1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SPI driver for NVIDIA's Tegra114 SPI Controller.
4 *
5 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
6 */
7
8 #include <linux/clk.h>
9 #include <linux/completion.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/of.h>
23 #include <linux/reset.h>
24 #include <linux/spi/spi.h>
25
26 #define SPI_COMMAND1 0x000
27 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
28 #define SPI_PACKED (1 << 5)
29 #define SPI_TX_EN (1 << 11)
30 #define SPI_RX_EN (1 << 12)
31 #define SPI_BOTH_EN_BYTE (1 << 13)
32 #define SPI_BOTH_EN_BIT (1 << 14)
33 #define SPI_LSBYTE_FE (1 << 15)
34 #define SPI_LSBIT_FE (1 << 16)
35 #define SPI_BIDIROE (1 << 17)
36 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
37 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
38 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
39 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
40 #define SPI_IDLE_SDA_MASK (3 << 18)
41 #define SPI_CS_SW_VAL (1 << 20)
42 #define SPI_CS_SW_HW (1 << 21)
43 /* SPI_CS_POL_INACTIVE bits are default high */
44 /* n from 0 to 3 */
45 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
46 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
47
48 #define SPI_CS_SEL_0 (0 << 26)
49 #define SPI_CS_SEL_1 (1 << 26)
50 #define SPI_CS_SEL_2 (2 << 26)
51 #define SPI_CS_SEL_3 (3 << 26)
52 #define SPI_CS_SEL_MASK (3 << 26)
53 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
54 #define SPI_CONTROL_MODE_0 (0 << 28)
55 #define SPI_CONTROL_MODE_1 (1 << 28)
56 #define SPI_CONTROL_MODE_2 (2 << 28)
57 #define SPI_CONTROL_MODE_3 (3 << 28)
58 #define SPI_CONTROL_MODE_MASK (3 << 28)
59 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
60 #define SPI_M_S (1 << 30)
61 #define SPI_PIO (1 << 31)
62
63 #define SPI_COMMAND2 0x004
64 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
65 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
66
67 #define SPI_CS_TIMING1 0x008
68 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
69 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
70 ((((val) & 0xFFu) << ((cs) * 8)) | \
71 ((reg) & ~(0xFFu << ((cs) * 8))))
72
73 #define SPI_CS_TIMING2 0x00C
74 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
75 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
76 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
77 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
78 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
79 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
80 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
81 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
82 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
83 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
84 ((reg) & ~(1 << ((cs) * 8 + 5))))
85 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
86 (reg = (((val) & 0x1F) << ((cs) * 8)) | \
87 ((reg) & ~(0x1F << ((cs) * 8))))
88 #define MAX_SETUP_HOLD_CYCLES 16
89 #define MAX_INACTIVE_CYCLES 32
90
91 #define SPI_TRANS_STATUS 0x010
92 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
93 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
94 #define SPI_RDY (1 << 30)
95
96 #define SPI_FIFO_STATUS 0x014
97 #define SPI_RX_FIFO_EMPTY (1 << 0)
98 #define SPI_RX_FIFO_FULL (1 << 1)
99 #define SPI_TX_FIFO_EMPTY (1 << 2)
100 #define SPI_TX_FIFO_FULL (1 << 3)
101 #define SPI_RX_FIFO_UNF (1 << 4)
102 #define SPI_RX_FIFO_OVF (1 << 5)
103 #define SPI_TX_FIFO_UNF (1 << 6)
104 #define SPI_TX_FIFO_OVF (1 << 7)
105 #define SPI_ERR (1 << 8)
106 #define SPI_TX_FIFO_FLUSH (1 << 14)
107 #define SPI_RX_FIFO_FLUSH (1 << 15)
108 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
109 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
110 #define SPI_FRAME_END (1 << 30)
111 #define SPI_CS_INACTIVE (1 << 31)
112
113 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
114 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
115 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
116
117 #define SPI_TX_DATA 0x018
118 #define SPI_RX_DATA 0x01C
119
120 #define SPI_DMA_CTL 0x020
121 #define SPI_TX_TRIG_1 (0 << 15)
122 #define SPI_TX_TRIG_4 (1 << 15)
123 #define SPI_TX_TRIG_8 (2 << 15)
124 #define SPI_TX_TRIG_16 (3 << 15)
125 #define SPI_TX_TRIG_MASK (3 << 15)
126 #define SPI_RX_TRIG_1 (0 << 19)
127 #define SPI_RX_TRIG_4 (1 << 19)
128 #define SPI_RX_TRIG_8 (2 << 19)
129 #define SPI_RX_TRIG_16 (3 << 19)
130 #define SPI_RX_TRIG_MASK (3 << 19)
131 #define SPI_IE_TX (1 << 28)
132 #define SPI_IE_RX (1 << 29)
133 #define SPI_CONT (1 << 30)
134 #define SPI_DMA (1 << 31)
135 #define SPI_DMA_EN SPI_DMA
136
137 #define SPI_DMA_BLK 0x024
138 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
139
140 #define SPI_TX_FIFO 0x108
141 #define SPI_RX_FIFO 0x188
142 #define SPI_INTR_MASK 0x18c
143 #define SPI_INTR_ALL_MASK (0x1fUL << 25)
144 #define MAX_CHIP_SELECT 4
145 #define SPI_FIFO_DEPTH 64
146 #define DATA_DIR_TX (1 << 0)
147 #define DATA_DIR_RX (1 << 1)
148
149 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
150 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
151 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
152 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
153 #define MAX_HOLD_CYCLES 16
154 #define SPI_DEFAULT_SPEED 25000000
155
156 struct tegra_spi_soc_data {
157 bool has_intr_mask_reg;
158 };
159
160 struct tegra_spi_client_data {
161 int tx_clk_tap_delay;
162 int rx_clk_tap_delay;
163 };
164
165 struct tegra_spi_data {
166 struct device *dev;
167 struct spi_master *master;
168 spinlock_t lock;
169
170 struct clk *clk;
171 struct reset_control *rst;
172 void __iomem *base;
173 phys_addr_t phys;
174 unsigned irq;
175 u32 cur_speed;
176
177 struct spi_device *cur_spi;
178 struct spi_device *cs_control;
179 unsigned cur_pos;
180 unsigned words_per_32bit;
181 unsigned bytes_per_word;
182 unsigned curr_dma_words;
183 unsigned cur_direction;
184
185 unsigned cur_rx_pos;
186 unsigned cur_tx_pos;
187
188 unsigned dma_buf_size;
189 unsigned max_buf_size;
