1 /* 2 * SPI driver for NVIDIA's Tegra114 SPI Controller. 3 * 4 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include <linux/clk.h> 20 #include <linux/completion.h> 21 #include <linux/delay.h> 22 #include <linux/dmaengine.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/dmapool.h> 25 #include <linux/err.h> 26 #include <linux/interrupt.h> 27 #include <linux/io.h> 28 #include <linux/kernel.h> 29 #include <linux/kthread.h> 30 #include <linux/module.h> 31 #include <linux/platform_device.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/of.h> 34 #include <linux/of_device.h> 35 #include <linux/reset.h> 36 #include <linux/spi/spi.h> 37 38 #define SPI_COMMAND1 0x000 39 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0) 40 #define SPI_PACKED (1 << 5) 41 #define SPI_TX_EN (1 << 11) 42 #define SPI_RX_EN (1 << 12) 43 #define SPI_BOTH_EN_BYTE (1 << 13) 44 #define SPI_BOTH_EN_BIT (1 << 14) 45 #define SPI_LSBYTE_FE (1 << 15) 46 #define SPI_LSBIT_FE (1 << 16) 47 #define SPI_BIDIROE (1 << 17) 48 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18) 49 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18) 50 #define SPI_IDLE_SDA_PULL_LOW (2 << 18) 51 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18) 52 #define SPI_IDLE_SDA_MASK (3 << 18) 53 #define SPI_CS_SW_VAL (1 << 20) 54 #define SPI_CS_SW_HW (1 << 21) 55 /* SPI_CS_POL_INACTIVE bits are default high */ 56 /* n from 0 to 3 */ 57 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n))) 58 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22) 59 60 #define SPI_CS_SEL_0 (0 << 26) 61 #define SPI_CS_SEL_1 (1 << 26) 62 #define SPI_CS_SEL_2 (2 << 26) 63 #define SPI_CS_SEL_3 (3 << 26) 64 #define SPI_CS_SEL_MASK (3 << 26) 65 #define SPI_CS_SEL(x) (((x) & 0x3) << 26) 66 #define SPI_CONTROL_MODE_0 (0 << 28) 67 #define SPI_CONTROL_MODE_1 (1 << 28) 68 #define SPI_CONTROL_MODE_2 (2 << 28) 69 #define SPI_CONTROL_MODE_3 (3 << 28) 70 #define SPI_CONTROL_MODE_MASK (3 << 28) 71 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28) 72 #define SPI_M_S (1 << 30) 73 #define SPI_PIO (1 << 31) 74 75 #define SPI_COMMAND2 0x004 76 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6) 77 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0) 78 79 #define SPI_CS_TIMING1 0x008 80 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold)) 81 #define SPI_CS_SETUP_HOLD(reg, cs, val) \ 82 ((((val) & 0xFFu) << ((cs) * 8)) | \ 83 ((reg) & ~(0xFFu << ((cs) * 8)))) 84 85 #define SPI_CS_TIMING2 0x00C 86 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0) 87 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5) 88 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8) 89 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13) 90 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16) 91 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21) 92 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24) 93 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29) 94 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \ 95 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \ 96 ((reg) & ~(1 << ((cs) * 8 + 5)))) 97 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \ 98 (reg = (((val) & 0xF) << ((cs) * 8)) | \ 99 ((reg) & ~(0xF << ((cs) * 8)))) 100 101 #define SPI_TRANS_STATUS 0x010 102 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF) 103 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF) 104 #define SPI_RDY (1 << 30) 105 106 #define SPI_FIFO_STATUS 0x014 107 #define SPI_RX_FIFO_EMPTY (1 << 0) 108 #define SPI_RX_FIFO_FULL (1 << 1) 109 #define SPI_TX_FIFO_EMPTY (1 << 2) 110 #define SPI_TX_FIFO_FULL (1 << 3) 111 #define SPI_RX_FIFO_UNF (1 << 4) 112 #define SPI_RX_FIFO_OVF (1 << 5) 113 #define SPI_TX_FIFO_UNF (1 << 6) 114 #define SPI_TX_FIFO_OVF (1 << 7) 115 #define SPI_ERR (1 << 8) 116 #define SPI_TX_FIFO_FLUSH (1 << 14) 117 #define SPI_RX_FIFO_FLUSH (1 << 15) 118 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F) 119 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F) 120 #define SPI_FRAME_END (1 << 30) 121 #define SPI_CS_INACTIVE (1 << 31) 122 123 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \ 124 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF) 125 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY) 126 127 #define SPI_TX_DATA 0x018 128 #define SPI_RX_DATA 0x01C 129 130 #define SPI_DMA_CTL 0x020 131 #define SPI_TX_TRIG_1 (0 << 15) 132 #define SPI_TX_TRIG_4 (1 << 15) 133 #define SPI_TX_TRIG_8 (2 << 15) 134 #define SPI_TX_TRIG_16 (3 << 15) 135 #define SPI_TX_TRIG_MASK (3 << 15) 136 #define SPI_RX_TRIG_1 (0 << 19) 137 #define SPI_RX_TRIG_4 (1 << 19) 138 #define SPI_RX_TRIG_8 (2 << 19) 139 #define SPI_RX_TRIG_16 (3 << 19) 140 #define SPI_RX_TRIG_MASK (3 << 19) 141 #define SPI_IE_TX (1 << 28) 142 #define SPI_IE_RX (1 << 29) 143 #define SPI_CONT (1 << 30) 144 #define SPI_DMA (1 << 31) 145 #define SPI_DMA_EN SPI_DMA 146 147 #define SPI_DMA_BLK 0x024 148 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0) 149 150 #define SPI_TX_FIFO 0x108 151 #define SPI_RX_FIFO 0x188 152 #define MAX_CHIP_SELECT 4 153 #define SPI_FIFO_DEPTH 64 154 #define DATA_DIR_TX (1 << 0) 155 #define DATA_DIR_RX (1 << 1) 156 157 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 158 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024) 159 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40) 160 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0) 161 #define MAX_HOLD_CYCLES 16 162 #define SPI_DEFAULT_SPEED 25000000 163 164 struct tegra_spi_data { 165 struct device *dev; 166 struct spi_master *master; 167 spinlock_t lock; 168 169 struct clk *clk; 170 struct reset_control *rst; 171 void __iomem *base; 172 phys_addr_t phys; 173 unsigned irq; 174 u32 cur_speed; 175 176 struct spi_device *cur_spi; 177 struct spi_device *cs_control; 178 unsigned cur_pos; 179 unsigned words_per_32bit; 180 unsigned bytes_per_word; 181 unsigned curr_dma_words; 182 unsigned cur_direction; 183 184 unsigned cur_rx_pos; 185 unsigned cur_tx_pos; 186 187 unsigned dma_buf_size; 188 unsigned max_buf_size; 189 bool is_curr_dma_xfer; 190 191 struct completion rx_dma_complete; 192 struct completion tx_dma_complete; 193 194 u32 tx_status; 195 u32 rx_status; 196 u32 status_reg; 197 bool is_packed; 198 199 u32 command1_reg; 200 u32 dma_control_reg; 201 u32 def_command1_reg; 202 203 struct completion xfer_completion; 204 struct spi_transfer *curr_xfer; 205 struct dma_chan *rx_dma_chan; 206 u32 *rx_dma_buf; 207 dma_addr_t rx_dma_phys; 208 struct dma_async_tx_descriptor *rx_dma_desc; 209 210 struct dma_chan *tx_dma_chan; 211 u32 *tx_dma_buf; 212 dma_addr_t tx_dma_phys; 213 struct dma_async_tx_descriptor *tx_dma_desc; 214 }; 215 216 static int tegra_spi_runtime_suspend(struct device *dev); 217 static int tegra_spi_runtime_resume(struct device *dev); 218 219 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi, 220 unsigned long reg) 221 { 222 return readl(tspi->base + reg); 223 } 224 225 static inline void tegra_spi_writel(struct tegra_spi_data *tspi, 226 u32 val, unsigned long reg) 227 { 228 writel(val, tspi->base + reg); 229 230 /* Read back register to make sure that register writes completed */ 231 if (reg != SPI_TX_FIFO) 232 readl(tspi->base + SPI_COMMAND1); 233 } 234 235 static void tegra_spi_clear_status(struct tegra_spi_data *tspi) 236 { 237 u32 val; 238 239 /* Write 1 to clear status register */ 240 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS); 241 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS); 242 243 /* Clear fifo status error if any */ 244 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS); 245 if (val & SPI_ERR) 246 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR, 247 SPI_FIFO_STATUS); 248 } 249 250 static unsigned tegra_spi_calculate_curr_xfer_param( 251 struct spi_device *spi, struct tegra_spi_data *tspi, 252 struct spi_transfer *t) 253 { 254 unsigned remain_len = t->len - tspi->cur_pos; 255 unsigned max_word; 256 unsigned bits_per_word = t->bits_per_word; 257 unsigned max_len; 258 unsigned total_fifo_words; 259 260 tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8); 261 262 if (bits_per_word == 8 || bits_per_word == 16) { 263 tspi->is_packed = 1; 264 tspi->words_per_32bit = 32/bits_per_word; 265 } else { 266 tspi->is_packed = 0; 267 tspi->words_per_32bit = 1; 268 } 269 270 if (tspi->is_packed) { 271 max_len = min(remain_len, tspi->max_buf_size); 272 tspi->curr_dma_words = max_len/tspi->bytes_per_word; 273 total_fifo_words = (max_len + 3) / 4; 274 } else { 275 max_word = (remain_len - 1) / tspi->bytes_per_word + 1; 276 max_word = min(max_word, tspi->max_buf_size/4); 277 tspi->curr_dma_words = max_word; 278 total_fifo_words = max_word; 279 } 280 return total_fifo_words; 281 } 282 283 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf( 284 struct tegra_spi_data *tspi, struct spi_transfer *t) 285 { 286 unsigned nbytes; 287 unsigned tx_empty_count; 288 u32 fifo_status; 289 unsigned max_n_32bit; 290 unsigned i, count; 291 unsigned int written_words; 292 unsigned fifo_words_left; 293 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; 294 295 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); 296 