPI_MODE_3)
690 			command1 |= SPI_CONTROL_MODE_3;
691 
692 		if (tspi->cs_control) {
693 			if (tspi->cs_control != spi)
694 				tegra_spi_writel(tspi, command1, SPI_COMMAND1);
695 			tspi->cs_control = NULL;
696 		} else
697 			tegra_spi_writel(tspi, command1, SPI_COMMAND1);
698 
699 		command1 |= SPI_CS_SW_HW;
700 		if (spi->mode & SPI_CS_HIGH)
701 			command1 |= SPI_CS_SS_VAL;
702 		else
703 			command1 &= ~SPI_CS_SS_VAL;
704 
705 		tegra_spi_writel(tspi, 0, SPI_COMMAND2);
706 	} else {
707 		command1 = tspi->command1_reg;
708 		command1 &= ~SPI_BIT_LENGTH(~0);
709 		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
710 	}
711 
712 	return command1;
713 }
714 
715 static int tegra_spi_start_transfer_one(struct spi_device *spi,
716 		struct spi_transfer *t, u32 command1)
717 {
718 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
719 	unsigned total_fifo_words;
720 	int ret;
721 
722 	total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
723 
724 	if (tspi->is_packed)
725 		command1 |= SPI_PACKED;
726 
727 	command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
728 	tspi->cur_direction = 0;
729 	if (t->rx_buf) {
730 		command1 |= SPI_RX_EN;
731 		tspi->cur_direction |= DATA_DIR_RX;
732 	}
733 	if (t->tx_buf) {
734 		command1 |= SPI_TX_EN;
735 		tspi->cur_direction |= DATA_DIR_TX;
736 	}
737 	command1 |= SPI_CS_SEL(spi->chip_select);
738 	tegra_spi_writel(tspi, command1, SPI_COMMAND1);
739 	tspi->command1_reg = command1;
740 
741 	dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
742 		tspi->def_command1_reg, (unsigned)command1);
743 
744 	if (total_fifo_words > SPI_FIFO_DEPTH)
745 		ret = tegra_spi_start_dma_based_transfer(tspi, t);
746 	else
747 		ret = tegra_spi_start_cpu_based_transfer(tspi, t);
748 	return ret;
749 }
750 
751 static int tegra_spi_setup(struct spi_device *spi)
752 {
753 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
754 	u32 val;
755 	unsigned long flags;
756 	int ret;
757 
758 	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
759 		spi->bits_per_word,
760 		spi->mode & SPI_CPOL ? "" : "~",
761 		spi->mode & SPI_CPHA ? "" : "~",
762 		spi->max_speed_hz);
763 
764 	BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);
765 
766 	/* Set speed to the spi max fequency if spi device has not set */
767 	spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency;
768 
769 	ret = pm_runtime_get_sync(tspi->dev);
770 	if (ret < 0) {
771 		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
772 		return ret;
773 	}
774 
775 	spin_lock_irqsave(&tspi->lock, flags);
776 	val = tspi->def_command1_reg;
777 	if (spi->mode & SPI_CS_HIGH)
778 		val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
779 	else
780 		val |= SPI_CS_POL_INACTIVE(spi->chip_select);
781 	tspi->def_command1_reg = val;
782 	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
783 	spin_unlock_irqrestore(&tspi->lock, flags);
784 
785 	pm_runtime_put(tspi->dev);
786 	return 0;
787 }
788 
789 static void tegra_spi_transfer_delay(int delay)
790 {
791 	if (!delay)
792 		return;
793 
794 	if (delay >= 1000)
795 		mdelay(delay / 1000);
796 
797 	udelay(delay % 1000);
798 }
799 
800 static int tegra_spi_transfer_one_message(struct spi_master *master,
801 			struct spi_message *msg)
802 {
803 	bool is_first_msg = true;
804 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