190 bool is_curr_dma_xfer;
191 bool use_hw_based_cs;
192
193 struct completion rx_dma_complete;
194 struct completion tx_dma_complete;
195
196 u32 tx_status;
197 u32 rx_status;
198 u32 status_reg;
199 bool is_packed;
200
201 u32 command1_reg;
202 u32 dma_control_reg;
203 u32 def_command1_reg;
204 u32 def_command2_reg;
205 u32 spi_cs_timing1;
206 u32 spi_cs_timing2;
207 u8 last_used_cs;
208
209 struct completion xfer_completion;
210 struct spi_transfer *curr_xfer;
211 struct dma_chan *rx_dma_chan;
212 u32 *rx_dma_buf;
213 dma_addr_t rx_dma_phys;
214 struct dma_async_tx_descriptor *rx_dma_desc;
215
216 struct dma_chan *tx_dma_chan;
217 u32 *tx_dma_buf;
218 dma_addr_t tx_dma_phys;
219 struct dma_async_tx_descriptor *tx_dma_desc;
220 const struct tegra_spi_soc_data *soc_data;
221 };
222
223 static int tegra_spi_runtime_suspend(struct device *dev);
224 static int tegra_spi_runtime_resume(struct device *dev);
225
tegra_spi_readl(struct tegra_spi_data * tspi,unsigned long reg)226 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
227 unsigned long reg)
228 {
229 return readl(tspi->base + reg);
230 }
231
tegra_spi_writel(struct tegra_spi_data * tspi,u32 val,unsigned long reg)232 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
233 u32 val, unsigned long reg)
234 {
235 writel(val, tspi->base + reg);
236
237 /* Read back register to make sure that register writes completed */
238 if (reg != SPI_TX_FIFO)
239 readl(tspi->base + SPI_COMMAND1);
240 }
241
tegra_spi_clear_status(struct tegra_spi_data * tspi)242 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
243 {
244 u32 val;
245
246 /* Write 1 to clear status register */
247 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
248 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
249
250 /* Clear fifo status error if any */
251 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
252 if (val & SPI_ERR)
253 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
254 SPI_FIFO_STATUS);
255 }
256
tegra_spi_calculate_curr_xfer_param(struct spi_device * spi,struct tegra_spi_data * tspi,struct spi_transfer * t)257 static unsigned tegra_spi_calculate_curr_xfer_param(
258 struct spi_device *spi, struct tegra_spi_data *tspi,
259 struct spi_transfer *t)
260 {
261 unsigned remain_len = t->len - tspi->cur_pos;
262 unsigned max_word;
263 unsigned bits_per_word = t->bits_per_word;
264 unsigned max_len;
265 unsigned total_fifo_words;
266
267 tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
268
269 if ((bits_per_word == 8 || bits_per_word == 16 ||
270 bits_per_word == 32) && t->len > 3) {
271 tspi->is_packed = true;
272 tspi->words_per_32bit = 32/bits_per_word;
273 } else {
274 tspi->is_packed = false;
275 tspi->words_per_32bit = 1;
276 }
277
278 if (tspi->is_packed) {
279 max_len = min(remain_len, tspi->max_buf_size);
280 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
281 total_fifo_words = (max_len + 3) / 4;
282 } else {
283 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
284 max_word = min(max_word, tspi->max_buf_size/4);
285 tspi->curr_dma_words = max_word;
286 total_fifo_words = max_word;
287 }
288 return total_fifo_words;
289 }
290
tegra_spi_fill_tx_fifo_from_client_txbuf(struct tegra_spi_data * tspi,struct spi_transfer * t)291 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
292 struct tegra_spi_data *tspi, struct spi_transfer *t)
293 {
294 unsigned nbytes;
295 unsigned tx_empty_count;
296 u32 fifo_status;
297 unsigned max_n_32bit;
298 unsigned i, count;
299 unsigned int written_words;
300 unsigned fifo_words_left;
301 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
302
303 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
304 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
305
306 if (tspi->is_packed) {
307 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
308 written_words = min(fifo_words_left, tspi->curr_dma_words);
309 nbytes = written_words * tspi->bytes_per_word;
310 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
311 for (count = 0; count < max_n_32bit; count++) {
312 u32 x = 0;
313
314 for (i = 0; (i < 4) && nbytes; i++, nbytes--)
315 x |= (u32)(*tx_buf++) << (i * 8);
316 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
317 }
318
319 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
320 } else {
321 unsigned int write_bytes;
322 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
323 written_words = max_n_32bit;
324 nbytes = written_words * tspi->bytes_per_word;
325 if (nbytes > t->len - tspi->cur_pos)
326 nbytes = t->len - tspi->cur_pos;
327 write_bytes = nbytes;
328 for (count = 0; count < max_n_32bit; count++) {
329 u32 x = 0;
330
331 for (i = 0; nbytes && (i < tspi->bytes_per_word);
332 i++, nbytes--)
333 x |= (u32)(*tx_buf++) << (i * 8);
334 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
335 }
336
337 tspi->cur_tx_pos += write_bytes;
338 }
339
340 return written_words;
341 }
342
tegra_spi_read_rx_fifo_to_client_rxbuf(struct tegra_spi_data * tspi,struct spi_transfer * t)343 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
344 struct tegra_spi_data *tspi, struct spi_transfer *t)
345 {
346 unsigned rx_full_count;
347 u32 fifo_status;
348 unsigned i, count;
349 unsigned int read_words = 0;
350 unsigned len;
351 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
352
353 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
354 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
355 if (tspi->is_packed) {
356 len = tspi->curr_dma_words * tspi->bytes_per_word;
357 for (count = 0; count < rx_full_count; count++) {
358 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
359
360 for (i = 0; len && (i < 4); i++, len--)
361 *rx_buf++ = (x >> i*8) & 0xFF;
362 }
363 read_words += tspi->curr_dma_words;
364 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
365 } else {
366 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
367 u8 bytes_per_word = tspi->bytes_per_word;
368 unsigned int read_bytes;
369
370 len = rx_full_count * bytes_per_word;
371 if (len > t->len - tspi->cur_pos)
