xref: /openbmc/linux/drivers/spi/spi-sun4i.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 
23 #include <linux/spi/spi.h>
24 
25 #define SUN4I_FIFO_DEPTH		64
26 
27 #define SUN4I_RXDATA_REG		0x00
28 
29 #define SUN4I_TXDATA_REG		0x04
30 
31 #define SUN4I_CTL_REG			0x08
32 #define SUN4I_CTL_ENABLE			BIT(0)
33 #define SUN4I_CTL_MASTER			BIT(1)
34 #define SUN4I_CTL_CPHA				BIT(2)
35 #define SUN4I_CTL_CPOL				BIT(3)
36 #define SUN4I_CTL_CS_ACTIVE_LOW			BIT(4)
37 #define SUN4I_CTL_LMTF				BIT(6)
38 #define SUN4I_CTL_TF_RST			BIT(8)
39 #define SUN4I_CTL_RF_RST			BIT(9)
40 #define SUN4I_CTL_XCH				BIT(10)
41 #define SUN4I_CTL_CS_MASK			0x3000
42 #define SUN4I_CTL_CS(cs)			(((cs) << 12) & SUN4I_CTL_CS_MASK)
43 #define SUN4I_CTL_DHB				BIT(15)
44 #define SUN4I_CTL_CS_MANUAL			BIT(16)
45 #define SUN4I_CTL_CS_LEVEL			BIT(17)
46 #define SUN4I_CTL_TP				BIT(18)
47 
48 #define SUN4I_INT_CTL_REG		0x0c
49 #define SUN4I_INT_CTL_TC			BIT(16)
50 
51 #define SUN4I_INT_STA_REG		0x10
52 
53 #define SUN4I_DMA_CTL_REG		0x14
54 
55 #define SUN4I_WAIT_REG			0x18
56 
57 #define SUN4I_CLK_CTL_REG		0x1c
58 #define SUN4I_CLK_CTL_CDR2_MASK			0xff
59 #define SUN4I_CLK_CTL_CDR2(div)			((div) & SUN4I_CLK_CTL_CDR2_MASK)
60 #define SUN4I_CLK_CTL_CDR1_MASK			0xf
61 #define SUN4I_CLK_CTL_CDR1(div)			(((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
62 #define SUN4I_CLK_CTL_DRS			BIT(12)
63 
64 #define SUN4I_BURST_CNT_REG		0x20
65 #define SUN4I_BURST_CNT(cnt)			((cnt) & 0xffffff)
66 
67 #define SUN4I_XMIT_CNT_REG		0x24
68 #define SUN4I_XMIT_CNT(cnt)			((cnt) & 0xffffff)
69 
70 #define SUN4I_FIFO_STA_REG		0x28
71 #define SUN4I_FIFO_STA_RF_CNT_MASK		0x7f
72 #define SUN4I_FIFO_STA_RF_CNT_BITS		0
73 #define SUN4I_FIFO_STA_TF_CNT_MASK		0x7f
74 #define SUN4I_FIFO_STA_TF_CNT_BITS		16
75 
76 struct sun4i_spi {
77 	struct spi_master	*master;
78 	void __iomem		*base_addr;
79 	struct clk		*hclk;
80 	struct clk		*mclk;
81 
82 	struct completion	done;
83 
84 	const u8		*tx_buf;
85 	u8			*rx_buf;
86 	int			len;
87 };
88 
89 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
90 {
91 	return readl(sspi->base_addr + reg);
92 }
93 
94 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
95 {
96 	writel(value, sspi->base_addr + reg);
97 }
98 
99 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
100 {
101 	u32 reg, cnt;
102 	u8 byte;
103 
104 	/* See how much data is available */
105 	reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
106 	reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
107 	cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
108 
109 	if (len > cnt)
110 		len = cnt;
111 
112 	while (len--) {
113 		byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
114 		if (sspi->rx_buf)
115 			*sspi->rx_buf++ = byte;
116 	}
117 }
118 
119 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
120 {
121 	u8 byte;
122 
123 	if (len > sspi->len)
124 		len = sspi->len;
125 
126 	while (len--) {
127 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
128 		writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
129 		sspi->len--;
130 	}
131 }
132 
133 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
134 {
135 	struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
136 	u32 reg;
137 
138 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
139 
140 	reg &= ~SUN4I_CTL_CS_MASK;
141 	reg |= SUN4I_CTL_CS(spi->chip_select);
142 
143 	if (enable)
144 		reg |= SUN4I_CTL_CS_LEVEL;
145 	else
146 		reg &= ~SUN4I_CTL_CS_LEVEL;
147 
148 	/*
149 	 * Even though this looks irrelevant since we are supposed to
150 	 * be controlling the chip select manually, this bit also
151 	 * controls the levels of the chip select for inactive
152 	 * devices.
153 	 *
154 	 * If we don't set it, the chip select level will go low by
155 	 * default when the device is idle, which is not really
156 	 * expected in the common case where the chip select is active
157 	 * low.