805 	struct spi_transfer *xfer;
806 	struct spi_device *spi = msg->spi;
807 	int ret;
808 	bool skip = false;
809 
810 	msg->status = 0;
811 	msg->actual_length = 0;
812 
813 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
814 		u32 cmd1;
815 
816 		reinit_completion(&tspi->xfer_completion);
817 
818 		cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
819 
820 		if (!xfer->len) {
821 			ret = 0;
822 			skip = true;
823 			goto complete_xfer;
824 		}
825 
826 		ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
827 		if (ret < 0) {
828 			dev_err(tspi->dev,
829 				"spi can not start transfer, err %d\n", ret);
830 			goto complete_xfer;
831 		}
832 
833 		is_first_msg = false;
834 		ret = wait_for_completion_timeout(&tspi->xfer_completion,
835 						SPI_DMA_TIMEOUT);
836 		if (WARN_ON(ret == 0)) {
837 			dev_err(tspi->dev,
838 				"spi trasfer timeout, err %d\n", ret);
839 			ret = -EIO;
840 			goto complete_xfer;
841 		}
842 
843 		if (tspi->tx_status ||  tspi->rx_status) {
844 			dev_err(tspi->dev, "Error in Transfer\n");
845 			ret = -EIO;
846 			goto complete_xfer;
847 		}
848 		msg->actual_length += xfer->len;
849 
850 complete_xfer:
851 		if (ret < 0 || skip) {
852 			tegra_spi_writel(tspi, tspi->def_command1_reg,
853 					SPI_COMMAND1);
854 			tegra_spi_transfer_delay(xfer->delay_usecs);
855 			goto exit;
856 		} else if (msg->transfers.prev == &xfer->transfer_list) {
857 			/* This is the last transfer in message */
858 			if (xfer->cs_change)
859 				tspi->cs_control = spi;
860 			else {
861 				tegra_spi_writel(tspi, tspi->def_command1_reg,
862 						SPI_COMMAND1);
863 				tegra_spi_transfer_delay(xfer->delay_usecs);
864 			}
865 		} else if (xfer->cs_change) {
866 			tegra_spi_writel(tspi, tspi->def_command1_reg,
867 					SPI_COMMAND1);
868 			tegra_spi_transfer_delay(xfer->delay_usecs);
869 		}
870 
871 	}
872 	ret = 0;
873 exit:
874 	msg->status = ret;
875 	spi_finalize_current_message(master);
876 	return ret;
877 }
878 
879 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
880 {
881 	struct spi_transfer *t = tspi->curr_xfer;
882 	unsigned long flags;
883 
884 	spin_lock_irqsave(&tspi->lock, flags);
885 	if (tspi->tx_status ||  tspi->rx_status) {
886 		dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
887 			tspi->status_reg);
888 		dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
889 			tspi->command1_reg, tspi->dma_control_reg);
890 		reset_control_assert(tspi->rst);
891 		udelay(2);
892 		reset_control_deassert(tspi->rst);
893 		complete(&tspi->xfer_completion);
894 		goto exit;
895 	}
896 
897 	if (tspi->cur_direction & DATA_DIR_RX)
898 		tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
899 
900 	if (tspi->cur_direction & DATA_DIR_TX)
901 		tspi->cur_pos = tspi->cur_tx_pos;
902 	else
903 		tspi->cur_pos = tspi->cur_rx_pos;
904 
905 	if (tspi->cur_pos == t->len) {
906 		complete(&tspi->xfer_completion);
907 		goto exit;
908 	}
909 
910 	tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
911 	tegra_spi_start_cpu_based_transfer(tspi, t);
912 exit:
913 	spin_unlock_irqrestore(&tspi->lock, flags);
914 	return IRQ_HANDLED;
915 }
916 
917 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
918 {
919 	struct spi_transfer *t = tspi->curr_xfer;
920 	long wait_status;
921 	int err = 0;
922 	unsigned total_fifo_words;
923 	unsigned long flags;