372 len = t->len - tspi->cur_pos;
373 read_bytes = len;
374 for (count = 0; count < rx_full_count; count++) {
375 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
376
377 for (i = 0; len && (i < bytes_per_word); i++, len--)
378 *rx_buf++ = (x >> (i*8)) & 0xFF;
379 }
380 read_words += rx_full_count;
381 tspi->cur_rx_pos += read_bytes;
382 }
383
384 return read_words;
385 }
386
tegra_spi_copy_client_txbuf_to_spi_txbuf(struct tegra_spi_data * tspi,struct spi_transfer * t)387 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
388 struct tegra_spi_data *tspi, struct spi_transfer *t)
389 {
390 /* Make the dma buffer to read by cpu */
391 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
392 tspi->dma_buf_size, DMA_TO_DEVICE);
393
394 if (tspi->is_packed) {
395 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
396
397 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
398 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
399 } else {
400 unsigned int i;
401 unsigned int count;
402 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
403 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
404 unsigned int write_bytes;
405
406 if (consume > t->len - tspi->cur_pos)
407 consume = t->len - tspi->cur_pos;
408 write_bytes = consume;
409 for (count = 0; count < tspi->curr_dma_words; count++) {
410 u32 x = 0;
411
412 for (i = 0; consume && (i < tspi->bytes_per_word);
413 i++, consume--)
414 x |= (u32)(*tx_buf++) << (i * 8);
415 tspi->tx_dma_buf[count] = x;
416 }
417
418 tspi->cur_tx_pos += write_bytes;
419 }
420
421 /* Make the dma buffer to read by dma */
422 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
423 tspi->dma_buf_size, DMA_TO_DEVICE);
424 }
425
tegra_spi_copy_spi_rxbuf_to_client_rxbuf(struct tegra_spi_data * tspi,struct spi_transfer * t)426 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
427 struct tegra_spi_data *tspi, struct spi_transfer *t)
428 {
429 /* Make the dma buffer to read by cpu */
430 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
431 tspi->dma_buf_size, DMA_FROM_DEVICE);
432
433 if (tspi->is_packed) {
434 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
435
436 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
437 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
438 } else {
439 unsigned int i;
440 unsigned int count;
441 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
442 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
443 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
444 unsigned int read_bytes;
445
446 if (consume > t->len - tspi->cur_pos)
447 consume = t->len - tspi->cur_pos;
448 read_bytes = consume;
449 for (count = 0; count < tspi->curr_dma_words; count++) {
450 u32 x = tspi->rx_dma_buf[count] & rx_mask;
451
452 for (i = 0; consume && (i < tspi->bytes_per_word);
453 i++, consume--)
454 *rx_buf++ = (x >> (i*8)) & 0xFF;
455 }
456
457 tspi->cur_rx_pos += read_bytes;
458 }
459
460 /* Make the dma buffer to read by dma */
461 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
462 tspi->dma_buf_size, DMA_FROM_DEVICE);
463 }
464
tegra_spi_dma_complete(void * args)465 static void tegra_spi_dma_complete(void *args)
466 {
467 struct completion *dma_complete = args;
468
469 complete(dma_complete);
470 }
471
tegra_spi_start_tx_dma(struct tegra_spi_data * tspi,int len)472 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
473 {
474 reinit_completion(&tspi->tx_dma_complete);
475 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
476 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
477 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
478 if (!tspi->tx_dma_desc) {
479 dev_err(tspi->dev, "Not able to get desc for Tx\n");
480 return -EIO;
481 }
482
483 tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
484 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
485
486 dmaengine_submit(tspi->tx_dma_desc);
487 dma_async_issue_pending(tspi->tx_dma_chan);
488 return 0;
489 }
490
tegra_spi_start_rx_dma(struct tegra_spi_data * tspi,int len)491 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
492 {
493 reinit_completion(&tspi->rx_dma_complete);
494 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
495 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
496 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
497 if (!tspi->rx_dma_desc) {
498 dev_err(tspi->dev, "Not able to get desc for Rx\n");
499 return -EIO;
500 }
501
502 tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
503 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
504
505 dmaengine_submit(tspi->rx_dma_desc);
506 dma_async_issue_pending(tspi->rx_dma_chan);
507 return 0;
508 }
509
tegra_spi_flush_fifos(struct tegra_spi_data * tspi)510 static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
511 {
512 unsigned long timeout = jiffies + HZ;
513 u32 status;
514
515 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
516 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
517 status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
518 tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
519 while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
520 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
521 if (time_after(jiffies, timeout)) {
522 dev_err(tspi->dev,
523 "timeout waiting for fifo flush\n");
524 return -EIO;
525 }
526
527 udelay(1);
528 }
529 }
530
531 return 0;
532 }
533
tegra_spi_start_dma_based_transfer(struct tegra_spi_data * tspi,struct spi_transfer * t)534 static int tegra_spi_start_dma_based_transfer(
535 struct tegra_spi_data *tspi, struct spi_transfer *t)
536 {
537 u32 val;
538 unsigned int len;
539 int ret = 0;
540 u8 dma_burst;
541 struct dma_slave_config dma_sconfig = {0};
542
543 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
544 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
545
546 if (tspi->is_packed)
547 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
548 4) * 4;
549 else
550 len = tspi->curr_dma_words * 4;
551
552 /* Set attention level based on length of transfer */
553 if (len & 0xF) {
