xref: /openbmc/linux/drivers/spi/spi-tegra114.c (revision 9b9c2cd4)
1 /*
2  * SPI driver for NVIDIA's Tegra114 SPI Controller.
3  *
4  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/kthread.h>
30 #include <linux/module.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/reset.h>
36 #include <linux/spi/spi.h>
37 
38 #define SPI_COMMAND1				0x000
39 #define SPI_BIT_LENGTH(x)			(((x) & 0x1f) << 0)
40 #define SPI_PACKED				(1 << 5)
41 #define SPI_TX_EN				(1 << 11)
42 #define SPI_RX_EN				(1 << 12)
43 #define SPI_BOTH_EN_BYTE			(1 << 13)
44 #define SPI_BOTH_EN_BIT				(1 << 14)
45 #define SPI_LSBYTE_FE				(1 << 15)
46 #define SPI_LSBIT_FE				(1 << 16)
47 #define SPI_BIDIROE				(1 << 17)
48 #define SPI_IDLE_SDA_DRIVE_LOW			(0 << 18)
49 #define SPI_IDLE_SDA_DRIVE_HIGH			(1 << 18)
50 #define SPI_IDLE_SDA_PULL_LOW			(2 << 18)
51 #define SPI_IDLE_SDA_PULL_HIGH			(3 << 18)
52 #define SPI_IDLE_SDA_MASK			(3 << 18)
53 #define SPI_CS_SS_VAL				(1 << 20)
54 #define SPI_CS_SW_HW				(1 << 21)
55 /* SPI_CS_POL_INACTIVE bits are default high */
56 						/* n from 0 to 3 */
57 #define SPI_CS_POL_INACTIVE(n)			(1 << (22 + (n)))
58 #define SPI_CS_POL_INACTIVE_MASK		(0xF << 22)
59 
60 #define SPI_CS_SEL_0				(0 << 26)
61 #define SPI_CS_SEL_1				(1 << 26)
62 #define SPI_CS_SEL_2				(2 << 26)
63 #define SPI_CS_SEL_3				(3 << 26)
64 #define SPI_CS_SEL_MASK				(3 << 26)
65 #define SPI_CS_SEL(x)				(((x) & 0x3) << 26)
66 #define SPI_CONTROL_MODE_0			(0 << 28)
67 #define SPI_CONTROL_MODE_1			(1 << 28)
68 #define SPI_CONTROL_MODE_2			(2 << 28)
69 #define SPI_CONTROL_MODE_3			(3 << 28)
70 #define SPI_CONTROL_MODE_MASK			(3 << 28)
71 #define SPI_MODE_SEL(x)				(((x) & 0x3) << 28)
72 #define SPI_M_S					(1 << 30)
73 #define SPI_PIO					(1 << 31)
74 
75 #define SPI_COMMAND2				0x004
76 #define SPI_TX_TAP_DELAY(x)			(((x) & 0x3F) << 6)
77 #define SPI_RX_TAP_DELAY(x)			(((x) & 0x3F) << 0)
78 
79 #define SPI_CS_TIMING1				0x008
80 #define SPI_SETUP_HOLD(setup, hold)		(((setup) << 4) | (hold))
81 #define SPI_CS_SETUP_HOLD(reg, cs, val)			\
82 		((((val) & 0xFFu) << ((cs) * 8)) |	\
83 		((reg) & ~(0xFFu << ((cs) * 8))))
84 
85 #define SPI_CS_TIMING2				0x00C
86 #define CYCLES_BETWEEN_PACKETS_0(x)		(((x) & 0x1F) << 0)
87 #define CS_ACTIVE_BETWEEN_PACKETS_0		(1 << 5)
88 #define CYCLES_BETWEEN_PACKETS_1(x)		(((x) & 0x1F) << 8)
89 #define CS_ACTIVE_BETWEEN_PACKETS_1		(1 << 13)
90 #define CYCLES_BETWEEN_PACKETS_2(x)		(((x) & 0x1F) << 16)
91 #define CS_ACTIVE_BETWEEN_PACKETS_2		(1 << 21)
92 #define CYCLES_BETWEEN_PACKETS_3(x)		(((x) & 0x1F) << 24)
93 #define CS_ACTIVE_BETWEEN_PACKETS_3		(1 << 29)
94 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)		\
95 		(reg = (((val) & 0x1) << ((cs) * 8 + 5)) |	\
96 			((reg) & ~(1 << ((cs) * 8 + 5))))
97 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)		\
98 		(reg = (((val) & 0xF) << ((cs) * 8)) |		\
99 			((reg) & ~(0xF << ((cs) * 8))))
100 
101 #define SPI_TRANS_STATUS			0x010
102 #define SPI_BLK_CNT(val)			(((val) >> 0) & 0xFFFF)
103 #define SPI_SLV_IDLE_COUNT(val)			(((val) >> 16) & 0xFF)
104 #define SPI_RDY					(1 << 30)
105 
106 #define SPI_FIFO_STATUS				0x014
107 #define SPI_RX_FIFO_EMPTY			(1 << 0)
108 #define SPI_RX_FIFO_FULL			(1 << 1)
109 #define SPI_TX_FIFO_EMPTY			(1 << 2)
110 #define SPI_TX_FIFO_FULL			(1 << 3)
111 #define SPI_RX_FIFO_UNF				(1 << 4)
112 #define SPI_RX_FIFO_OVF				(1 << 5)
113 #define SPI_TX_FIFO_UNF				(1 << 6)
114 #define SPI_TX_FIFO_OVF				(1 << 7)
115 #define SPI_ERR					(1 << 8)
116 #define SPI_TX_FIFO_FLUSH			(1 << 14)
117 #define SPI_RX_FIFO_FLUSH			(1 << 15)
118 #define SPI_TX_FIFO_EMPTY_COUNT(val)		(((val) >> 16) & 0x7F)
119 #define SPI_RX_FIFO_FULL_COUNT(val)		(((val) >> 23) & 0x7F)
120 #define SPI_FRAME_END				(1 << 30)
121 #define SPI_CS_INACTIVE				(1 << 31)
122 
123 #define SPI_FIFO_ERROR				(SPI_RX_FIFO_UNF | \
124 			SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125 #define SPI_FIFO_EMPTY			(SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
126 
127 #define SPI_TX_DATA				0x018
128 #define SPI_RX_DATA				0x01C
129 
130 #define SPI_DMA_CTL				0x020
131 #define SPI_TX_TRIG_1				(0 << 15)
132 #define SPI_TX_TRIG_4				(1 << 15)
133 #define SPI_TX_TRIG_8				(2 << 15)
134 #define SPI_TX_TRIG_16				(3 << 15)
135 #define SPI_TX_TRIG_MASK			(3 << 15)
136 #define SPI_RX_TRIG_1				(0 << 19)
137 #define SPI_RX_TRIG_4				(1 << 19)
138 #define SPI_RX_TRIG_8				(2 << 19)
139 #define SPI_RX_TRIG_16				(3 << 19)
140 #define SPI_RX_TRIG_MASK			(3 << 19)
141 #define SPI_IE_TX				(1 << 28)
142 #define SPI_IE_RX				(1 << 29)
143 #define SPI_CONT				(1 << 30)
144 #define SPI_DMA					(1 << 31)
145 #define SPI_DMA_EN				SPI_DMA
146 
147 #define SPI_DMA_BLK				0x024
148 #define SPI_DMA_BLK_SET(x)			(((x) & 0xFFFF) << 0)