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status); 297 298 if (tspi->is_packed) { 299 fifo_words_left = tx_empty_count * tspi->words_per_32bit; 300 written_words = min(fifo_words_left, tspi->curr_dma_words); 301 nbytes = written_words * tspi->bytes_per_word; 302 max_n_32bit = DIV_ROUND_UP(nbytes, 4); 303 for (count = 0; count < max_n_32bit; count++) { 304 u32 x = 0; 305 306 for (i = 0; (i < 4) && nbytes; i++, nbytes--) 307 x |= (u32)(*tx_buf++) << (i * 8); 308 tegra_spi_writel(tspi, x, SPI_TX_FIFO); 309 } 310 } else { 311 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count); 312 written_words = max_n_32bit; 313 nbytes = written_words * tspi->bytes_per_word; 314 for (count = 0; count < max_n_32bit; count++) { 315 u32 x = 0; 316 317 for (i = 0; nbytes && (i < tspi->bytes_per_word); 318 i++, nbytes--) 319 x |= (u32)(*tx_buf++) << (i * 8); 320 tegra_spi_writel(tspi, x, SPI_TX_FIFO); 321 } 322 } 323 tspi->cur_tx_pos += written_words * tspi->bytes_per_word; 324 return written_words; 325 } 326 327 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf( 328 struct tegra_spi_data *tspi, struct spi_transfer *t) 329 { 330 unsigned rx_full_count; 331 u32 fifo_status; 332 unsigned i, count; 333 unsigned int read_words = 0; 334 unsigned len; 335 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos; 336 337 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); 338 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status); 339 if (tspi->is_packed) { 340 len = tspi->curr_dma_words * tspi->bytes_per_word; 341 for (count = 0; count < rx_full_count; count++) { 342 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO); 343 344 for (i = 0; len && (i < 4); i++, len--) 345 *rx_buf++ = (x >> i*8) & 0xFF; 346 } 347 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; 348 read_words += tspi->curr_dma_words; 349 } else { 350 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; 351 352 for (count = 0; count < rx_full_count; count++) { 353 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask; 354 355 for (i = 0; (i < tspi->bytes_per_word); i++) 356 *rx_buf++ = (x >> (i*8)) & 0xFF; 357 } 358 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word; 359 read_words += rx_full_count; 360 } 361 return read_words; 362 } 363 364 static void tegra_spi_copy_client_txbuf_to_spi_txbuf( 365 struct tegra_spi_data *tspi, struct spi_transfer *t) 366 { 367 /* Make the dma buffer to read by cpu */ 368 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys, 369 tspi->dma_buf_size, DMA_TO_DEVICE); 370 371 if (tspi->is_packed) { 372 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word; 373 374 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len); 375 } else { 376 unsigned int i; 377 unsigned int count; 378 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; 379 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; 380 381 for (count = 0; count < tspi->curr_dma_words; count++) { 382 u32 x = 0; 383 384 for (i = 0; consume && (i < tspi->bytes_per_word); 385 i++, consume--) 386 x |= (u32)(*tx_buf++) << (i * 8); 387 tspi->tx_dma_buf[count] = x; 388 } 389 } 390 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word; 391 392 /* Make the dma buffer to read by dma */ 393 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys, 394 tspi->dma_buf_size, DMA_TO_DEVICE); 395 } 396 397 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf( 398 struct tegra_spi_data *tspi, struct spi_transfer *t) 399 { 400 /* Make the dma buffer to read by cpu */ 401 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys, 402 tspi->dma_buf_size, DMA_FROM_DEVICE); 403 404 if (tspi->is_packed) { 405 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word; 406 407 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len); 408 } else { 409 unsigned int i; 410 unsigned int count; 411 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos; 412 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; 413 414 for (count = 0; count < tspi->curr_dma_words; count++) { 415 u32 x = tspi->rx_dma_buf[count] & rx_mask; 416 417 for (i = 0; (i < tspi->bytes_per_word); i++) 418 *rx_buf++ = (x >> (i*8)) & 0xFF; 419 } 420 } 421 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; 422 423 /* Make the dma buffer to read by dma */ 424 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, 425 tspi->dma_buf_size, DMA_FROM_DEVICE); 426 } 427 428 static void tegra_spi_dma_complete(void *args) 429 { 430 struct completion *dma_complete = args; 431 432 complete(dma_complete); 433 } 434 435 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len) 436 { 437 