554 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
555 dma_burst = 1;
556 } else if (((len) >> 4) & 0x1) {
557 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
558 dma_burst = 4;
559 } else {
560 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
561 dma_burst = 8;
562 }
563
564 if (!tspi->soc_data->has_intr_mask_reg) {
565 if (tspi->cur_direction & DATA_DIR_TX)
566 val |= SPI_IE_TX;
567
568 if (tspi->cur_direction & DATA_DIR_RX)
569 val |= SPI_IE_RX;
570 }
571
572 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
573 tspi->dma_control_reg = val;
574
575 dma_sconfig.device_fc = true;
576 if (tspi->cur_direction & DATA_DIR_TX) {
577 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
578 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
579 dma_sconfig.dst_maxburst = dma_burst;
580 ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
581 if (ret < 0) {
582 dev_err(tspi->dev,
583 "DMA slave config failed: %d\n", ret);
584 return ret;
585 }
586
587 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
588 ret = tegra_spi_start_tx_dma(tspi, len);
589 if (ret < 0) {
590 dev_err(tspi->dev,
591 "Starting tx dma failed, err %d\n", ret);
592 return ret;
593 }
594 }
595
596 if (tspi->cur_direction & DATA_DIR_RX) {
597 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
598 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599 dma_sconfig.src_maxburst = dma_burst;
600 ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
601 if (ret < 0) {
602 dev_err(tspi->dev,
603 "DMA slave config failed: %d\n", ret);
604 return ret;
605 }
606
607 /* Make the dma buffer to read by dma */
608 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
609 tspi->dma_buf_size, DMA_FROM_DEVICE);
610
611 ret = tegra_spi_start_rx_dma(tspi, len);
612 if (ret < 0) {
613 dev_err(tspi->dev,
614 "Starting rx dma failed, err %d\n", ret);
615 if (tspi->cur_direction & DATA_DIR_TX)
616 dmaengine_terminate_all(tspi->tx_dma_chan);
617 return ret;
618 }
619 }
620 tspi->is_curr_dma_xfer = true;
621 tspi->dma_control_reg = val;
622
623 val |= SPI_DMA_EN;
624 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
625 return ret;
626 }
627
tegra_spi_start_cpu_based_transfer(struct tegra_spi_data * tspi,struct spi_transfer * t)628 static int tegra_spi_start_cpu_based_transfer(
629 struct tegra_spi_data *tspi, struct spi_transfer *t)
630 {
631 u32 val;
632 unsigned cur_words;
633
634 if (tspi->cur_direction & DATA_DIR_TX)
635 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
636 else
637 cur_words = tspi->curr_dma_words;
638
639 val = SPI_DMA_BLK_SET(cur_words - 1);
640 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
641
642 val = 0;
643 if (tspi->cur_direction & DATA_DIR_TX)
644 val |= SPI_IE_TX;
645
646 if (tspi->cur_direction & DATA_DIR_RX)
647 val |= SPI_IE_RX;
648
649 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
650 tspi->dma_control_reg = val;
651
652 tspi->is_curr_dma_xfer = false;
653
654 val = tspi->command1_reg;
655 val |= SPI_PIO;
656 tegra_spi_writel(tspi, val, SPI_COMMAND1);
657 return 0;
658 }
659
tegra_spi_init_dma_param(struct tegra_spi_data * tspi,bool dma_to_memory)660 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
661 bool dma_to_memory)
662 {
663 struct dma_chan *dma_chan;
664 u32 *dma_buf;
665 dma_addr_t dma_phys;
666
667 dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx");
668 if (IS_ERR(dma_chan))
669 return dev_err_probe(tspi->dev, PTR_ERR(dma_chan),
670 "Dma channel is not available\n");
671
672 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
673 &dma_phys, GFP_KERNEL);
674 if (!dma_buf) {
675 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
676 dma_release_channel(dma_chan);
677 return -ENOMEM;
678 }
679
680 if (dma_to_memory) {
681 tspi->rx_dma_chan = dma_chan;
682 tspi->rx_dma_buf = dma_buf;
683 tspi->rx_dma_phys = dma_phys;
684 } else {
685 tspi->tx_dma_chan = dma_chan;
686 tspi->tx_dma_buf = dma_buf;
687 tspi->tx_dma_phys = dma_phys;
688 }
689 return 0;
690 }
691
tegra_spi_deinit_dma_param(struct tegra_spi_data * tspi,bool dma_to_memory)692 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
693 bool dma_to_memory)
694 {
695 u32 *dma_buf;
696 dma_addr_t dma_phys;
697 struct dma_chan *dma_chan;
698
699 if (dma_to_memory) {
700 dma_buf = tspi->rx_dma_buf;
701 dma_chan = tspi->rx_dma_chan;
702 dma_phys = tspi->rx_dma_phys;
703 tspi->rx_dma_chan = NULL;
704 tspi->rx_dma_buf = NULL;
705 } else {
706 dma_buf = tspi->tx_dma_buf;
707 dma_chan = tspi->tx_dma_chan;
708 dma_phys = tspi->tx_dma_phys;
709 tspi->tx_dma_buf = NULL;
710 tspi->tx_dma_chan = NULL;
711 }
712 if (!dma_chan)
713 return;
714
715 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
716 dma_release_channel(dma_chan);
717 }
718
tegra_spi_set_hw_cs_timing(struct spi_device * spi)719 static int tegra_spi_set_hw_cs_timing(struct spi_device *spi)
720 {
721 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
722 struct spi_delay *setup = &spi->cs_setup;
723 struct spi_delay *hold = &spi->cs_hold;
724 struct spi_delay *inactive = &spi->cs_inactive;
725 u8 setup_dly, hold_dly;
726 u32 setup_hold;
727 u32 spi_cs_timing;
728 u32 inactive_cycles;
729 u8 cs_state;
730
731 if (setup->unit != SPI_DELAY_UNIT_SCK ||
732 hold->unit != SPI_DELAY_UNIT_SCK ||
733 inactive->unit != SPI_DELAY_UNIT_SCK) {
734 dev_err(&spi->dev,
735 "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
736 SPI_DELAY_UNIT_SCK);
737 return -EINVAL;
738 }
739
740 setup_dly = min_t(u8, setup->value, MAX_SETUP_HOLD_CYCLES);
741 hold_dly = min_t(u8, hold->value, MAX_SETUP_HOLD_CYCLES);
742 if (setup_dly && hold_dly) {
743 setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1);
744 spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1,
745 spi_get_chipselect(spi, 0),
746 setup_hold);
747 if (tspi->spi_cs_timing1 != spi_cs_timing) {
748 tspi->spi_cs_timing1 = spi_cs_timing;
749 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1);
750 }
751 }
752
753 inactive_cycles = min_t(u8, inactive->value, MAX_INACTIVE_CYCLES);