149 
150 #define SPI_TX_FIFO				0x108
151 #define SPI_RX_FIFO				0x188
152 #define MAX_CHIP_SELECT				4
153 #define SPI_FIFO_DEPTH				64
154 #define DATA_DIR_TX				(1 << 0)
155 #define DATA_DIR_RX				(1 << 1)
156 
157 #define SPI_DMA_TIMEOUT				(msecs_to_jiffies(1000))
158 #define DEFAULT_SPI_DMA_BUF_LEN			(16*1024)
159 #define TX_FIFO_EMPTY_COUNT_MAX			SPI_TX_FIFO_EMPTY_COUNT(0x40)
160 #define RX_FIFO_FULL_COUNT_ZERO			SPI_RX_FIFO_FULL_COUNT(0)
161 #define MAX_HOLD_CYCLES				16
162 #define SPI_DEFAULT_SPEED			25000000
163 
164 struct tegra_spi_data {
165 	struct device				*dev;
166 	struct spi_master			*master;
167 	spinlock_t				lock;
168 
169 	struct clk				*clk;
170 	struct reset_control			*rst;
171 	void __iomem				*base;
172 	phys_addr_t				phys;
173 	unsigned				irq;
174 	u32					cur_speed;
175 
176 	struct spi_device			*cur_spi;
177 	struct spi_device			*cs_control;
178 	unsigned				cur_pos;
179 	unsigned				words_per_32bit;
180 	unsigned				bytes_per_word;
181 	unsigned				curr_dma_words;
182 	unsigned				cur_direction;
183 
184 	unsigned				cur_rx_pos;
185 	unsigned				cur_tx_pos;
186 
187 	unsigned				dma_buf_size;
188 	unsigned				max_buf_size;
189 	bool					is_curr_dma_xfer;
190 
191 	struct completion			rx_dma_complete;
192 	struct completion			tx_dma_complete;
193 
194 	u32					tx_status;
195 	u32					rx_status;
196 	u32					status_reg;
197 	bool					is_packed;
198 
199 	u32					command1_reg;
200 	u32					dma_control_reg;
201 	u32					def_command1_reg;
202 
203 	struct completion			xfer_completion;
204 	struct spi_transfer			*curr_xfer;
205 	struct dma_chan				*rx_dma_chan;
206 	u32					*rx_dma_buf;
207 	dma_addr_t				rx_dma_phys;
208 	struct dma_async_tx_descriptor		*rx_dma_desc;
209 
210 	struct dma_chan				*tx_dma_chan;
211 	u32					*tx_dma_buf;
212 	dma_addr_t				tx_dma_phys;
213 	struct dma_async_tx_descriptor		*tx_dma_desc;
214 };
215 
216 static int tegra_spi_runtime_suspend(struct device *dev);
217 static int tegra_spi_runtime_resume(struct device *dev);
218 
219 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
220 		unsigned long reg)
221 {
222 	return readl(tspi->base + reg);
223 }
224 
225 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
226 		u32 val, unsigned long reg)
227 {
228 	writel(val, tspi->base + reg);
229 
230 	/* Read back register to make sure that register writes completed */
231 	if (reg != SPI_TX_FIFO)
232 		readl(tspi->base + SPI_COMMAND1);
233 }
234 
235 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
236 {
237 	u32 val;
238 
239 	/* Write 1 to clear status register */
240 	val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
241 	tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
242 
243 	/* Clear fifo status error if any */
244 	val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
245 	if (val & SPI_ERR)
246 		tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
247 				SPI_FIFO_STATUS);
248 }
249 
250 static unsigned tegra_spi_calculate_curr_xfer_param(
251 	struct spi_device *spi, struct tegra_spi_data *tspi,
252 	struct spi_transfer *t)
253 {
254 	unsigned remain_len = t->len - tspi->cur_pos;
255 	unsigned max_word;
256 	unsigned bits_per_word = t->bits_per_word;
257 	unsigned max_len;
258 	unsigned total_fifo_words;
259 
260 	tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
261 
262 	if (bits_per_word == 8 || bits_per_word == 16) {
263 		tspi->is_packed = 1;
264 		tspi->words_per_32bit = 32/bits_per_word;
265 	} else {
266 		tspi->is_packed = 0;
267 		tspi->words_per_32bit = 1;
268 	}
269 
270 	if (tspi->is_packed) {
271 		max_len = min(remain_len, tspi->max_buf_size);
272 		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
273 		total_fifo_words = (max_len + 3) / 4;
274 	} else {
275 		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
276 		max_word = min(max_word, tspi->max_buf_size/4);
277 		tspi->curr_dma_words = max_word;
278 		total_fifo_words = max_word;
279 	}
280 	return total_fifo_words;
281 }
282 
283 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
284 	struct tegra_spi_data *tspi, struct spi_transfer *t)
285 {
286 	unsigned nbytes;
287 	unsigned tx_empty_count;
288 	u32 fifo_status;
289 	unsigned max_n_32bit;
290 	unsigned i, count;
291 	unsigned int written_words;
292 	unsigned fifo_words_left;
293 	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
294 
295 	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
296 	tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
297 
298 	if (tspi->is_packed) {
299 		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
300 		written_words = min(fifo_words_left, tspi->curr_dma_words);
301 		nbytes = written_words * tspi->bytes_per_word;
302 		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