reinit_completion(&tspi->tx_dma_complete); 438 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan, 439 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV, 440 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 441 if (!tspi->tx_dma_desc) { 442 dev_err(tspi->dev, "Not able to get desc for Tx\n"); 443 return -EIO; 444 } 445 446 tspi->tx_dma_desc->callback = tegra_spi_dma_complete; 447 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete; 448 449 dmaengine_submit(tspi->tx_dma_desc); 450 dma_async_issue_pending(tspi->tx_dma_chan); 451 return 0; 452 } 453 454 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len) 455 { 456 reinit_completion(&tspi->rx_dma_complete); 457 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan, 458 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM, 459 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 460 if (!tspi->rx_dma_desc) { 461 dev_err(tspi->dev, "Not able to get desc for Rx\n"); 462 return -EIO; 463 } 464 465 tspi->rx_dma_desc->callback = tegra_spi_dma_complete; 466 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete; 467 468 dmaengine_submit(tspi->rx_dma_desc); 469 dma_async_issue_pending(tspi->rx_dma_chan); 470 return 0; 471 } 472 473 static int tegra_spi_start_dma_based_transfer( 474 struct tegra_spi_data *tspi, struct spi_transfer *t) 475 { 476 u32 val; 477 unsigned int len; 478 int ret = 0; 479 u32 status; 480 481 /* Make sure that Rx and Tx fifo are empty */ 482 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); 483 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) { 484 dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n", 485 (unsigned)status); 486 return -EIO; 487 } 488 489 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1); 490 tegra_spi_writel(tspi, val, SPI_DMA_BLK); 491 492 if (tspi->is_packed) 493 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word, 494 4) * 4; 495 else 496 len = tspi->curr_dma_words * 4; 497 498 /* Set attention level based on length of transfer */ 499 if (len & 0xF) 500 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1; 501 else if (((len) >> 4) & 0x1) 502 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4; 503 else 504 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8; 505 506 if (tspi->cur_direction & DATA_DIR_TX) 507 val |= SPI_IE_TX; 508 509 if (tspi->cur_direction & DATA_DIR_RX) 510 val |= SPI_IE_RX; 511 512 tegra_spi_writel(tspi, val, SPI_DMA_CTL); 513 tspi->dma_control_reg = val; 514 515 if (tspi->cur_direction & DATA_DIR_TX) { 516 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t); 517 ret = tegra_spi_start_tx_dma(tspi, len); 518 if (ret < 0) { 519 dev_err(tspi->dev, 520 "Starting tx dma failed, err %d\n", ret); 521 return ret; 522 } 523 } 524 525 if (tspi->cur_direction & DATA_DIR_RX) { 526 /* Make the dma buffer to read by dma */ 527 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, 528 tspi->dma_buf_size, DMA_FROM_DEVICE); 529 530 ret = tegra_spi_start_rx_dma(tspi, len); 531 if (ret < 0) { 532 dev_err(tspi->dev, 533 "Starting rx dma failed, err %d\n", ret); 534 if (tspi->cur_direction & DATA_DIR_TX) 535 dmaengine_terminate_all(tspi->tx_dma_chan); 536 return ret; 537 } 538 } 539 tspi->is_curr_dma_xfer = true; 540 tspi->dma_control_reg = val; 541 542 val |= SPI_DMA_EN; 543 tegra_spi_writel(tspi, val, SPI_DMA_CTL); 544 return ret; 545 } 546 547 static int tegra_spi_start_cpu_based_transfer( 548 struct tegra_spi_data *tspi, struct spi_transfer *t) 549 { 550 u32 val; 551 unsigned cur_words; 552 553 if (tspi->cur_direction & DATA_DIR_TX) 554 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t); 555 else 556 cur_words = tspi->curr_dma_words; 557 558 val = SPI_DMA_BLK_SET(cur_words - 1); 559 tegra_spi_writel(tspi, val, SPI_DMA_BLK); 560 561 val = 0; 562 if (tspi->cur_direction & DATA_DIR_TX) 563 val |= SPI_IE_TX; 564 565 if (tspi->cur_direction & DATA_DIR_RX) 566 val |= SPI_IE_RX; 567 568 tegra_spi_writel(tspi, val, SPI_DMA_CTL); 569 tspi->dma_control_reg = val; 570 571 tspi->is_curr_dma_xfer = false; 572 573 val |= SPI_DMA_EN; 574 tegra_spi_writel(tspi, val, SPI_DMA_CTL); 575 return 0; 576 } 577 578 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi, 579 bool dma_to_memory) 580 { 581 struct dma_chan *dma_chan; 582 u32 *dma_buf; 583 dma_addr_t dma_phys; 584 int ret; 585 struct dma_slave_config dma_sconfig; 586 587 dma_chan = dma_request_slave_channel_reason(tspi->dev, 588 dma_to_memory ? "rx" : "tx"); 589 if (IS_ERR(dma_chan)) { 590 ret = PTR_ERR(dma_chan); 591 if (ret != -EPROBE_DEFER) 592 dev_err(tspi->dev, 593 "Dma channel is not available: %d\n", ret); 