754 if (inactive_cycles)
755 inactive_cycles--;
756 cs_state = inactive_cycles ? 0 : 1;
757 spi_cs_timing = tspi->spi_cs_timing2;
758 SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0),
759 cs_state);
760 SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0),
761 inactive_cycles);
762 if (tspi->spi_cs_timing2 != spi_cs_timing) {
763 tspi->spi_cs_timing2 = spi_cs_timing;
764 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2);
765 }
766
767 return 0;
768 }
769
tegra_spi_setup_transfer_one(struct spi_device * spi,struct spi_transfer * t,bool is_first_of_msg,bool is_single_xfer)770 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
771 struct spi_transfer *t,
772 bool is_first_of_msg,
773 bool is_single_xfer)
774 {
775 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
776 struct tegra_spi_client_data *cdata = spi->controller_data;
777 u32 speed = t->speed_hz;
778 u8 bits_per_word = t->bits_per_word;
779 u32 command1, command2;
780 int req_mode;
781 u32 tx_tap = 0, rx_tap = 0;
782
783 if (speed != tspi->cur_speed) {
784 clk_set_rate(tspi->clk, speed);
785 tspi->cur_speed = speed;
786 }
787
788 tspi->cur_spi = spi;
789 tspi->cur_pos = 0;
790 tspi->cur_rx_pos = 0;
791 tspi->cur_tx_pos = 0;
792 tspi->curr_xfer = t;
793
794 if (is_first_of_msg) {
795 tegra_spi_clear_status(tspi);
796
797 command1 = tspi->def_command1_reg;
798 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
799
800 command1 &= ~SPI_CONTROL_MODE_MASK;
801 req_mode = spi->mode & 0x3;
802 if (req_mode == SPI_MODE_0)
803 command1 |= SPI_CONTROL_MODE_0;
804 else if (req_mode == SPI_MODE_1)
805 command1 |= SPI_CONTROL_MODE_1;
806 else if (req_mode == SPI_MODE_2)
807 command1 |= SPI_CONTROL_MODE_2;
808 else if (req_mode == SPI_MODE_3)
809 command1 |= SPI_CONTROL_MODE_3;
810
811 if (spi->mode & SPI_LSB_FIRST)
812 command1 |= SPI_LSBIT_FE;
813 else
814 command1 &= ~SPI_LSBIT_FE;
815
816 if (spi->mode & SPI_3WIRE)
817 command1 |= SPI_BIDIROE;
818 else
819 command1 &= ~SPI_BIDIROE;
820
821 if (tspi->cs_control) {
822 if (tspi->cs_control != spi)
823 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
824 tspi->cs_control = NULL;
825 } else
826 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
827
828 /* GPIO based chip select control */
829 if (spi_get_csgpiod(spi, 0))
830 gpiod_set_value(spi_get_csgpiod(spi, 0), 1);
831
832 if (is_single_xfer && !(t->cs_change)) {
833 tspi->use_hw_based_cs = true;
834 command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL);
835 } else {
836 tspi->use_hw_based_cs = false;
837 command1 |= SPI_CS_SW_HW;
838 if (spi->mode & SPI_CS_HIGH)
839 command1 |= SPI_CS_SW_VAL;
840 else
841 command1 &= ~SPI_CS_SW_VAL;
842 }
843
844 if (tspi->last_used_cs != spi_get_chipselect(spi, 0)) {
845 if (cdata && cdata->tx_clk_tap_delay)
846 tx_tap = cdata->tx_clk_tap_delay;
847 if (cdata && cdata->rx_clk_tap_delay)
848 rx_tap = cdata->rx_clk_tap_delay;
849 command2 = SPI_TX_TAP_DELAY(tx_tap) |
850 SPI_RX_TAP_DELAY(rx_tap);
851 if (command2 != tspi->def_command2_reg)
852 tegra_spi_writel(tspi, command2, SPI_COMMAND2);
853 tspi->last_used_cs = spi_get_chipselect(spi, 0);
854 }
855
856 } else {
857 command1 = tspi->command1_reg;
858 command1 &= ~SPI_BIT_LENGTH(~0);
859 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
860 }
861
862 return command1;
863 }
864
tegra_spi_start_transfer_one(struct spi_device * spi,struct spi_transfer * t,u32 command1)865 static int tegra_spi_start_transfer_one(struct spi_device *spi,
866 struct spi_transfer *t, u32 command1)
867 {
868 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
869 unsigned total_fifo_words;
870 int ret;
871
872 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
873
874 if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
875 command1 |= SPI_BOTH_EN_BIT;
876 else
877 command1 &= ~SPI_BOTH_EN_BIT;
878
879 if (tspi->is_packed)
880 command1 |= SPI_PACKED;
881 else
882 command1 &= ~SPI_PACKED;
883
884 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
885 tspi->cur_direction = 0;
886 if (t->rx_buf) {
887 command1 |= SPI_RX_EN;
888 tspi->cur_direction |= DATA_DIR_RX;
889 }
890 if (t->tx_buf) {
891 command1 |= SPI_TX_EN;
892 tspi->cur_direction |= DATA_DIR_TX;
893 }
894 command1 |= SPI_CS_SEL(spi_get_chipselect(spi, 0));
895 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
896 tspi->command1_reg = command1;
897
898 dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
899 tspi->def_command1_reg, (unsigned)command1);
900
901 ret = tegra_spi_flush_fifos(tspi);
902 if (ret < 0)
903 return ret;
904 if (total_fifo_words > SPI_FIFO_DEPTH)
905 ret = tegra_spi_start_dma_based_transfer(tspi, t);
906 else
907 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
908 return ret;
909 }
910
911 static struct tegra_spi_client_data
tegra_spi_parse_cdata_dt(struct spi_device * spi)912 *tegra_spi_parse_cdata_dt(struct spi_device *spi)
913 {
914 struct tegra_spi_client_data *cdata;
915 struct device_node *slave_np;
916
917 slave_np = spi->dev.of_node;
918 if (!slave_np) {
919 dev_dbg(&spi->dev, "device node not found\n");
920 return NULL;
921 }
922
923 cdata = kzalloc(sizeof(*cdata), GFP_KERNEL);
924 if (!cdata)
925 return NULL;
926
927 of_property_read_u32(slave_np, "nvidia,tx-clk-tap-delay",
928 &cdata->tx_clk_tap_delay);
929 of_property_read_u32(slave_np, "nvidia,rx-clk-tap-delay",
930 &cdata->rx_clk_tap_delay);
931 return cdata;
932 }
933
tegra_spi_cleanup(struct spi_device * spi)934 static void tegra_spi_cleanup(struct spi_device *spi)
935 {
936 struct tegra_spi_client_data *cdata = spi->controller_data;
937
938 spi->controller_data = NULL;
939 if (spi->dev.of_node)
940 kfree(cdata);
941 }
942
tegra_spi_setup(struct spi_device * spi)943 static int tegra_spi_setup(struct spi_device *spi)
944 {
945 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
946 struct tegra_spi_client_data *cdata = spi->controller_data;
947 u32 val;
948 unsigned long flags;
949 int ret;
950
951 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
952 spi->bits_per_word,
953 spi->mode & SPI_CPOL ? "" : "~",