303 		for (count = 0; count < max_n_32bit; count++) {
304 			u32 x = 0;
305 
306 			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
307 				x |= (u32)(*tx_buf++) << (i * 8);
308 			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
309 		}
310 	} else {
311 		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
312 		written_words = max_n_32bit;
313 		nbytes = written_words * tspi->bytes_per_word;
314 		for (count = 0; count < max_n_32bit; count++) {
315 			u32 x = 0;
316 
317 			for (i = 0; nbytes && (i < tspi->bytes_per_word);
318 							i++, nbytes--)
319 				x |= (u32)(*tx_buf++) << (i * 8);
320 			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
321 		}
322 	}
323 	tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
324 	return written_words;
325 }
326 
327 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
328 		struct tegra_spi_data *tspi, struct spi_transfer *t)
329 {
330 	unsigned rx_full_count;
331 	u32 fifo_status;
332 	unsigned i, count;
333 	unsigned int read_words = 0;
334 	unsigned len;
335 	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
336 
337 	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
338 	rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
339 	if (tspi->is_packed) {
340 		len = tspi->curr_dma_words * tspi->bytes_per_word;
341 		for (count = 0; count < rx_full_count; count++) {
342 			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
343 
344 			for (i = 0; len && (i < 4); i++, len--)
345 				*rx_buf++ = (x >> i*8) & 0xFF;
346 		}
347 		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
348 		read_words += tspi->curr_dma_words;
349 	} else {
350 		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
351 
352 		for (count = 0; count < rx_full_count; count++) {
353 			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
354 
355 			for (i = 0; (i < tspi->bytes_per_word); i++)
356 				*rx_buf++ = (x >> (i*8)) & 0xFF;
357 		}
358 		tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
359 		read_words += rx_full_count;
360 	}
361 	return read_words;
362 }
363 
364 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
365 		struct tegra_spi_data *tspi, struct spi_transfer *t)
366 {
367 	/* Make the dma buffer to read by cpu */
368 	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
369 				tspi->dma_buf_size, DMA_TO_DEVICE);
370 
371 	if (tspi->is_packed) {
372 		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
373 
374 		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
375 	} else {
376 		unsigned int i;
377 		unsigned int count;
378 		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
379 		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
380 
381 		for (count = 0; count < tspi->curr_dma_words; count++) {
382 			u32 x = 0;
383 
384 			for (i = 0; consume && (i < tspi->bytes_per_word);
385 							i++, consume--)
386 				x |= (u32)(*tx_buf++) << (i * 8);
387 			tspi->tx_dma_buf[count] = x;
388 		}
389 	}
390 	tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
391 
392 	/* Make the dma buffer to read by dma */
393 	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
394 				tspi->dma_buf_size, DMA_TO_DEVICE);
395 }
396 
397 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
398 		struct tegra_spi_data *tspi, struct spi_transfer *t)
399 {
400 	/* Make the dma buffer to read by cpu */
401 	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
402 		tspi->dma_buf_size, DMA_FROM_DEVICE);
403 
404 	if (tspi->is_packed) {
405 		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
406 
407 		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
408 	} else {
409 		unsigned int i;
410 		unsigned int count;
411 		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
412 		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
413 
414 		for (count = 0; count < tspi->curr_dma_words; count++) {
415 			u32 x = tspi->rx_dma_buf[count] & rx_mask;
416 
417 			for (i = 0; (i < tspi->bytes_per_word); i++)
418 				*rx_buf++ = (x >> (i*8)) & 0xFF;
419 		}
420 	}
421 	tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
422 
423 	/* Make the dma buffer to read by dma */
424 	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
425 		tspi->dma_buf_size, DMA_FROM_DEVICE);
426 }
427 
428 static void tegra_spi_dma_complete(void *args)
429 {
430 	struct completion *dma_complete = args;
431 
432 	complete(dma_complete);
433 }
434 
435 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
436 {
437 	reinit_completion(&tspi->tx_dma_complete);
438 	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
439 				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
440 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
441 	if (!tspi->tx_dma_desc) {
