xref: /openbmc/linux/drivers/spi/spi-sun6i.c (revision 1c2dd16a)
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/reset.h>
24 
25 #include <linux/spi/spi.h>
26 
27 #define SUN6I_FIFO_DEPTH		128
28 #define SUN8I_FIFO_DEPTH		64
29 
30 #define SUN6I_GBL_CTL_REG		0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
32 #define SUN6I_GBL_CTL_MASTER			BIT(1)
33 #define SUN6I_GBL_CTL_TP			BIT(7)
34 #define SUN6I_GBL_CTL_RST			BIT(31)
35 
36 #define SUN6I_TFR_CTL_REG		0x08
37 #define SUN6I_TFR_CTL_CPHA			BIT(0)
38 #define SUN6I_TFR_CTL_CPOL			BIT(1)
39 #define SUN6I_TFR_CTL_SPOL			BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK			0x30
41 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
44 #define SUN6I_TFR_CTL_DHB			BIT(8)
45 #define SUN6I_TFR_CTL_FBS			BIT(12)
46 #define SUN6I_TFR_CTL_XCH			BIT(31)
47 
48 #define SUN6I_INT_CTL_REG		0x10
49 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
50 #define SUN6I_INT_CTL_TC			BIT(12)
51 
52 #define SUN6I_INT_STA_REG		0x14
53 
54 #define SUN6I_FIFO_CTL_REG		0x18
55 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
56 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
57 
58 #define SUN6I_FIFO_STA_REG		0x1c
59 #define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
60 #define SUN6I_FIFO_STA_RF_CNT_BITS		0
61 #define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
62 #define SUN6I_FIFO_STA_TF_CNT_BITS		16
63 
64 #define SUN6I_CLK_CTL_REG		0x24
65 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
66 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
67 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
68 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
69 #define SUN6I_CLK_CTL_DRS			BIT(12)
70 
71 #define SUN6I_BURST_CNT_REG		0x30
72 #define SUN6I_BURST_CNT(cnt)			((cnt) & 0xffffff)
73 
74 #define SUN6I_XMIT_CNT_REG		0x34
75 #define SUN6I_XMIT_CNT(cnt)			((cnt) & 0xffffff)
76 
77 #define SUN6I_BURST_CTL_CNT_REG		0x38
78 #define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & 0xffffff)
79 
80 #define SUN6I_TXDATA_REG		0x200
81 #define SUN6I_RXDATA_REG		0x300
82 
83 struct sun6i_spi {
84 	struct spi_master	*master;
85 	void __iomem		*base_addr;
86 	struct clk		*hclk;
87 	struct clk		*mclk;
88 	struct reset_control	*rstc;
89 
90 	struct completion	done;
91 
92 	const u8		*tx_buf;
93 	u8			*rx_buf;
94 	int			len;
95 	unsigned long		fifo_depth;
96 };
97 
98 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
99 {
100 	return readl(sspi->base_addr + reg);
101 }
102 
103 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
104 {
105 	writel(value, sspi->base_addr + reg);
106 }
107 
108 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
109 {
110 	u32 reg, cnt;
111 	u8 byte;
112 
113 	/* See how much data is available */
114 	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
115 	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
116 	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
117 
118 	if (len > cnt)
119 		len = cnt;
120 
121 	while (len--) {
122 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
123 		if (sspi->rx_buf)
124 			*sspi->rx_buf++ = byte;
125 	}
126 }
127 
128 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
129 {
130 	u8 byte;
131 
132 	if (len > sspi->len)
133 		len = sspi->len;
134 
135 	while (len--) {
136 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
137 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
138 		sspi->len--;
139 	}
140 }
141 
142 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
143 {
144 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
145 	u32 reg;
146 
147 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
148 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
149 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
150 
151 	if (enable)
152 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
153 	else
154 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
155 
156 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
157 }
158 
159 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
160 {
161 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
162 
163 	return sspi->fifo_depth - 1;
164 }
165 
166 static int sun6i_spi_transfer_one(struct spi_master *master,
167 				  struct spi_device *spi,
168 				  struct spi_transfer *tfr)
169 {
170 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
171 	unsigned int mclk_rate, div, timeout;
172 	unsigned int start, end, tx_time;
173 	unsigned int tx_len = 0;
174 	int ret = 0;
175 	u32 reg;
176 
177 	/* We don't support transfer larger than the FIFO */
178 	if (tfr->len > sspi->fifo_depth)
179 		return -EINVAL;
180 
181 	reinit_completion(&sspi->done);
182 	sspi->tx_buf = tfr->tx_buf;
183 	sspi->rx_buf = tfr->rx_buf;
184 	sspi->len = tfr->len;
185 
186 	/* Clear pending interrupts */
187 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
188 
189 	/* Reset FIFO */
190 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
191 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
192 
193 	/*
194 	 * Setup the transfer control register: Chip Select,
195 	 * polarities, etc.