954 spi->mode & SPI_CPHA ? "" : "~",
955 spi->max_speed_hz);
956
957 if (!cdata) {
958 cdata = tegra_spi_parse_cdata_dt(spi);
959 spi->controller_data = cdata;
960 }
961
962 ret = pm_runtime_resume_and_get(tspi->dev);
963 if (ret < 0) {
964 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
965 if (cdata)
966 tegra_spi_cleanup(spi);
967 return ret;
968 }
969
970 if (tspi->soc_data->has_intr_mask_reg) {
971 val = tegra_spi_readl(tspi, SPI_INTR_MASK);
972 val &= ~SPI_INTR_ALL_MASK;
973 tegra_spi_writel(tspi, val, SPI_INTR_MASK);
974 }
975
976 spin_lock_irqsave(&tspi->lock, flags);
977 /* GPIO based chip select control */
978 if (spi_get_csgpiod(spi, 0))
979 gpiod_set_value(spi_get_csgpiod(spi, 0), 0);
980
981 val = tspi->def_command1_reg;
982 if (spi->mode & SPI_CS_HIGH)
983 val &= ~SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0));
984 else
985 val |= SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0));
986 tspi->def_command1_reg = val;
987 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
988 spin_unlock_irqrestore(&tspi->lock, flags);
989
990 pm_runtime_put(tspi->dev);
991 return 0;
992 }
993
tegra_spi_transfer_end(struct spi_device * spi)994 static void tegra_spi_transfer_end(struct spi_device *spi)
995 {
996 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
997 int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
998
999 /* GPIO based chip select control */
1000 if (spi_get_csgpiod(spi, 0))
1001 gpiod_set_value(spi_get_csgpiod(spi, 0), 0);
1002
1003 if (!tspi->use_hw_based_cs) {
1004 if (cs_val)
1005 tspi->command1_reg |= SPI_CS_SW_VAL;
1006 else
1007 tspi->command1_reg &= ~SPI_CS_SW_VAL;
1008 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1009 }
1010
1011 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1012 }
1013
tegra_spi_dump_regs(struct tegra_spi_data * tspi)1014 static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
1015 {
1016 dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
1017 dev_dbg(tspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n",
1018 tegra_spi_readl(tspi, SPI_COMMAND1),
1019 tegra_spi_readl(tspi, SPI_COMMAND2));
1020 dev_dbg(tspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
1021 tegra_spi_readl(tspi, SPI_DMA_CTL),
1022 tegra_spi_readl(tspi, SPI_DMA_BLK));
1023 dev_dbg(tspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
1024 tegra_spi_readl(tspi, SPI_TRANS_STATUS),
1025 tegra_spi_readl(tspi, SPI_FIFO_STATUS));
1026 }
1027
tegra_spi_transfer_one_message(struct spi_master * master,struct spi_message * msg)1028 static int tegra_spi_transfer_one_message(struct spi_master *master,
1029 struct spi_message *msg)
1030 {
1031 bool is_first_msg = true;
1032 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1033 struct spi_transfer *xfer;
1034 struct spi_device *spi = msg->spi;
1035 int ret;
1036 bool skip = false;
1037 int single_xfer;
1038
1039 msg->status = 0;
1040 msg->actual_length = 0;
1041
1042 single_xfer = list_is_singular(&msg->transfers);
1043 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1044 u32 cmd1;
1045
1046 reinit_completion(&tspi->xfer_completion);
1047
1048 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg,
1049 single_xfer);
1050
1051 if (!xfer->len) {
1052 ret = 0;
1053 skip = true;
1054 goto complete_xfer;
1055 }
1056
1057 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
1058 if (ret < 0) {
1059 dev_err(tspi->dev,
1060 "spi can not start transfer, err %d\n", ret);
1061 goto complete_xfer;
1062 }
1063
1064 is_first_msg = false;
1065 ret = wait_for_completion_timeout(&tspi->xfer_completion,
1066 SPI_DMA_TIMEOUT);
1067 if (WARN_ON(ret == 0)) {
1068 dev_err(tspi->dev, "spi transfer timeout\n");
1069 if (tspi->is_curr_dma_xfer &&
1070 (tspi->cur_direction & DATA_DIR_TX))
1071 dmaengine_terminate_all(tspi->tx_dma_chan);
1072 if (tspi->is_curr_dma_xfer &&
1073 (tspi->cur_direction & DATA_DIR_RX))
1074 dmaengine_terminate_all(tspi->rx_dma_chan);
1075 ret = -EIO;
1076 tegra_spi_dump_regs(tspi);
1077 tegra_spi_flush_fifos(tspi);
1078 reset_control_assert(tspi->rst);
1079 udelay(2);
1080 reset_control_deassert(tspi->rst);
1081 tspi->last_used_cs = master->num_chipselect + 1;
1082 goto complete_xfer;
1083 }
1084
1085 if (tspi->tx_status || tspi->rx_status) {
1086 dev_err(tspi->dev, "Error in Transfer\n");
1087 ret = -EIO;
1088 tegra_spi_dump_regs(tspi);
1089 goto complete_xfer;
1090 }
1091 msg->actual_length += xfer->len;
1092
1093 complete_xfer:
1094 if (ret < 0 || skip) {
1095 tegra_spi_transfer_end(spi);
1096 spi_transfer_delay_exec(xfer);
1097 goto exit;
1098 } else if (list_is_last(&xfer->transfer_list,
1099 &msg->transfers)) {
1100 if (xfer->cs_change)
1101 tspi->cs_control = spi;
1102 else {
1103 tegra_spi_transfer_end(spi);
1104 spi_transfer_delay_exec(xfer);
1105 }
1106 } else if (xfer->cs_change) {
1107 tegra_spi_transfer_end(spi);
1108 spi_transfer_delay_exec(xfer);
1109 }
1110
1111 }
1112 ret = 0;
1113 exit:
1114 msg->status = ret;
1115 spi_finalize_current_message(master);
1116 return ret;
1117 }
1118
handle_cpu_based_xfer(struct tegra_spi_data * tspi)1119 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
1120 {
1121 struct spi_transfer *t = tspi->curr_xfer;
1122 unsigned long flags;
1123
1124 spin_lock_irqsave(&tspi->lock, flags);
1125 if (tspi->tx_status || tspi->rx_status) {
1126 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
1127 tspi->status_reg);
1128 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
1129 tspi->command1_reg, tspi->dma_control_reg);
1130 tegra_spi_dump_regs(tspi);
1131 tegra_spi_flush_fifos(tspi);
1132 complete(&tspi->xfer_completion);
1133 spin_unlock_irqrestore(&tspi->lock, flags);
1134 reset_control_assert(tspi->rst);
1135 udelay(2);
1136 reset_control_deassert(tspi->rst);
1137 return IRQ_HANDLED;
1138 }
1139
1140 if (tspi->cur_direction & DATA_DIR_RX)
1141 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
1142
1143 if (tspi->cur_direction & DATA_DIR_TX)
1144 tspi->cur_pos = tspi->cur_tx_pos;
1145 else
1146 tspi->cur_pos = tspi->cur_rx_pos;