442 		dev_err(tspi->dev, "Not able to get desc for Tx\n");
443 		return -EIO;
444 	}
445 
446 	tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
447 	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
448 
449 	dmaengine_submit(tspi->tx_dma_desc);
450 	dma_async_issue_pending(tspi->tx_dma_chan);
451 	return 0;
452 }
453 
454 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
455 {
456 	reinit_completion(&tspi->rx_dma_complete);
457 	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
458 				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
459 				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
460 	if (!tspi->rx_dma_desc) {
461 		dev_err(tspi->dev, "Not able to get desc for Rx\n");
462 		return -EIO;
463 	}
464 
465 	tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
466 	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
467 
468 	dmaengine_submit(tspi->rx_dma_desc);
469 	dma_async_issue_pending(tspi->rx_dma_chan);
470 	return 0;
471 }
472 
473 static int tegra_spi_start_dma_based_transfer(
474 		struct tegra_spi_data *tspi, struct spi_transfer *t)
475 {
476 	u32 val;
477 	unsigned int len;
478 	int ret = 0;
479 	u32 status;
480 
481 	/* Make sure that Rx and Tx fifo are empty */
482 	status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
483 	if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
484 		dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
485 			(unsigned)status);
486 		return -EIO;
487 	}
488 
489 	val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
490 	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
491 
492 	if (tspi->is_packed)
493 		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
494 					4) * 4;
495 	else
496 		len = tspi->curr_dma_words * 4;
497 
498 	/* Set attention level based on length of transfer */
499 	if (len & 0xF)
500 		val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
501 	else if (((len) >> 4) & 0x1)
502 		val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
503 	else
504 		val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
505 
506 	if (tspi->cur_direction & DATA_DIR_TX)
507 		val |= SPI_IE_TX;
508 
509 	if (tspi->cur_direction & DATA_DIR_RX)
510 		val |= SPI_IE_RX;
511 
512 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
513 	tspi->dma_control_reg = val;
514 
515 	if (tspi->cur_direction & DATA_DIR_TX) {
516 		tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
517 		ret = tegra_spi_start_tx_dma(tspi, len);
518 		if (ret < 0) {
519 			dev_err(tspi->dev,
520 				"Starting tx dma failed, err %d\n", ret);
521 			return ret;
522 		}
523 	}
524 
525 	if (tspi->cur_direction & DATA_DIR_RX) {
526 		/* Make the dma buffer to read by dma */
527 		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
528 				tspi->dma_buf_size, DMA_FROM_DEVICE);
529 
530 		ret = tegra_spi_start_rx_dma(tspi, len);
531 		if (ret < 0) {
532 			dev_err(tspi->dev,
533 				"Starting rx dma failed, err %d\n", ret);
534 			if (tspi->cur_direction & DATA_DIR_TX)
535 				dmaengine_terminate_all(tspi->tx_dma_chan);
536 			return ret;
537 		}
538 	}
539 	tspi->is_curr_dma_xfer = true;
540 	tspi->dma_control_reg = val;
541 
542 	val |= SPI_DMA_EN;
543 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
544 	return ret;
545 }
546 
547 static int tegra_spi_start_cpu_based_transfer(
548 		struct tegra_spi_data *tspi, struct spi_transfer *t)
549 {
550 	u32 val;
551 	unsigned cur_words;
552 
553 	if (tspi->cur_direction & DATA_DIR_TX)
554 		cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
555 	else
556 		cur_words = tspi->curr_dma_words;
557 
558 	val = SPI_DMA_BLK_SET(cur_words - 1);
559 	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
560 
561 	val = 0;
562 	if (tspi->cur_direction & DATA_DIR_TX)
563 		val |= SPI_IE_TX;
564 
565 	if (tspi->cur_direction & DATA_DIR_RX)
566 		val |= SPI_IE_RX;
567 
568 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
569 	tspi->dma_control_reg = val;
570 
571 	tspi->is_curr_dma_xfer = false;
572 
573 	val |= SPI_DMA_EN;
574 	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
575 	return 0;
576 }
577 
578 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
579 			bool dma_to_memory)
580 {
581 	struct dma_chan *dma_chan;
582 	u32 *dma_buf;
583 	dma_addr_t dma_phys;
584 	int ret;
585 	struct dma_slave_config dma_sconfig;
586 
587 	dma_chan = dma_request_slave_channel_reason(tspi->dev,
588 					dma_to_memory ? "rx" : "tx");
589 	if (IS_ERR(dma_chan)) {
590 		ret = PTR_ERR(dma_chan);
591 		if (ret != -EPROBE_DEFER)
592 			dev_err(tspi->dev,
593 				"Dma channel is not available: %d\n", ret);
594 		return ret;
595 	}
596 
597 	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
598 				&dma_phys, GFP_KERNEL);
599 	if (!dma_buf) {