594 return ret; 595 } 596 597 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size, 598 &dma_phys, GFP_KERNEL); 599 if (!dma_buf) { 600 dev_err(tspi->dev, " Not able to allocate the dma buffer\n"); 601 dma_release_channel(dma_chan); 602 return -ENOMEM; 603 } 604 605 if (dma_to_memory) { 606 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO; 607 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 608 dma_sconfig.src_maxburst = 0; 609 } else { 610 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO; 611 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 612 dma_sconfig.dst_maxburst = 0; 613 } 614 615 ret = dmaengine_slave_config(dma_chan, &dma_sconfig); 616 if (ret) 617 goto scrub; 618 if (dma_to_memory) { 619 tspi->rx_dma_chan = dma_chan; 620 tspi->rx_dma_buf = dma_buf; 621 tspi->rx_dma_phys = dma_phys; 622 } else { 623 tspi->tx_dma_chan = dma_chan; 624 tspi->tx_dma_buf = dma_buf; 625 tspi->tx_dma_phys = dma_phys; 626 } 627 return 0; 628 629 scrub: 630 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys); 631 dma_release_channel(dma_chan); 632 return ret; 633 } 634 635 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi, 636 bool dma_to_memory) 637 { 638 u32 *dma_buf; 639 dma_addr_t dma_phys; 640 struct dma_chan *dma_chan; 641 642 if (dma_to_memory) { 643 dma_buf = tspi->rx_dma_buf; 644 dma_chan = tspi->rx_dma_chan; 645 dma_phys = tspi->rx_dma_phys; 646 tspi->rx_dma_chan = NULL; 647 tspi->rx_dma_buf = NULL; 648 } else { 649 dma_buf = tspi->tx_dma_buf; 650 dma_chan = tspi->tx_dma_chan; 651 dma_phys = tspi->tx_dma_phys; 652 tspi->tx_dma_buf = NULL; 653 tspi->tx_dma_chan = NULL; 654 } 655 if (!dma_chan) 656 return; 657 658 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys); 659 dma_release_channel(dma_chan); 660 } 661 662 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi, 663 struct spi_transfer *t, bool is_first_of_msg) 664 { 665 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); 666 u32 speed = t->speed_hz; 667 u8 bits_per_word = t->bits_per_word; 668 u32 command1; 669 int req_mode; 670 671 if (speed != tspi->cur_speed) { 672 clk_set_rate(tspi->clk, speed); 673 tspi->cur_speed = speed; 674 } 675 676 tspi->cur_spi = spi; 677 tspi->cur_pos = 0; 678 tspi->cur_rx_pos = 0; 679 tspi->cur_tx_pos = 0; 680 tspi->curr_xfer = t; 681 682 if (is_first_of_msg) { 683 tegra_spi_clear_status(tspi); 684 685 command1 = tspi->def_command1_reg; 686 command1 |= SPI_BIT_LENGTH(bits_per_word - 1); 687 688 command1 &= ~SPI_CONTROL_MODE_MASK; 689 req_mode = spi->mode & 0x3; 690 if (req_mode == SPI_MODE_0) 691 command1 |= SPI_CONTROL_MODE_0; 692 else if (req_mode == SPI_MODE_1) 693 command1 |= SPI_CONTROL_MODE_1; 694 else if (req_mode == SPI_MODE_2) 695 command1 |= SPI_CONTROL_MODE_2; 696 else if (req_mode == SPI_MODE_3) 697 command1 |= SPI_CONTROL_MODE_3; 698 699 if (tspi->cs_control) { 700 if (tspi->cs_control != spi) 701 tegra_spi_writel(tspi, command1, SPI_COMMAND1); 702 tspi->cs_control = NULL; 703 } else 704 tegra_spi_writel(tspi, command1, SPI_COMMAND1); 705 706 command1 |= SPI_CS_SW_HW; 707 if (spi->mode & SPI_CS_HIGH) 708 command1 |= SPI_CS_SW_VAL; 709 else 710 command1 &= ~SPI_CS_SW_VAL; 711 712 tegra_spi_writel(tspi, 0, SPI_COMMAND2); 713 } else { 714 command1 = tspi->command1_reg; 715 command1 &= ~SPI_BIT_LENGTH(~0); 716 command1 |= SPI_BIT_LENGTH(bits_per_word - 1); 717 } 718 719 return command1; 720 } 721 722 static int tegra_spi_start_transfer_one(struct spi_device *spi, 723 struct spi_transfer *t, u32 command1) 724 { 725 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); 726 unsigned total_fifo_words; 727 int ret; 728 729 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t); 730 731 if (tspi->is_packed) 732 command1 |= SPI_PACKED; 733 734 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN); 735 tspi->cur_direction = 0; 736 if (t->rx_buf) { 737 command1 |= SPI_RX_EN; 738 tspi->cur_direction |= DATA_DIR_RX; 739 } 740 if (t->tx_buf) { 741 command1 |= SPI_TX_EN; 742 tspi->cur_direction |= DATA_DIR_TX; 743 } 744 command1 |= SPI_CS_SEL(spi->chip_select); 745 tegra_spi_writel(tspi, command1, SPI_COMMAND1); 746 tspi->command1_reg = command1; 747 748 dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n", 749 tspi->def_command1_reg, (unsigned)command1); 750 751 if (total_fifo_words > SPI_FIFO_DEPTH) 752 ret = tegra_spi_start_dma_based_transfer(tspi, t); 753 else 754 ret = tegra_spi_start_cpu_based_transfer(tspi, t); 755 return ret; 756 } 757 758 static int tegra_spi_setup(struct spi_device *spi) 759 { 760 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); 761 u32 val; 