158 	 */
159 	if (spi->mode & SPI_CS_HIGH)
160 		reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
161 	else
162 		reg |= SUN4I_CTL_CS_ACTIVE_LOW;
163 
164 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
165 }
166 
167 static int sun4i_spi_transfer_one(struct spi_master *master,
168 				  struct spi_device *spi,
169 				  struct spi_transfer *tfr)
170 {
171 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
172 	unsigned int mclk_rate, div, timeout;
173 	unsigned int tx_len = 0;
174 	int ret = 0;
175 	u32 reg;
176 
177 	/* We don't support transfer larger than the FIFO */
178 	if (tfr->len > SUN4I_FIFO_DEPTH)
179 		return -EINVAL;
180 
181 	reinit_completion(&sspi->done);
182 	sspi->tx_buf = tfr->tx_buf;
183 	sspi->rx_buf = tfr->rx_buf;
184 	sspi->len = tfr->len;
185 
186 	/* Clear pending interrupts */
187 	sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
188 
189 
190 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
191 
192 	/* Reset FIFOs */
193 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
194 			reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
195 
196 	/*
197 	 * Setup the transfer control register: Chip Select,
198 	 * polarities, etc.
199 	 */
200 	if (spi->mode & SPI_CPOL)
201 		reg |= SUN4I_CTL_CPOL;
202 	else
203 		reg &= ~SUN4I_CTL_CPOL;
204 
205 	if (spi->mode & SPI_CPHA)
206 		reg |= SUN4I_CTL_CPHA;
207 	else
208 		reg &= ~SUN4I_CTL_CPHA;
209 
210 	if (spi->mode & SPI_LSB_FIRST)
211 		reg |= SUN4I_CTL_LMTF;
212 	else
213 		reg &= ~SUN4I_CTL_LMTF;
214 
215 
216 	/*
217 	 * If it's a TX only transfer, we don't want to fill the RX
218 	 * FIFO with bogus data
219 	 */
220 	if (sspi->rx_buf)
221 		reg &= ~SUN4I_CTL_DHB;
222 	else
223 		reg |= SUN4I_CTL_DHB;
224 
225 	/* We want to control the chip select manually */
226 	reg |= SUN4I_CTL_CS_MANUAL;
227 
228 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
229 
230 	/* Ensure that we have a parent clock fast enough */
231 	mclk_rate = clk_get_rate(sspi->mclk);
232 	if (mclk_rate < (2 * spi->max_speed_hz)) {
233 		clk_set_rate(sspi->mclk, 2 * spi->max_speed_hz);
234 		mclk_rate = clk_get_rate(sspi->mclk);
235 	}
236 
237 	/*
238 	 * Setup clock divider.
239 	 *
240 	 * We have two choices there. Either we can use the clock
241 	 * divide rate 1, which is calculated thanks to this formula:
242 	 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
243 	 * Or we can use CDR2, which is calculated with the formula:
244 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
245 	 * Wether we use the former or the latter is set through the
246 	 * DRS bit.
247 	 *
248 	 * First try CDR2, and if we can't reach the expected
249 	 * frequency, fall back to CDR1.
250 	 */
251 	div = mclk_rate / (2 * spi->max_speed_hz);
252 	if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
253 		if (div > 0)
254 			div--;
255 
256 		reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
257 	} else {
258 		div = ilog2(mclk_rate) - ilog2(spi->max_speed_hz);
259 		reg = SUN4I_CLK_CTL_CDR1(div);
260 	}
261 
262 	sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
263 
264 	/* Setup the transfer now... */
265 	if (sspi->tx_buf)
266 		tx_len = tfr->len;
267 
268 	/* Setup the counters */
269 	sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
270 	sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
271 
272 	/* Fill the TX FIFO */
273 	sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
274 
275 	/* Enable the interrupts */
276 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, SUN4I_INT_CTL_TC);
277 
278 	/* Start the transfer */
279 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
280 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
281 
282 	timeout = wait_for_completion_timeout(&sspi->done,
283 					      msecs_to_jiffies(1000));
284 	if (!timeout) {
285 		ret = -ETIMEDOUT;
286 		goto out;
287 	}
288 
289 	sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
290 
291 out:
292 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
293 
294 	return ret;
295 }
296 
297 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
298 {
299 	struct sun4i_spi *sspi = dev_id;
300 	u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
301 
302 	/* Transfer complete */
303 	if (status & SUN4I_INT_CTL_TC) {
304 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
305 		complete(&sspi->done);
306 		return IRQ_HANDLED;
307 	}
308 
309 	return IRQ_NONE;
310 }
311 
312 static int sun4i_spi_runtime_resume(struct device *dev)
313 {
314 	struct spi_master *master = dev_get_drvdata(dev);