600 		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
601 		dma_release_channel(dma_chan);
602 		return -ENOMEM;
603 	}
604 
605 	if (dma_to_memory) {
606 		dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
607 		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
608 		dma_sconfig.src_maxburst = 0;
609 	} else {
610 		dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
611 		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
612 		dma_sconfig.dst_maxburst = 0;
613 	}
614 
615 	ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
616 	if (ret)
617 		goto scrub;
618 	if (dma_to_memory) {
619 		tspi->rx_dma_chan = dma_chan;
620 		tspi->rx_dma_buf = dma_buf;
621 		tspi->rx_dma_phys = dma_phys;
622 	} else {
623 		tspi->tx_dma_chan = dma_chan;
624 		tspi->tx_dma_buf = dma_buf;
625 		tspi->tx_dma_phys = dma_phys;
626 	}
627 	return 0;
628 
629 scrub:
630 	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
631 	dma_release_channel(dma_chan);
632 	return ret;
633 }
634 
635 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
636 	bool dma_to_memory)
637 {
638 	u32 *dma_buf;
639 	dma_addr_t dma_phys;
640 	struct dma_chan *dma_chan;
641 
642 	if (dma_to_memory) {
643 		dma_buf = tspi->rx_dma_buf;
644 		dma_chan = tspi->rx_dma_chan;
645 		dma_phys = tspi->rx_dma_phys;
646 		tspi->rx_dma_chan = NULL;
647 		tspi->rx_dma_buf = NULL;
648 	} else {
649 		dma_buf = tspi->tx_dma_buf;
650 		dma_chan = tspi->tx_dma_chan;
651 		dma_phys = tspi->tx_dma_phys;
652 		tspi->tx_dma_buf = NULL;
653 		tspi->tx_dma_chan = NULL;
654 	}
655 	if (!dma_chan)
656 		return;
657 
658 	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
659 	dma_release_channel(dma_chan);
660 }
661 
662 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
663 		struct spi_transfer *t, bool is_first_of_msg)
664 {
665 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
666 	u32 speed = t->speed_hz;
667 	u8 bits_per_word = t->bits_per_word;
668 	u32 command1;
669 	int req_mode;
670 
671 	if (speed != tspi->cur_speed) {
672 		clk_set_rate(tspi->clk, speed);
673 		tspi->cur_speed = speed;
674 	}
675 
676 	tspi->cur_spi = spi;
677 	tspi->cur_pos = 0;
678 	tspi->cur_rx_pos = 0;
679 	tspi->cur_tx_pos = 0;
680 	tspi->curr_xfer = t;
681 
682 	if (is_first_of_msg) {
683 		tegra_spi_clear_status(tspi);
684 
685 		command1 = tspi->def_command1_reg;
686 		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
687 
688 		command1 &= ~SPI_CONTROL_MODE_MASK;
689 		req_mode = spi->mode & 0x3;
690 		if (req_mode == SPI_MODE_0)
691 			command1 |= SPI_CONTROL_MODE_0;
692 		else if (req_mode == SPI_MODE_1)
693 			command1 |= SPI_CONTROL_MODE_1;
694 		else if (req_mode == SPI_MODE_2)
695 			command1 |= SPI_CONTROL_MODE_2;
696 		else if (req_mode == SPI_MODE_3)
697 			command1 |= SPI_CONTROL_MODE_3;
698 
699 		if (tspi->cs_control) {
700 			if (tspi->cs_control != spi)
701 				tegra_spi_writel(tspi, command1, SPI_COMMAND1);
702 			tspi->cs_control = NULL;
703 		} else
704 			tegra_spi_writel(tspi, command1, SPI_COMMAND1);
705 
706 		command1 |= SPI_CS_SW_HW;
707 		if (spi->mode & SPI_CS_HIGH)
708 			command1 |= SPI_CS_SS_VAL;
709 		else
710 			command1 &= ~SPI_CS_SS_VAL;
711 
712 		tegra_spi_writel(tspi, 0, SPI_COMMAND2);
713 	} else {
714 		command1 = tspi->command1_reg;
715 		command1 &= ~SPI_BIT_LENGTH(~0);
716 		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
717 	}
718 
719 	return command1;
720 }
721 
722 static int tegra_spi_start_transfer_one(struct spi_device *spi,
723 		struct spi_transfer *t, u32 command1)
724 {
725 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
726 	unsigned total_fifo_words;
727 	int ret;
728 
729 	total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
730 
731 	if (tspi->is_packed)
732 		command1 |= SPI_PACKED;
733 
734 	command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
735 	tspi->cur_direction = 0;
736 	if (t->rx_buf) {
737 		command1 |= SPI_RX_EN;
738 		tspi->cur_direction |= DATA_DIR_RX;
739 	}
740 	if (t->tx_buf) {
741 		command1 |= SPI_TX_EN;
742 		tspi->cur_direction |= DATA_DIR_TX;
743 	}
744 	command1 |= SPI_CS_SEL(spi->chip_select);
745 	tegra_spi_writel(tspi, command1, SPI_COMMAND1);
746 	tspi->command1_reg = command1;
747 
748 	dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
749 		tspi->def_command1_reg, (unsigned)command1);
750 
751 	if (total_fifo_words > SPI_FIFO_DEPTH)
752 		ret = tegra_spi_start_dma_based_transfer(tspi, t);
753 	else
754 		ret = tegra_spi_start_cpu_based_transfer(tspi, t);
755 	return ret;
756 }
757 
758 static int tegra_spi_setup(struct spi_device *spi)
759 {
760 	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
761 	u32 val;
762 	unsigned long flags;
763 	int ret;
764 