924 
925 	/* Abort dmas if any error */
926 	if (tspi->cur_direction & DATA_DIR_TX) {
927 		if (tspi->tx_status) {
928 			dmaengine_terminate_all(tspi->tx_dma_chan);
929 			err += 1;
930 		} else {
931 			wait_status = wait_for_completion_interruptible_timeout(
932 				&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
933 			if (wait_status <= 0) {
934 				dmaengine_terminate_all(tspi->tx_dma_chan);
935 				dev_err(tspi->dev, "TxDma Xfer failed\n");
936 				err += 1;
937 			}
938 		}
939 	}
940 
941 	if (tspi->cur_direction & DATA_DIR_RX) {
942 		if (tspi->rx_status) {
943 			dmaengine_terminate_all(tspi->rx_dma_chan);
944 			err += 2;
945 		} else {
946 			wait_status = wait_for_completion_interruptible_timeout(
947 				&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
948 			if (wait_status <= 0) {
949 				dmaengine_terminate_all(tspi->rx_dma_chan);
950 				dev_err(tspi->dev, "RxDma Xfer failed\n");
951 				err += 2;
952 			}
953 		}
954 	}
955 
956 	spin_lock_irqsave(&tspi->lock, flags);
957 	if (err) {
958 		dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
959 			tspi->status_reg);
960 		dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
961 			tspi->command1_reg, tspi->dma_control_reg);
962 		reset_control_assert(tspi->rst);
963 		udelay(2);
964 		reset_control_deassert(tspi->rst);
965 		complete(&tspi->xfer_completion);
966 		spin_unlock_irqrestore(&tspi->lock, flags);
967 		return IRQ_HANDLED;
968 	}
969 
970 	if (tspi->cur_direction & DATA_DIR_RX)
971 		tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
972 
973 	if (tspi->cur_direction & DATA_DIR_TX)
974 		tspi->cur_pos = tspi->cur_tx_pos;
975 	else
976 		tspi->cur_pos = tspi->cur_rx_pos;
977 
978 	if (tspi->cur_pos == t->len) {
979 		complete(&tspi->xfer_completion);
980 		goto exit;
981 	}
982 
983 	/* Continue transfer in current message */
984 	total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
985 							tspi, t);
986 	if (total_fifo_words > SPI_FIFO_DEPTH)
987 		err = tegra_spi_start_dma_based_transfer(tspi, t);
988 	else
989 		err = tegra_spi_start_cpu_based_transfer(tspi, t);
990 
991 exit:
992 	spin_unlock_irqrestore(&tspi->lock, flags);
993 	return IRQ_HANDLED;
994 }
995 
996 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
997 {
998 	struct tegra_spi_data *tspi = context_data;
999 
1000 	if (!tspi->is_curr_dma_xfer)
1001 		return handle_cpu_based_xfer(tspi);
1002 	return handle_dma_based_xfer(tspi);
1003 }
1004 
1005 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1006 {
1007 	struct tegra_spi_data *tspi = context_data;
1008 
1009 	tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1010 	if (tspi->cur_direction & DATA_DIR_TX)
1011 		tspi->tx_status = tspi->status_reg &
1012 					(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1013 
1014 	if (tspi->cur_direction & DATA_DIR_RX)
1015 		tspi->rx_status = tspi->status_reg &
1016 					(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1017 	tegra_spi_clear_status(tspi);
1018 
1019 	return IRQ_WAKE_THREAD;
1020 }
1021 
1022 static void tegra_spi_parse_dt(struct platform_device *pdev,
1023 	struct tegra_spi_data *tspi)
1024 {
1025 	struct device_node *np = pdev->dev.of_node;
1026 
1027 	if (of_property_read_u32(np, "spi-max-frequency",
1028 				&tspi->spi_max_frequency))
1029 		tspi->spi_max_frequency = 25000000; /* 25MHz */