1147
1148 if (tspi->cur_pos == t->len) {
1149 complete(&tspi->xfer_completion);
1150 goto exit;
1151 }
1152
1153 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
1154 tegra_spi_start_cpu_based_transfer(tspi, t);
1155 exit:
1156 spin_unlock_irqrestore(&tspi->lock, flags);
1157 return IRQ_HANDLED;
1158 }
1159
handle_dma_based_xfer(struct tegra_spi_data * tspi)1160 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
1161 {
1162 struct spi_transfer *t = tspi->curr_xfer;
1163 long wait_status;
1164 int err = 0;
1165 unsigned total_fifo_words;
1166 unsigned long flags;
1167
1168 /* Abort dmas if any error */
1169 if (tspi->cur_direction & DATA_DIR_TX) {
1170 if (tspi->tx_status) {
1171 dmaengine_terminate_all(tspi->tx_dma_chan);
1172 err += 1;
1173 } else {
1174 wait_status = wait_for_completion_interruptible_timeout(
1175 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
1176 if (wait_status <= 0) {
1177 dmaengine_terminate_all(tspi->tx_dma_chan);
1178 dev_err(tspi->dev, "TxDma Xfer failed\n");
1179 err += 1;
1180 }
1181 }
1182 }
1183
1184 if (tspi->cur_direction & DATA_DIR_RX) {
1185 if (tspi->rx_status) {
1186 dmaengine_terminate_all(tspi->rx_dma_chan);
1187 err += 2;
1188 } else {
1189 wait_status = wait_for_completion_interruptible_timeout(
1190 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
1191 if (wait_status <= 0) {
1192 dmaengine_terminate_all(tspi->rx_dma_chan);
1193 dev_err(tspi->dev, "RxDma Xfer failed\n");
1194 err += 2;
1195 }
1196 }
1197 }
1198
1199 spin_lock_irqsave(&tspi->lock, flags);
1200 if (err) {
1201 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
1202 tspi->status_reg);
1203 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
1204 tspi->command1_reg, tspi->dma_control_reg);
1205 tegra_spi_dump_regs(tspi);
1206 tegra_spi_flush_fifos(tspi);
1207 complete(&tspi->xfer_completion);
1208 spin_unlock_irqrestore(&tspi->lock, flags);
1209 reset_control_assert(tspi->rst);
1210 udelay(2);
1211 reset_control_deassert(tspi->rst);
1212 return IRQ_HANDLED;
1213 }
1214
1215 if (tspi->cur_direction & DATA_DIR_RX)
1216 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1217
1218 if (tspi->cur_direction & DATA_DIR_TX)
1219 tspi->cur_pos = tspi->cur_tx_pos;
1220 else
1221 tspi->cur_pos = tspi->cur_rx_pos;
1222
1223 if (tspi->cur_pos == t->len) {
1224 complete(&tspi->xfer_completion);
1225 goto exit;
1226 }
1227
1228 /* Continue transfer in current message */
1229 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1230 tspi, t);
1231 if (total_fifo_words > SPI_FIFO_DEPTH)
1232 err = tegra_spi_start_dma_based_transfer(tspi, t);
1233 else
1234 err = tegra_spi_start_cpu_based_transfer(tspi, t);
1235
1236 exit:
1237 spin_unlock_irqrestore(&tspi->lock, flags);
1238 return IRQ_HANDLED;
1239 }
1240
tegra_spi_isr_thread(int irq,void * context_data)1241 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1242 {
1243 struct tegra_spi_data *tspi = context_data;
1244
1245 if (!tspi->is_curr_dma_xfer)
1246 return handle_cpu_based_xfer(tspi);
1247 return handle_dma_based_xfer(tspi);
1248 }
1249
tegra_spi_isr(int irq,void * context_data)1250 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1251 {
1252 struct tegra_spi_data *tspi = context_data;
1253
1254 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1255 if (tspi->cur_direction & DATA_DIR_TX)
1256 tspi->tx_status = tspi->status_reg &
1257 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1258
1259 if (tspi->cur_direction & DATA_DIR_RX)
1260 tspi->rx_status = tspi->status_reg &
1261 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1262 tegra_spi_clear_status(tspi);
1263
1264 return IRQ_WAKE_THREAD;
1265 }
1266
1267 static struct tegra_spi_soc_data tegra114_spi_soc_data = {
1268 .has_intr_mask_reg = false,
1269 };
1270
1271 static struct tegra_spi_soc_data tegra124_spi_soc_data = {
1272 .has_intr_mask_reg = false,
1273 };
1274
1275 static struct tegra_spi_soc_data tegra210_spi_soc_data = {
1276 .has_intr_mask_reg = true,
1277 };
1278
1279 static const struct of_device_id tegra_spi_of_match[] = {
1280 {
1281 .compatible = "nvidia,tegra114-spi",
1282 .data = &tegra114_spi_soc_data,
1283 }, {
1284 .compatible = "nvidia,tegra124-spi",
1285 .data = &tegra124_spi_soc_data,
1286 }, {
1287 .compatible = "nvidia,tegra210-spi",
1288 .data = &tegra210_spi_soc_data,
1289 },
1290 {}
1291 };
1292 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1293
tegra_spi_probe(struct platform_device * pdev)1294 static int tegra_spi_probe(struct platform_device *pdev)
1295 {
1296 struct spi_master *master;
1297 struct tegra_spi_data *tspi;
1298 struct resource *r;
1299 int ret, spi_irq;
1300 int bus_num;
1301
1302 master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1303 if (!master) {
1304 dev_err(&pdev->dev, "master allocation failed\n");
1305 return -ENOMEM;
1306 }
1307 platform_set_drvdata(pdev, master);
1308 tspi = spi_master_get_devdata(master);
1309
1310 if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1311 &master->max_speed_hz))
1312 master->max_speed_hz = 25000000; /* 25MHz */
1313
1314 /* the spi->mode bits understood by this driver: */
1315 master->use_gpio_descriptors = true;
1316 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
1317 SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
1318 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1319 master->setup = tegra_spi_setup;
1320 master->cleanup = tegra_spi_cleanup;
1321 master->transfer_one_message = tegra_spi_transfer_one_message;
1322 master->set_cs_timing = tegra_spi_set_hw_cs_timing;
1323 master->num_chipselect = MAX_CHIP_SELECT;
1324 master->auto_runtime_pm = true;
1325 bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
1326 if (bus_num >= 0)
1327 master->bus_num = bus_num;
1328
1329 tspi->master = master;
1330 tspi->dev = &pdev->dev;
1331 spin_lock_init(&tspi->lock);
1332
1333 tspi->soc_data = of_device_get_match_data(&pdev->dev);
1334 if (!tspi->soc_data) {
1335 dev_err(&pdev->dev, "unsupported tegra\n");
1336 ret = -ENODEV;
1337 goto exit_free_master;