765 	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
766 		spi->bits_per_word,
767 		spi->mode & SPI_CPOL ? "" : "~",
768 		spi->mode & SPI_CPHA ? "" : "~",
769 		spi->max_speed_hz);
770 
771 	ret = pm_runtime_get_sync(tspi->dev);
772 	if (ret < 0) {
773 		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
774 		return ret;
775 	}
776 
777 	spin_lock_irqsave(&tspi->lock, flags);
778 	val = tspi->def_command1_reg;
779 	if (spi->mode & SPI_CS_HIGH)
780 		val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
781 	else
782 		val |= SPI_CS_POL_INACTIVE(spi->chip_select);
783 	tspi->def_command1_reg = val;
784 	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
785 	spin_unlock_irqrestore(&tspi->lock, flags);
786 
787 	pm_runtime_put(tspi->dev);
788 	return 0;
789 }
790 
791 static void tegra_spi_transfer_delay(int delay)
792 {
793 	if (!delay)
794 		return;
795 
796 	if (delay >= 1000)
797 		mdelay(delay / 1000);
798 
799 	udelay(delay % 1000);
800 }
801 
802 static int tegra_spi_transfer_one_message(struct spi_master *master,
803 			struct spi_message *msg)
804 {
805 	bool is_first_msg = true;
806 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
807 	struct spi_transfer *xfer;
808 	struct spi_device *spi = msg->spi;
809 	int ret;
810 	bool skip = false;
811 
812 	msg->status = 0;
813 	msg->actual_length = 0;
814 
815 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
816 		u32 cmd1;
817 
818 		reinit_completion(&tspi->xfer_completion);
819 
820 		cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
821 
822 		if (!xfer->len) {
823 			ret = 0;
824 			skip = true;
825 			goto complete_xfer;
826 		}
827 
828 		ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
829 		if (ret < 0) {
830 			dev_err(tspi->dev,
831 				"spi can not start transfer, err %d\n", ret);
832 			goto complete_xfer;
833 		}
834 
835 		is_first_msg = false;
836 		ret = wait_for_completion_timeout(&tspi->xfer_completion,
837 						SPI_DMA_TIMEOUT);
838 		if (WARN_ON(ret == 0)) {
839 			dev_err(tspi->dev,
840 				"spi trasfer timeout, err %d\n", ret);
841 			ret = -EIO;
842 			goto complete_xfer;
843 		}
844 
845 		if (tspi->tx_status ||  tspi->rx_status) {
846 			dev_err(tspi->dev, "Error in Transfer\n");
847 			ret = -EIO;
848 			goto complete_xfer;
849 		}
850 		msg->actual_length += xfer->len;
851 
852 complete_xfer:
853 		if (ret < 0 || skip) {
854 			tegra_spi_writel(tspi, tspi->def_command1_reg,
855 					SPI_COMMAND1);
856 			tegra_spi_transfer_delay(xfer->delay_usecs);
857 			goto exit;
858 		} else if (list_is_last(&xfer->transfer_list,
859 					&msg->transfers)) {
860 			if (xfer->cs_change)
861 				tspi->cs_control = spi;
862 			else {
863 				tegra_spi_writel(tspi, tspi->def_command1_reg,
864 						SPI_COMMAND1);
865 				tegra_spi_transfer_delay(xfer->delay_usecs);
866 			}
867 		} else if (xfer->cs_change) {
868 			tegra_spi_writel(tspi, tspi->def_command1_reg,
869 					SPI_COMMAND1);
870 			tegra_spi_transfer_delay(xfer->delay_usecs);
871 		}
872 
873 	}
874 	ret = 0;
875 exit:
876 	msg->status = ret;
877 	spi_finalize_current_message(master);
878 	return ret;
879 }
880 
881 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
882 {
883 	struct spi_transfer *t = tspi->curr_xfer;
884 	unsigned long flags;
885 
886 	spin_lock_irqsave(&tspi->lock, flags);
887 	if (tspi->tx_status ||  tspi->rx_status) {
888 		dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
889 			tspi->status_reg);
890 		dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
891 			tspi->command1_reg, tspi->dma_control_reg);
892 		reset_control_assert(tspi->rst);
893 		udelay(2);
894 		reset_control_deassert(tspi->rst);
895 		complete(&tspi->xfer_completion);
896 		goto exit;
897 	}
898 
899 	if (tspi->cur_direction & DATA_DIR_RX)
900 		tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
901 
902 	if (tspi->cur_direction & DATA_DIR_TX)
903 		tspi->cur_pos = tspi->cur_tx_pos;
904 	else
905 		tspi->cur_pos = tspi->cur_rx_pos;
906 
907 	if (tspi->cur_pos == t->len) {
908 		complete(&tspi->xfer_completion);
909 		goto exit;
910 	}
911 
912 	tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
913 	tegra_spi_start_cpu_based_transfer(tspi, t);
914 exit:
915 	spin_unlock_irqrestore(&tspi->lock, flags);
916 	return IRQ_HANDLED;
917 }
918 
919 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
920 {
921 	struct spi_transfer *t = tspi->curr_xfer;
922 	long wait_status;
923 	int err = 0;
924 	unsigned total_fifo_words;
925 	unsigned long flags;
926 
927 	/* Abort dmas if any error */
928 	if (tspi->cur_direction & DATA_DIR_TX) {
929 		if (tspi->tx_status) {
930 			dmaengine_terminate_all(tspi->tx_dma_chan);
931 			err += 1;
932 		} else {
933 			wait_status = wait_for_completion_interruptible_timeout(