196 	 */
197 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
198 
199 	if (spi->mode & SPI_CPOL)
200 		reg |= SUN6I_TFR_CTL_CPOL;
201 	else
202 		reg &= ~SUN6I_TFR_CTL_CPOL;
203 
204 	if (spi->mode & SPI_CPHA)
205 		reg |= SUN6I_TFR_CTL_CPHA;
206 	else
207 		reg &= ~SUN6I_TFR_CTL_CPHA;
208 
209 	if (spi->mode & SPI_LSB_FIRST)
210 		reg |= SUN6I_TFR_CTL_FBS;
211 	else
212 		reg &= ~SUN6I_TFR_CTL_FBS;
213 
214 	/*
215 	 * If it's a TX only transfer, we don't want to fill the RX
216 	 * FIFO with bogus data
217 	 */
218 	if (sspi->rx_buf)
219 		reg &= ~SUN6I_TFR_CTL_DHB;
220 	else
221 		reg |= SUN6I_TFR_CTL_DHB;
222 
223 	/* We want to control the chip select manually */
224 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
225 
226 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
227 
228 	/* Ensure that we have a parent clock fast enough */
229 	mclk_rate = clk_get_rate(sspi->mclk);
230 	if (mclk_rate < (2 * tfr->speed_hz)) {
231 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
232 		mclk_rate = clk_get_rate(sspi->mclk);
233 	}
234 
235 	/*
236 	 * Setup clock divider.
237 	 *
238 	 * We have two choices there. Either we can use the clock
239 	 * divide rate 1, which is calculated thanks to this formula:
240 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
241 	 * Or we can use CDR2, which is calculated with the formula:
242 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
243 	 * Wether we use the former or the latter is set through the
244 	 * DRS bit.
245 	 *
246 	 * First try CDR2, and if we can't reach the expected
247 	 * frequency, fall back to CDR1.
248 	 */
249 	div = mclk_rate / (2 * tfr->speed_hz);
250 	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
251 		if (div > 0)
252 			div--;
253 
254 		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
255 	} else {
256 		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
257 		reg = SUN6I_CLK_CTL_CDR1(div);
258 	}
259 
260 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
261 
262 	/* Setup the transfer now... */
263 	if (sspi->tx_buf)
264 		tx_len = tfr->len;
265 
266 	/* Setup the counters */
267 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
268 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
269 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
270 			SUN6I_BURST_CTL_CNT_STC(tx_len));
271 
272 	/* Fill the TX FIFO */
273 	sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
274 
275 	/* Enable the interrupts */
276 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
277 
278 	/* Start the transfer */
279 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
280 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
281 
282 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
283 	start = jiffies;
284 	timeout = wait_for_completion_timeout(&sspi->done,
285 					      msecs_to_jiffies(tx_time));
286 	end = jiffies;
287 	if (!timeout) {
288 		dev_warn(&master->dev,
289 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
290 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
291 			 jiffies_to_msecs(end - start), tx_time);
292 		ret = -ETIMEDOUT;
293 		goto out;
294 	}
295 
296 	sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
297 
298 out:
299 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
300 
301 	return ret;
302 }
303 
304 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
305 {
306 	struct sun6i_spi *sspi = dev_id;
307 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
308 
309 	/* Transfer complete */
310 	if (status & SUN6I_INT_CTL_TC) {
311 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
312 		complete(&sspi->done);
313 		return IRQ_HANDLED;
314 	}
315 
316 	return IRQ_NONE;
317 }
318 
319 static int sun6i_spi_runtime_resume(struct device *dev)
320 {
321 	struct spi_master *master = dev_get_drvdata(dev);
322 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
323 	int ret;
324 
325 	ret = clk_prepare_enable(sspi->hclk);
326 	if (ret) {
327 		dev_err(dev, "Couldn't enable AHB clock\n");
328 		goto out;
329 	}
330 
331 	ret = clk_prepare_enable(sspi->mclk);
332 	if (ret) {
333 		dev_err(dev, "Couldn't enable module clock\n");
334 		goto err;
335 	}
336 
337 	ret = reset_control_deassert(sspi->rstc);
338 	if (ret) {
339 		dev_err(dev, "Couldn't deassert the device from reset\n");
340 		goto err2;
341 	}
342 
343 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
344 			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
345 
346 	return 0;
347 
348 err2:
349 	clk_disable_unprepare(sspi->mclk);
350 err:
351 	clk_disable_unprepare(sspi->hclk);
352 out:
353 	return ret;
354 }
355 
356 static int sun6i_spi_runtime_suspend(struct device *dev)
357 {
358 	struct spi_master *master = dev_get_drvdata(dev);
359 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
360 
361 	reset_control_assert(sspi->rstc);
362 	clk_disable_unprepare(sspi->mclk);
363 	clk_disable_unprepare(sspi->hclk);
364 
365 	return 0;
366 }
367 
368 static int sun6i_spi_probe(struct platform_device *pdev)
369 {
370 	struct spi_master *master;
371 	struct sun6i_spi *sspi;
372 	struct resource	*res;
373 	int ret = 0, irq;
374 
375 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
376 	if (!master) {
377 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
378 		return -ENOMEM;
379 	}
380 
381 	platform_set_drvdata(pdev, master);
382 	sspi = spi_master_get_devdata(master);
383 
384 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
385 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
386 	if (IS_ERR(sspi->base_addr)) {
387 		ret = PTR_ERR(sspi->base_addr);
388 		goto err_free_master;
389 	}
390 
391 	irq = platform_get_irq(pdev, 0);
392 	if (irq < 0) {
393 		dev_err(&pdev->dev, "No spi IRQ specified\n");
394 		ret = -ENXIO;
395 		goto err_free_master;
396 	}
397 
398 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
399 			       0, "sun6i-spi", sspi);
400 	if (ret) {
401 		dev_err(&pdev->dev, "Cannot request IRQ\n");
402 		goto err_free_master;
403 	}
404 
405 	sspi->master = master;
406 	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
407 
408 	master->max_speed_hz = 100 * 1000 * 1000;
409 	master->min_speed_hz = 3 * 1000;
410 	master->set_cs = sun6i_spi_set_cs;
411 	master->transfer_one = sun6i_spi_transfer_one;
412 	master->num_chipselect = 4;
413 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
414 	master->bits_per_word_mask = SPI_BPW_MASK(8);
415 	master->dev.of_node = pdev->dev.of_node;
416 	master->auto_runtime_pm = true;
417 	master->max_transfer_size = sun6i_spi_max_transfer_size;
418 
419 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
420 	if (IS_ERR(sspi->hclk)) {
421 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
422 		ret = PTR_ERR(sspi->hclk);
423 		goto err_free_master;
424 	}
425 
426 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
427 	if (IS_ERR(sspi->mclk)) {
428 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
429 		ret = PTR_ERR(sspi->mclk);
430 		goto err_free_master;
431 	}
432 
433 	init_completion(&sspi->done);
434 
435 	sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
436 	if (IS_ERR(sspi->rstc)) {
437 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
438 		ret = PTR_ERR(sspi->rstc);
439 		goto err_free_master;
440 	}
441 
442 	/*
443 	 * This wake-up/shutdown pattern is to be able to have the
444 	 * device woken up, even if runtime_pm is disabled
445 	 */
446 	ret = sun6i_spi_runtime_resume(&pdev->dev);
447 	if (ret) {
448 		dev_err(&pdev->dev, "Couldn't resume the device\n");
449 		goto err_free_master;
450 	}
451 
452 	pm_runtime_set_active(&pdev->dev);
453 	pm_runtime_enable(&pdev->dev);
454 	pm_runtime_idle(&pdev->dev);
455 
456 	ret = devm_spi_register_master(&pdev->dev, master);
457 	if (ret) {
458 		dev_err(&pdev->dev, "cannot register SPI master\n");
459 		goto err_pm_disable;
460 	}
461 
462 	return 0;
463 
464 err_pm_disable:
465 	pm_runtime_disable(&pdev->dev);
466 	sun6i_spi_runtime_suspend(&pdev->dev);
467 err_free_master:
468 	spi_master_put(master);
469 	return ret;
470 }
471 
472 static int sun6i_spi_remove(struct platform_device *pdev)
473 {
474 	pm_runtime_disable(&pdev->dev);
475 
476 	return 0;
477 }
478 
479 static const struct of_device_id sun6i_spi_match[] = {
480 	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
481 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
482 	{}
483 };
484 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
485 
486 static const struct dev_pm_ops sun6i_spi_pm_ops = {
487 	.runtime_resume		= sun6i_spi_runtime_resume,
488 	.runtime_suspend	= sun6i_spi_runtime_suspend,
489 };
490 
491 static struct platform_driver sun6i_spi_driver = {
492 	.probe	= sun6i_spi_probe,
493 	.remove	= sun6i_spi_remove,
494 	.driver	= {
495 		.name		= "sun6i-spi",
496 		.of_match_table	= sun6i_spi_match,
497 		.pm		= &sun6i_spi_pm_ops,
498 	},
499 };
500 module_platform_driver(sun6i_spi_driver);
501 
502 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
503 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
504 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
505 MODULE_LICENSE("GPL");
506