315 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
316 	int ret;
317 
318 	ret = clk_prepare_enable(sspi->hclk);
319 	if (ret) {
320 		dev_err(dev, "Couldn't enable AHB clock\n");
321 		goto out;
322 	}
323 
324 	ret = clk_prepare_enable(sspi->mclk);
325 	if (ret) {
326 		dev_err(dev, "Couldn't enable module clock\n");
327 		goto err;
328 	}
329 
330 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
331 			SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
332 
333 	return 0;
334 
335 err:
336 	clk_disable_unprepare(sspi->hclk);
337 out:
338 	return ret;
339 }
340 
341 static int sun4i_spi_runtime_suspend(struct device *dev)
342 {
343 	struct spi_master *master = dev_get_drvdata(dev);
344 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
345 
346 	clk_disable_unprepare(sspi->mclk);
347 	clk_disable_unprepare(sspi->hclk);
348 
349 	return 0;
350 }
351 
352 static int sun4i_spi_probe(struct platform_device *pdev)
353 {
354 	struct spi_master *master;
355 	struct sun4i_spi *sspi;
356 	struct resource	*res;
357 	int ret = 0, irq;
358 
359 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
360 	if (!master) {
361 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
362 		return -ENOMEM;
363 	}
364 
365 	platform_set_drvdata(pdev, master);
366 	sspi = spi_master_get_devdata(master);
367 
368 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
369 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
370 	if (IS_ERR(sspi->base_addr)) {
371 		ret = PTR_ERR(sspi->base_addr);
372 		goto err_free_master;
373 	}
374 
375 	irq = platform_get_irq(pdev, 0);
376 	if (irq < 0) {
377 		dev_err(&pdev->dev, "No spi IRQ specified\n");
378 		ret = -ENXIO;
379 		goto err_free_master;
380 	}
381 
382 	ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
383 			       0, "sun4i-spi", sspi);
384 	if (ret) {
385 		dev_err(&pdev->dev, "Cannot request IRQ\n");
386 		goto err_free_master;
387 	}
388 
389 	sspi->master = master;
390 	master->set_cs = sun4i_spi_set_cs;
391 	master->transfer_one = sun4i_spi_transfer_one;
392 	master->num_chipselect = 4;
393 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
394 	master->bits_per_word_mask = SPI_BPW_MASK(8);
395 	master->dev.of_node = pdev->dev.of_node;
396 	master->auto_runtime_pm = true;
397 
398 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
399 	if (IS_ERR(sspi->hclk)) {
400 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
401 		ret = PTR_ERR(sspi->hclk);
402 		goto err_free_master;
403 	}
404 
405 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
406 	if (IS_ERR(sspi->mclk)) {
407 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
408 		ret = PTR_ERR(sspi->mclk);
409 		goto err_free_master;
410 	}
411 
412 	init_completion(&sspi->done);
413 
414 	/*
415 	 * This wake-up/shutdown pattern is to be able to have the
416 	 * device woken up, even if runtime_pm is disabled
417 	 */
418 	ret = sun4i_spi_runtime_resume(&pdev->dev);
419 	if (ret) {
420 		dev_err(&pdev->dev, "Couldn't resume the device\n");
421 		goto err_free_master;
422 	}
423 
424 	pm_runtime_set_active(&pdev->dev);
425 	pm_runtime_enable(&pdev->dev);
426 	pm_runtime_idle(&pdev->dev);
427 
428 	ret = devm_spi_register_master(&pdev->dev, master);
429 	if (ret) {
430 		dev_err(&pdev->dev, "cannot register SPI master\n");
431 		goto err_pm_disable;
432 	}
433 
434 	return 0;
435 
436 err_pm_disable:
437 	pm_runtime_disable(&pdev->dev);
438 	sun4i_spi_runtime_suspend(&pdev->dev);
439 err_free_master:
440 	spi_master_put(master);
441 	return ret;
442 }
443 
444 static int sun4i_spi_remove(struct platform_device *pdev)
445 {
446 	pm_runtime_disable(&pdev->dev);
447 
448 	return 0;
449 }
450 
451 static const struct of_device_id sun4i_spi_match[] = {
452 	{ .compatible = "allwinner,sun4i-a10-spi", },
453 	{}
454 };
455 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
456 
457 static const struct dev_pm_ops sun4i_spi_pm_ops = {
458 	.runtime_resume		= sun4i_spi_runtime_resume,
459 	.runtime_suspend	= sun4i_spi_runtime_suspend,
460 };
461 
462 static struct platform_driver sun4i_spi_driver = {
463 	.probe	= sun4i_spi_probe,
464 	.remove	= sun4i_spi_remove,
465 	.driver	= {
466 		.name		= "sun4i-spi",
467 		.of_match_table	= sun4i_spi_match,
468 		.pm		= &sun4i_spi_pm_ops,
469 	},
470 };
471 module_platform_driver(sun4i_spi_driver);
472 
473 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
474 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
475 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
476 MODULE_LICENSE("GPL");
477