934 				&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
935 			if (wait_status <= 0) {
936 				dmaengine_terminate_all(tspi->tx_dma_chan);
937 				dev_err(tspi->dev, "TxDma Xfer failed\n");
938 				err += 1;
939 			}
940 		}
941 	}
942 
943 	if (tspi->cur_direction & DATA_DIR_RX) {
944 		if (tspi->rx_status) {
945 			dmaengine_terminate_all(tspi->rx_dma_chan);
946 			err += 2;
947 		} else {
948 			wait_status = wait_for_completion_interruptible_timeout(
949 				&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
950 			if (wait_status <= 0) {
951 				dmaengine_terminate_all(tspi->rx_dma_chan);
952 				dev_err(tspi->dev, "RxDma Xfer failed\n");
953 				err += 2;
954 			}
955 		}
956 	}
957 
958 	spin_lock_irqsave(&tspi->lock, flags);
959 	if (err) {
960 		dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
961 			tspi->status_reg);
962 		dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
963 			tspi->command1_reg, tspi->dma_control_reg);
964 		reset_control_assert(tspi->rst);
965 		udelay(2);
966 		reset_control_deassert(tspi->rst);
967 		complete(&tspi->xfer_completion);
968 		spin_unlock_irqrestore(&tspi->lock, flags);
969 		return IRQ_HANDLED;
970 	}
971 
972 	if (tspi->cur_direction & DATA_DIR_RX)
973 		tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
974 
975 	if (tspi->cur_direction & DATA_DIR_TX)
976 		tspi->cur_pos = tspi->cur_tx_pos;
977 	else
978 		tspi->cur_pos = tspi->cur_rx_pos;
979 
980 	if (tspi->cur_pos == t->len) {
981 		complete(&tspi->xfer_completion);
982 		goto exit;
983 	}
984 
985 	/* Continue transfer in current message */
986 	total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
987 							tspi, t);
988 	if (total_fifo_words > SPI_FIFO_DEPTH)
989 		err = tegra_spi_start_dma_based_transfer(tspi, t);
990 	else
991 		err = tegra_spi_start_cpu_based_transfer(tspi, t);
992 
993 exit:
994 	spin_unlock_irqrestore(&tspi->lock, flags);
995 	return IRQ_HANDLED;
996 }
997 
998 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
999 {
1000 	struct tegra_spi_data *tspi = context_data;
1001 
1002 	if (!tspi->is_curr_dma_xfer)
1003 		return handle_cpu_based_xfer(tspi);
1004 	return handle_dma_based_xfer(tspi);
1005 }
1006 
1007 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1008 {
1009 	struct tegra_spi_data *tspi = context_data;
1010 
1011 	tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1012 	if (tspi->cur_direction & DATA_DIR_TX)
1013 		tspi->tx_status = tspi->status_reg &
1014 					(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1015 
1016 	if (tspi->cur_direction & DATA_DIR_RX)
1017 		tspi->rx_status = tspi->status_reg &
1018 					(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1019 	tegra_spi_clear_status(tspi);
1020 
1021 	return IRQ_WAKE_THREAD;
1022 }
1023 
1024 static const struct of_device_id tegra_spi_of_match[] = {
1025 	{ .compatible = "nvidia,tegra114-spi", },
1026 	{}
1027 };
1028 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1029 
1030 static int tegra_spi_probe(struct platform_device *pdev)
1031 {
1032 	struct spi_master	*master;
1033 	struct tegra_spi_data	*tspi;
1034 	struct resource		*r;
1035 	int ret, spi_irq;
1036 
1037 	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1038 	if (!master) {
1039 		dev_err(&pdev->dev, "master allocation failed\n");
1040 		return -ENOMEM;
1041 	}
1042 	platform_set_drvdata(pdev, master);
1043 	tspi = spi_master_get_devdata(master);
1044 
1045 	if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1046 				 &master->max_speed_hz))
1047 		master->max_speed_hz = 25000000; /* 25MHz */
1048 
1049 	/* the spi->mode bits understood by this driver: */
1050 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1051 	master->setup = tegra_spi_setup;
1052 	master->transfer_one_message = tegra_spi_transfer_one_message;
1053 	master->num_chipselect = MAX_CHIP_SELECT;
1054 	master->auto_runtime_pm = true;
1055 
1056 	tspi->master = master;
1057 	tspi->dev = &pdev->dev;
1058 	spin_lock_init(&tspi->lock);
1059 
1060 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1061 	tspi->base = devm_ioremap_resource(&pdev->dev, r);
1062 	if (IS_ERR(tspi->base)) {
1063 		ret = PTR_ERR(tspi->base);
1064 		goto exit_free_master;
1065 	}
1066 	tspi->phys = r->start;
1067 
1068 	spi_irq = platform_get_irq(pdev, 0);
1069 	tspi->irq = spi_irq;
1070 	ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1071 			tegra_spi_isr_thread, IRQF_ONESHOT,
1072 			dev_name(&pdev->dev), tspi);
1073 	if (ret < 0) {
1074 		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1075 					tspi->irq);
1076 		goto exit_free_master;
1077 	}
1078 
1079 	tspi->clk = devm_clk_get(&pdev->dev, "spi");
1080 	if (IS_ERR(tspi->clk)) {
1081 		dev_err(&pdev->dev, "can not get clock\n");