1338 }
1339
1340 tspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r);
1341 if (IS_ERR(tspi->base)) {
1342 ret = PTR_ERR(tspi->base);
1343 goto exit_free_master;
1344 }
1345 tspi->phys = r->start;
1346
1347 spi_irq = platform_get_irq(pdev, 0);
1348 if (spi_irq < 0) {
1349 ret = spi_irq;
1350 goto exit_free_master;
1351 }
1352 tspi->irq = spi_irq;
1353
1354 tspi->clk = devm_clk_get(&pdev->dev, "spi");
1355 if (IS_ERR(tspi->clk)) {
1356 dev_err(&pdev->dev, "can not get clock\n");
1357 ret = PTR_ERR(tspi->clk);
1358 goto exit_free_master;
1359 }
1360
1361 tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
1362 if (IS_ERR(tspi->rst)) {
1363 dev_err(&pdev->dev, "can not get reset\n");
1364 ret = PTR_ERR(tspi->rst);
1365 goto exit_free_master;
1366 }
1367
1368 tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1369 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1370
1371 ret = tegra_spi_init_dma_param(tspi, true);
1372 if (ret < 0)
1373 goto exit_free_master;
1374 ret = tegra_spi_init_dma_param(tspi, false);
1375 if (ret < 0)
1376 goto exit_rx_dma_free;
1377 tspi->max_buf_size = tspi->dma_buf_size;
1378 init_completion(&tspi->tx_dma_complete);
1379 init_completion(&tspi->rx_dma_complete);
1380
1381 init_completion(&tspi->xfer_completion);
1382
1383 pm_runtime_enable(&pdev->dev);
1384 if (!pm_runtime_enabled(&pdev->dev)) {
1385 ret = tegra_spi_runtime_resume(&pdev->dev);
1386 if (ret)
1387 goto exit_pm_disable;
1388 }
1389
1390 ret = pm_runtime_resume_and_get(&pdev->dev);
1391 if (ret < 0) {
1392 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1393 goto exit_pm_disable;
1394 }
1395
1396 reset_control_assert(tspi->rst);
1397 udelay(2);
1398 reset_control_deassert(tspi->rst);
1399 tspi->def_command1_reg = SPI_M_S;
1400 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1401 tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1);
1402 tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2);
1403 tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2);
1404 tspi->last_used_cs = master->num_chipselect + 1;
1405 pm_runtime_put(&pdev->dev);
1406 ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1407 tegra_spi_isr_thread, IRQF_ONESHOT,
1408 dev_name(&pdev->dev), tspi);
1409 if (ret < 0) {
1410 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1411 tspi->irq);
1412 goto exit_pm_disable;
1413 }
1414
1415 master->dev.of_node = pdev->dev.of_node;
1416 ret = devm_spi_register_master(&pdev->dev, master);
1417 if (ret < 0) {
1418 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1419 goto exit_free_irq;
1420 }
1421 return ret;
1422
1423 exit_free_irq:
1424 free_irq(spi_irq, tspi);
1425 exit_pm_disable:
1426 pm_runtime_disable(&pdev->dev);
1427 if (!pm_runtime_status_suspended(&pdev->dev))
1428 tegra_spi_runtime_suspend(&pdev->dev);
1429 tegra_spi_deinit_dma_param(tspi, false);
1430 exit_rx_dma_free:
1431 tegra_spi_deinit_dma_param(tspi, true);
1432 exit_free_master:
1433 spi_master_put(master);
1434 return ret;
1435 }
1436
tegra_spi_remove(struct platform_device * pdev)1437 static void tegra_spi_remove(struct platform_device *pdev)
1438 {
1439 struct spi_master *master = platform_get_drvdata(pdev);
1440 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1441
1442 free_irq(tspi->irq, tspi);
1443
1444 if (tspi->tx_dma_chan)
1445 tegra_spi_deinit_dma_param(tspi, false);
1446
1447 if (tspi->rx_dma_chan)
1448 tegra_spi_deinit_dma_param(tspi, true);
1449
1450 pm_runtime_disable(&pdev->dev);
1451 if (!pm_runtime_status_suspended(&pdev->dev))
1452 tegra_spi_runtime_suspend(&pdev->dev);
1453 }
1454
1455 #ifdef CONFIG_PM_SLEEP
tegra_spi_suspend(struct device * dev)1456 static int tegra_spi_suspend(struct device *dev)
1457 {
1458 struct spi_master *master = dev_get_drvdata(dev);
1459
1460 return spi_master_suspend(master);
1461 }
1462
tegra_spi_resume(struct device * dev)1463 static int tegra_spi_resume(struct device *dev)
1464 {
1465 struct spi_master *master = dev_get_drvdata(dev);
1466 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1467 int ret;
1468
1469 ret = pm_runtime_resume_and_get(dev);
1470 if (ret < 0) {
1471 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1472 return ret;
1473 }
1474 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1475 tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2);
1476 tspi->last_used_cs = master->num_chipselect + 1;
1477 pm_runtime_put(dev);
1478
1479 return spi_master_resume(master);
1480 }
1481 #endif
1482
tegra_spi_runtime_suspend(struct device * dev)1483 static int tegra_spi_runtime_suspend(struct device *dev)
1484 {
1485 struct spi_master *master = dev_get_drvdata(dev);
1486 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1487
1488 /* Flush all write which are in PPSB queue by reading back */
1489 tegra_spi_readl(tspi, SPI_COMMAND1);
1490
1491 clk_disable_unprepare(tspi->clk);
1492 return 0;
1493 }
1494
tegra_spi_runtime_resume(struct device * dev)1495 static int tegra_spi_runtime_resume(struct device *dev)
1496 {
1497 struct spi_master *master = dev_get_drvdata(dev);
1498 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1499 int ret;
1500
1501 ret = clk_prepare_enable(tspi->clk);
1502 if (ret < 0) {
1503 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1504 return ret;
1505 }
1506 return 0;
1507 }
1508
1509 static const struct dev_pm_ops tegra_spi_pm_ops = {
1510 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1511 tegra_spi_runtime_resume, NULL)
1512 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1513 };
1514 static struct platform_driver tegra_spi_driver = {
1515 .driver = {
1516 .name = "spi-tegra114",
1517 .pm = &tegra_spi_pm_ops,
1518 .of_match_table = tegra_spi_of_match,
1519 },
1520 .probe = tegra_spi_probe,
1521 .remove_new = tegra_spi_remove,
1522 };
1523 module_platform_driver(tegra_spi_driver);
1524
1525 MODULE_ALIAS("platform:spi-tegra114");
1526 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1527 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1528 MODULE_LICENSE("GPL v2");
1529