762 unsigned long flags; 763 int ret; 764 765 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n", 766 spi->bits_per_word, 767 spi->mode & SPI_CPOL ? "" : "~", 768 spi->mode & SPI_CPHA ? "" : "~", 769 spi->max_speed_hz); 770 771 ret = pm_runtime_get_sync(tspi->dev); 772 if (ret < 0) { 773 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret); 774 return ret; 775 } 776 777 spin_lock_irqsave(&tspi->lock, flags); 778 val = tspi->def_command1_reg; 779 if (spi->mode & SPI_CS_HIGH) 780 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select); 781 else 782 val |= SPI_CS_POL_INACTIVE(spi->chip_select); 783 tspi->def_command1_reg = val; 784 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); 785 spin_unlock_irqrestore(&tspi->lock, flags); 786 787 pm_runtime_put(tspi->dev); 788 return 0; 789 } 790 791 static void tegra_spi_transfer_delay(int delay) 792 { 793 if (!delay) 794 return; 795 796 if (delay >= 1000) 797 mdelay(delay / 1000); 798 799 udelay(delay % 1000); 800 } 801 802 static int tegra_spi_transfer_one_message(struct spi_master *master, 803 struct spi_message *msg) 804 { 805 bool is_first_msg = true; 806 struct tegra_spi_data *tspi = spi_master_get_devdata(master); 807 struct spi_transfer *xfer; 808 struct spi_device *spi = msg->spi; 809 int ret; 810 bool skip = false; 811 812 msg->status = 0; 813 msg->actual_length = 0; 814 815 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 816 u32 cmd1; 817 818 reinit_completion(&tspi->xfer_completion); 819 820 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg); 821 822 if (!xfer->len) { 823 ret = 0; 824 skip = true; 825 goto complete_xfer; 826 } 827 828 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1); 829 if (ret < 0) { 830 dev_err(tspi->dev, 831 "spi can not start transfer, err %d\n", ret); 832 goto complete_xfer; 833 } 834 835 is_first_msg = false; 836 ret = wait_for_completion_timeout(&tspi->xfer_completion, 837 SPI_DMA_TIMEOUT); 838 if (WARN_ON(ret == 0)) { 839 dev_err(tspi->dev, 840 "spi transfer timeout, err %d\n", ret); 841 ret = -EIO; 842 goto complete_xfer; 843 } 844 845 if (tspi->tx_status || tspi->rx_status) { 846 dev_err(tspi->dev, "Error in Transfer\n"); 847 ret = -EIO; 848 goto complete_xfer; 849 } 850 msg->actual_length += xfer->len; 851 852 complete_xfer: 853 if (ret < 0 || skip) { 854 tegra_spi_writel(tspi, tspi->def_command1_reg, 855 SPI_COMMAND1); 856 tegra_spi_transfer_delay(xfer->delay_usecs); 857 goto exit; 858 } else if (list_is_last(&xfer->transfer_list, 859 &msg->transfers)) { 860 if (xfer->cs_change) 861 tspi->cs_control = spi; 862 else { 863 tegra_spi_writel(tspi, tspi->def_command1_reg, 864 SPI_COMMAND1); 865 tegra_spi_transfer_delay(xfer->delay_usecs); 866 } 867 } else if (xfer->cs_change) { 868 tegra_spi_writel(tspi, tspi->def_command1_reg, 869 SPI_COMMAND1); 870 tegra_spi_transfer_delay(xfer->delay_usecs); 871 } 872 873 } 874 ret = 0; 875 exit: 876 msg->status = ret; 877 spi_finalize_current_message(master); 878 return ret; 879 } 880 881 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi) 882 { 883 struct spi_transfer *t = tspi->curr_xfer; 884 unsigned long flags; 885 886 spin_lock_irqsave(&tspi->lock, flags); 887 if (tspi->tx_status || tspi->rx_status) { 888 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n", 889 tspi->status_reg); 890 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n", 891 tspi->command1_reg, tspi->dma_control_reg); 892 reset_control_assert(tspi->rst); 893 udelay(2); 894 reset_control_deassert(tspi->rst); 895 complete(&tspi->xfer_completion); 896 goto exit; 897 } 898 899 if (tspi->cur_direction & DATA_DIR_RX) 900 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t); 901 902 if (tspi->cur_direction & DATA_DIR_TX) 903 tspi->cur_pos = tspi->cur_tx_pos; 904 else 905 tspi->cur_pos = tspi->cur_rx_pos; 906 907 if (tspi->cur_pos == t->len) { 908 complete(&tspi->xfer_completion); 909 goto exit; 910 } 911 912 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); 913 tegra_spi_start_cpu_based_transfer(tspi, t); 914 exit: 915 spin_unlock_irqrestore(&tspi->lock, flags); 916 return IRQ_HANDLED; 917 } 918 919 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi) 920 { 921 struct spi_transfer *t = tspi->curr_xfer; 922 long wait_status; 923 int err = 0; 924 unsigned total_fifo_words; 925 unsigned long flags; 926 927 /* Abort dmas if any error */ 928 if (tspi->cur_direction & DATA_DIR_TX) { 929 if (tspi->tx_status) { 930 dmaengine_terminate_all(tspi->tx_dma_chan); 931 err += 1; 932 } else { 933 wait_status = wait_for_completion_interruptible_timeout( 934 