1082 		ret = PTR_ERR(tspi->clk);
1083 		goto exit_free_irq;
1084 	}
1085 
1086 	tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1087 	if (IS_ERR(tspi->rst)) {
1088 		dev_err(&pdev->dev, "can not get reset\n");
1089 		ret = PTR_ERR(tspi->rst);
1090 		goto exit_free_irq;
1091 	}
1092 
1093 	tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1094 	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1095 
1096 	ret = tegra_spi_init_dma_param(tspi, true);
1097 	if (ret < 0)
1098 		goto exit_free_irq;
1099 	ret = tegra_spi_init_dma_param(tspi, false);
1100 	if (ret < 0)
1101 		goto exit_rx_dma_free;
1102 	tspi->max_buf_size = tspi->dma_buf_size;
1103 	init_completion(&tspi->tx_dma_complete);
1104 	init_completion(&tspi->rx_dma_complete);
1105 
1106 	init_completion(&tspi->xfer_completion);
1107 
1108 	pm_runtime_enable(&pdev->dev);
1109 	if (!pm_runtime_enabled(&pdev->dev)) {
1110 		ret = tegra_spi_runtime_resume(&pdev->dev);
1111 		if (ret)
1112 			goto exit_pm_disable;
1113 	}
1114 
1115 	ret = pm_runtime_get_sync(&pdev->dev);
1116 	if (ret < 0) {
1117 		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1118 		goto exit_pm_disable;
1119 	}
1120 	tspi->def_command1_reg  = SPI_M_S;
1121 	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1122 	pm_runtime_put(&pdev->dev);
1123 
1124 	master->dev.of_node = pdev->dev.of_node;
1125 	ret = devm_spi_register_master(&pdev->dev, master);
1126 	if (ret < 0) {
1127 		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1128 		goto exit_pm_disable;
1129 	}
1130 	return ret;
1131 
1132 exit_pm_disable:
1133 	pm_runtime_disable(&pdev->dev);
1134 	if (!pm_runtime_status_suspended(&pdev->dev))
1135 		tegra_spi_runtime_suspend(&pdev->dev);
1136 	tegra_spi_deinit_dma_param(tspi, false);
1137 exit_rx_dma_free:
1138 	tegra_spi_deinit_dma_param(tspi, true);
1139 exit_free_irq:
1140 	free_irq(spi_irq, tspi);
1141 exit_free_master:
1142 	spi_master_put(master);
1143 	return ret;
1144 }
1145 
1146 static int tegra_spi_remove(struct platform_device *pdev)
1147 {
1148 	struct spi_master *master = platform_get_drvdata(pdev);
1149 	struct tegra_spi_data	*tspi = spi_master_get_devdata(master);
1150 
1151 	free_irq(tspi->irq, tspi);
1152 
1153 	if (tspi->tx_dma_chan)
1154 		tegra_spi_deinit_dma_param(tspi, false);
1155 
1156 	if (tspi->rx_dma_chan)
1157 		tegra_spi_deinit_dma_param(tspi, true);
1158 
1159 	pm_runtime_disable(&pdev->dev);
1160 	if (!pm_runtime_status_suspended(&pdev->dev))
1161 		tegra_spi_runtime_suspend(&pdev->dev);
1162 
1163 	return 0;
1164 }
1165 
1166 #ifdef CONFIG_PM_SLEEP
1167 static int tegra_spi_suspend(struct device *dev)
1168 {
1169 	struct spi_master *master = dev_get_drvdata(dev);
1170 
1171 	return spi_master_suspend(master);
1172 }
1173 
1174 static int tegra_spi_resume(struct device *dev)
1175 {
1176 	struct spi_master *master = dev_get_drvdata(dev);
1177 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1178 	int ret;
1179 
1180 	ret = pm_runtime_get_sync(dev);
1181 	if (ret < 0) {
1182 		dev_err(dev, "pm runtime failed, e = %d\n", ret);
1183 		return ret;
1184 	}
1185 	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1186 	pm_runtime_put(dev);
1187 
1188 	return spi_master_resume(master);
1189 }
1190 #endif
1191 
1192 static int tegra_spi_runtime_suspend(struct device *dev)
1193 {
1194 	struct spi_master *master = dev_get_drvdata(dev);
1195 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1196 
1197 	/* Flush all write which are in PPSB queue by reading back */
1198 	tegra_spi_readl(tspi, SPI_COMMAND1);
1199 
1200 	clk_disable_unprepare(tspi->clk);
1201 	return 0;
1202 }
1203 
1204 static int tegra_spi_runtime_resume(struct device *dev)
1205 {
1206 	struct spi_master *master = dev_get_drvdata(dev);
1207 	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1208 	int ret;
1209 
1210 	ret = clk_prepare_enable(tspi->clk);
1211 	if (ret < 0) {
1212 		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1213 		return ret;
1214 	}
1215 	return 0;
1216 }
1217 
1218 static const struct dev_pm_ops tegra_spi_pm_ops = {
1219 	SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1220 		tegra_spi_runtime_resume, NULL)
1221 	SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1222 };
1223 static struct platform_driver tegra_spi_driver = {
1224 	.driver = {
1225 		.name		= "spi-tegra114",
1226 		.pm		= &tegra_spi_pm_ops,
1227 		.of_match_table	= tegra_spi_of_match,
1228 	},
1229 	.probe =	tegra_spi_probe,
1230 	.remove =	tegra_spi_remove,
1231 };
1232 module_platform_driver(tegra_spi_driver);
1233 
1234 MODULE_ALIAS("platform:spi-tegra114");
1235 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1236 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1237 MODULE_LICENSE("GPL v2");
1238