1030 }
1031 
1032 static struct of_device_id tegra_spi_of_match[] = {
1033 	{ .compatible = "nvidia,tegra114-spi", },
1034 	{}
1035 };
1036 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1037 
1038 static int tegra_spi_probe(struct platform_device *pdev)
1039 {
1040 	struct spi_master	*master;
1041 	struct tegra_spi_data	*tspi;
1042 	struct resource		*r;
1043 	int ret, spi_irq;
1044 
1045 	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1046 	if (!master) {
1047 		dev_err(&pdev->dev, "master allocation failed\n");
1048 		return -ENOMEM;
1049 	}
1050 	platform_set_drvdata(pdev, master);
1051 	tspi = spi_master_get_devdata(master);
1052 
1053 	/* Parse DT */
1054 	tegra_spi_parse_dt(pdev, tspi);
1055 
1056 	/* the spi->mode bits understood by this driver: */
1057 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1058 	master->setup = tegra_spi_setup;
1059 	master->transfer_one_message = tegra_spi_transfer_one_message;
1060 	master->num_chipselect = MAX_CHIP_SELECT;
1061 	master->bus_num = -1;
1062 	master->auto_runtime_pm = true;
1063 
1064 	tspi->master = master;
1065 	tspi->dev = &pdev->dev;
1066 	spin_lock_init(&tspi->lock);
1067 
1068 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1069 	tspi->base = devm_ioremap_resource(&pdev->dev, r);
1070 	if (IS_ERR(tspi->base)) {
1071 		ret = PTR_ERR(tspi->base);
1072 		goto exit_free_master;
1073 	}
1074 	tspi->phys = r->start;
1075 
1076 	spi_irq = platform_get_irq(pdev, 0);
1077 	tspi->irq = spi_irq;
1078 	ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1079 			tegra_spi_isr_thread, IRQF_ONESHOT,
1080 			dev_name(&pdev->dev), tspi);
1081 	if (ret < 0) {
1082 		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1083 					tspi->irq);
1084 		goto exit_free_master;
1085 	}
1086 
1087 	tspi->clk = devm_clk_get(&pdev->dev, "spi");
1088 	if (IS_ERR(tspi->clk)) {
1089 		dev_err(&pdev->dev, "can not get clock\n");
1090 		ret = PTR_ERR(tspi->clk);
1091 		goto exit_free_irq;
1092 	}
1093 
1094 	tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1095 	if (IS_ERR(tspi->rst)) {
1096 		dev_err(&pdev->dev, "can not get reset\n");
1097 		ret = PTR_ERR(tspi->rst);
1098 		goto exit_free_irq;
1099 	}
1100 
1101 	tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1102 	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1103 
1104 	ret = tegra_spi_init_dma_param(tspi, true);
1105 	if (ret < 0)
1106 		goto exit_free_irq;
1107 	ret = tegra_spi_init_dma_param(tspi, false);
1108 	if (ret < 0)
1109 		goto exit_rx_dma_free;
1110 	tspi->max_buf_size = tspi->dma_buf_size;
1111 	init_completion(&tspi->tx_dma_complete);
1112 	init_completion(&tspi->rx_dma_complete);
1113 
1114 	init_completion(&tspi->xfer_completion);
1115 
1116 	pm_runtime_enable(&pdev->dev);
1117 	if (!pm_runtime_enabled(&pdev->dev)) {
1118 		ret = tegra_spi_runtime_resume(&pdev->dev);
1119 		if (ret)
1120 			goto exit_pm_disable;
1121 	}
1122 
1123 	ret = pm_runtime_get_sync(&pdev->dev);
1124 	if (ret < 0) {
1125 		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1126 		goto exit_pm_disable;
1127 	}
1128 	tspi->def_command1_reg  = SPI_M_S;
1129 	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1130 	pm_runtime_put(&pdev->dev);
1131 
1132 	master->dev.of_node = pdev->dev.of_node;
1133 	ret = devm_spi_register_master(&pdev->dev, master);
1134 	if (ret < 0) {