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT); 935 if (wait_status <= 0) { 936 dmaengine_terminate_all(tspi->tx_dma_chan); 937 dev_err(tspi->dev, "TxDma Xfer failed\n"); 938 err += 1; 939 } 940 } 941 } 942 943 if (tspi->cur_direction & DATA_DIR_RX) { 944 if (tspi->rx_status) { 945 dmaengine_terminate_all(tspi->rx_dma_chan); 946 err += 2; 947 } else { 948 wait_status = wait_for_completion_interruptible_timeout( 949 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT); 950 if (wait_status <= 0) { 951 dmaengine_terminate_all(tspi->rx_dma_chan); 952 dev_err(tspi->dev, "RxDma Xfer failed\n"); 953 err += 2; 954 } 955 } 956 } 957 958 spin_lock_irqsave(&tspi->lock, flags); 959 if (err) { 960 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n", 961 tspi->status_reg); 962 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n", 963 tspi->command1_reg, tspi->dma_control_reg); 964 reset_control_assert(tspi->rst); 965 udelay(2); 966 reset_control_deassert(tspi->rst); 967 complete(&tspi->xfer_completion); 968 spin_unlock_irqrestore(&tspi->lock, flags); 969 return IRQ_HANDLED; 970 } 971 972 if (tspi->cur_direction & DATA_DIR_RX) 973 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t); 974 975 if (tspi->cur_direction & DATA_DIR_TX) 976 tspi->cur_pos = tspi->cur_tx_pos; 977 else 978 tspi->cur_pos = tspi->cur_rx_pos; 979 980 if (tspi->cur_pos == t->len) { 981 complete(&tspi->xfer_completion); 982 goto exit; 983 } 984 985 /* Continue transfer in current message */ 986 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, 987 tspi, t); 988 if (total_fifo_words > SPI_FIFO_DEPTH) 989 err = tegra_spi_start_dma_based_transfer(tspi, t); 990 else 991 err = tegra_spi_start_cpu_based_transfer(tspi, t); 992 993 exit: 994 spin_unlock_irqrestore(&tspi->lock, flags); 995 return IRQ_HANDLED; 996 } 997 998 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data) 999 { 1000 struct tegra_spi_data *tspi = context_data; 1001 1002 if (!tspi->is_curr_dma_xfer) 1003 return handle_cpu_based_xfer(tspi); 1004 return handle_dma_based_xfer(tspi); 1005 } 1006 1007 static irqreturn_t tegra_spi_isr(int irq, void *context_data) 1008 { 1009 struct tegra_spi_data *tspi = context_data; 1010 1011 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS); 1012 if (tspi->cur_direction & DATA_DIR_TX) 1013 tspi->tx_status = tspi->status_reg & 1014 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF); 1015 1016 if (tspi->cur_direction & DATA_DIR_RX) 1017 tspi->rx_status = tspi->status_reg & 1018 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF); 1019 tegra_spi_clear_status(tspi); 1020 1021 return IRQ_WAKE_THREAD; 1022 } 1023 1024 static const struct of_device_id tegra_spi_of_match[] = { 1025 { .compatible = "nvidia,tegra114-spi", }, 1026 {} 1027 }; 1028 MODULE_DEVICE_TABLE(of, tegra_spi_of_match); 1029 1030 static int tegra_spi_probe(struct platform_device *pdev) 1031 { 1032 struct spi_master *master; 1033 struct tegra_spi_data *tspi; 1034 struct resource *r; 1035 int ret, spi_irq; 1036 1037 master = spi_alloc_master(&pdev->dev, sizeof(*tspi)); 1038 if (!master) { 1039 dev_err(&pdev->dev, "master allocation failed\n"); 1040 return -ENOMEM; 1041 } 1042 platform_set_drvdata(pdev, master); 1043 tspi = spi_master_get_devdata(master); 1044 1045 if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency", 1046 &master->max_speed_hz)) 1047 master->max_speed_hz = 25000000; /* 25MHz */ 1048 1049 /* the spi->mode bits understood by this driver: */ 1050 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1051 master->setup = tegra_spi_setup; 1052 master->transfer_one_message = tegra_spi_transfer_one_message; 1053 master->num_chipselect = MAX_CHIP_SELECT; 1054 master->auto_runtime_pm = true; 1055 1056 tspi->master = master; 1057 tspi->dev = &pdev->dev; 1058 spin_lock_init(&tspi->lock); 1059 1060 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1061 tspi->base = devm_ioremap_resource(&pdev->dev, r); 1062 if (IS_ERR(tspi->base)) { 1063 ret = PTR_ERR(tspi->base); 1064 goto exit_free_master; 1065 } 1066 tspi->phys = r->start; 1067 1068 spi_irq = platform_get_irq(pdev, 0); 1069 tspi->irq = spi_irq; 1070 ret = request_threaded_irq(tspi->irq, tegra_spi_isr, 1071 tegra_spi_isr_thread, IRQF_ONESHOT, 1072 dev_name(&pdev->dev), tspi); 1073 if (ret < 0) { 1074 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n", 1075 tspi->irq); 1076 goto exit_free_master; 1077 } 1078 1079 tspi->clk = devm_clk_get(&pdev->dev, "spi"); 1080 if (IS_ERR(tspi->clk)) { 1081 dev_err(&pdev->dev, "can not get clock\n"); 1082 ret = PTR_ERR(tspi->clk); 1083 goto exit_free_irq; 1084 } 1085 1086 tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi"); 1087 if (IS_ERR(tspi->rst)) { 1088 dev_err(&pdev->dev, "can not get reset\n"); 1089 ret = PTR_ERR(tspi->rst); 1090 goto exit_free_irq; 1091 } 1092 1093 tspi->max_buf_size = SPI_FIFO_DEPTH << 2; 1094 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN; 1095 1096 ret = tegra_spi_init_dma_param(tspi, true); 1097 if (ret < 0) 1098 goto exit_free_irq; 1099 ret = tegra_spi_init_dma_param(tspi, false); 1100 if (ret < 0) 1101 goto exit_rx_dma_free; 1102 tspi->max_buf_size = tspi->dma_buf_size; 1103 init_completion(&tspi->tx_dma_complete); 1104 init_completion(&tspi->rx_dma_complete); 1105 1106 init_completion(&tspi->xfer_completion); 1107 1108 pm_runtime_enable(&pdev->dev); 1109 if (!pm_runtime_enabled(&pdev->dev)) { 1110 ret = tegra_spi_runtime_resume(&pdev->dev); 1111 if (ret) 1112 goto exit_pm_disable; 1113 } 1114 1115 ret = pm_runtime_get_sync(&pdev->dev); 1116 if (ret < 0) { 1117 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); 1118 goto exit_pm_disable; 1119 } 1120 tspi->def_command1_reg = SPI_M_S; 1121 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); 1122 pm_runtime_put(&pdev->dev); 1123 1124 master->dev.of_node = pdev->dev.of_node; 1125 ret = devm_spi_register_master(&pdev->dev, master); 1126 if (ret < 0) { 1127 dev_err(&pdev->dev, "can not register to master err %d\n", ret); 1128 goto exit_pm_disable; 1129 } 1130 return ret; 1131 1132 exit_pm_disable: 1133 pm_runtime_disable(&pdev->dev); 1134 if (!pm_runtime_status_suspended(&pdev->dev)) 1135 tegra_spi_runtime_suspend(&pdev->dev); 1136 tegra_spi_deinit_dma_param(tspi, false); 1137 exit_rx_dma_free: 1138 tegra_spi_deinit_dma_param(tspi, true); 1139 exit_free_irq: 1140 free_irq(spi_irq, tspi); 1141 exit_free_master: 1142 spi_master_put(master); 1143 return ret; 1144 } 1145 1146 static int tegra_spi_remove(struct platform_device *pdev) 1147 { 1148 struct spi_master *master = platform_get_drvdata(pdev); 1149 struct tegra_spi_data *tspi = spi_master_get_devdata(master); 1150 1151 free_irq(tspi->irq, tspi); 1152 1153 if (tspi->tx_dma_chan) 1154 tegra_spi_deinit_dma_param(tspi, false); 1155 1156 if (tspi->rx_dma_chan) 1157 tegra_spi_deinit_dma_param(tspi, true); 1158 1159 pm_runtime_disable(&pdev->dev); 1160 if (!pm_runtime_status_suspended(&pdev->dev)) 1161 tegra_spi_runtime_suspend(&pdev->dev); 1162 1163 return 0; 1164 } 1165 1166 #ifdef CONFIG_PM_SLEEP 1167 static int tegra_spi_suspend(struct device *dev) 1168 { 1169 struct spi_master *master = dev_get_drvdata(dev); 1170 1171 return spi_master_suspend(master); 1172 } 1173 1174 static int tegra_spi_resume(struct device *dev) 1175 { 1176 struct spi_master *master = dev_get_drvdata(dev); 1177 struct tegra_spi_data *tspi = spi_master_get_devdata(master); 1178 int ret; 1179 1180 ret = pm_runtime_get_sync(dev); 1181 if (ret < 0) { 1182 dev_err(dev, "pm runtime failed, e = %d\n", ret); 1183 return ret; 1184 } 1185 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1); 1186 pm_runtime_put(dev); 1187 1188 return spi_master_resume(master); 1189 } 1190 #endif 1191 1192 static int tegra_spi_runtime_suspend(struct device *dev) 1193 { 1194 struct spi_master *master = dev_get_drvdata(dev); 1195 struct tegra_spi_data *tspi = spi_master_get_devdata(master); 1196 1197 /* Flush all write which are in PPSB queue by reading back */ 1198 tegra_spi_readl(tspi, SPI_COMMAND1); 1199 1200 clk_disable_unprepare(tspi->clk); 1201 return 0; 1202 } 1203 1204 static int tegra_spi_runtime_resume(struct device *dev) 1205 { 1206 struct spi_master *master = dev_get_drvdata(dev); 1207 struct tegra_spi_data *tspi = spi_master_get_devdata(master); 1208 int ret; 1209 1210 ret = clk_prepare_enable(tspi->clk); 1211 if (ret < 0) { 1212 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret); 1213 return ret; 1214 } 1215 return 0; 1216 } 1217 1218 static const struct dev_pm_ops tegra_spi_pm_ops = { 1219 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend, 1220 tegra_spi_runtime_resume, NULL) 1221 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume) 1222 }; 1223 static struct platform_driver tegra_spi_driver = { 1224 .driver = { 1225 .name = "spi-tegra114", 1226 .pm = &tegra_spi_pm_ops, 1227 .of_match_table = tegra_spi_of_match, 1228 }, 1229 .probe = tegra_spi_probe, 1230 .remove = tegra_spi_remove, 1231 }; 1232 module_platform_driver(tegra_spi_driver); 1233 1234 MODULE_ALIAS("platform:spi-tegra114"); 1235 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver"); 1236 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>"); 1237 MODULE_LICENSE("GPL v2"); 1238