1135 		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1136 		goto exit_pm_disable;
1137 	}
1138 	return ret;
1139 
1140 exit_pm_disable:
1141 	pm_runtime_disable(&pdev->dev);
1142 	if (!pm_runtime_status_suspended(&pdev->dev))
1143 		tegra_spi_runtime_suspend(&pdev->dev);
1144 	tegra_spi_deinit_dma_param(tspi, false);
1145 exit_rx_dma_free:
1146 	tegra_spi_deinit_dma_param(tspi, true);
1147 exit_free_irq:
1148 	free_irq(spi_irq, tspi);
1149 exit_free_master:
1150 	spi_master_put(master);
1151 	return ret;
1152 }
1153 
1154 static int tegra_spi_remove(struct platform_device *pdev)
1155 {
1156 	struct spi_master *master = platform_get_drvdata(pdev);
1157 	struct tegra_spi_data	*tspi = spi_master_get_devdata(master);
1158 
1159 	free_irq(tspi->irq, tspi);
1160 
1161 	if (tspi->tx_dma_chan)
1162 		tegra_spi_deinit_dma_param(tspi, false);
1163 
1164 	if (tspi->rx_dma_chan)
1165 		tegra_spi_deinit_dma_param(tspi, true);
1166 
1167 	pm_runtime_disable(&pdev->dev);
1168 	if (!pm_runtime_status_suspended(&pdev->dev))
1169 		tegra_spi_runtime_suspend(&pdev->dev);
1170 
1171 	return 0;
1172 }
1173 
1174 #ifdef CONFIG_PM_SLEEP
1175 static int tegra_spi_suspend(struct device *dev)
1176 {
1177 	struct spi_master *master = dev_get_drvdata(dev);
1178 
1179 	return spi_master_suspend(master);
1180 }
1181 
1182 static int tegra_spi_resume(struct device *dev)
1183 {
1184 	struct spi_master *master = dev_get_drvdata(dev);
1185 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1186 	int ret;
1187 
1188 	ret = pm_runtime_get_sync(dev);
1189 	if (ret < 0) {
1190 		dev_err(dev, "pm runtime failed, e = %d\n", ret);
1191 		return ret;
1192 	}
1193 	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1194 	pm_runtime_put(dev);
1195 
1196 	return spi_master_resume(master);
1197 }
1198 #endif
1199 
1200 static int tegra_spi_runtime_suspend(struct device *dev)
1201 {
1202 	struct spi_master *master = dev_get_drvdata(dev);
1203 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1204 
1205 	/* Flush all write which are in PPSB queue by reading back */
1206 	tegra_spi_readl(tspi, SPI_COMMAND1);
1207 
1208 	clk_disable_unprepare(tspi->clk);
1209 	return 0;
1210 }
1211 
1212 static int tegra_spi_runtime_resume(struct device *dev)
1213 {
1214 	struct spi_master *master = dev_get_drvdata(dev);
1215 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1216 	int ret;
1217 
1218 	ret = clk_prepare_enable(tspi->clk);
1219 	if (ret < 0) {
1220 		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1221 		return ret;
1222 	}
1223 	return 0;
1224 }
1225 
1226 static const struct dev_pm_ops tegra_spi_pm_ops = {
1227 	SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1228 		tegra_spi_runtime_resume, NULL)
1229 	SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1230 };
1231 static struct platform_driver tegra_spi_driver = {
1232 	.driver = {
1233 		.name		= "spi-tegra114",
1234 		.owner		= THIS_MODULE,
1235 		.pm		= &tegra_spi_pm_ops,
1236 		.of_match_table	= tegra_spi_of_match,
1237 	},
1238 	.probe =	tegra_spi_probe,
1239 	.remove =	tegra_spi_remove,
1240 };
1241 module_platform_driver(tegra_spi_driver);
1242 
1243 MODULE_ALIAS("platform:spi-tegra114");
1244 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1245 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1246 MODULE_LICENSE("GPL v2");
1247