1 /* 2 * Copyright (C) 2012 - 2014 Allwinner Tech 3 * Pan Nan <pannan@allwinnertech.com> 4 * 5 * Copyright (C) 2014 Maxime Ripard 6 * Maxime Ripard <maxime.ripard@free-electrons.com> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of 11 * the License, or (at your option) any later version. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/delay.h> 16 #include <linux/device.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/module.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 23 #include <linux/spi/spi.h> 24 25 #define SUN4I_FIFO_DEPTH 64 26 27 #define SUN4I_RXDATA_REG 0x00 28 29 #define SUN4I_TXDATA_REG 0x04 30 31 #define SUN4I_CTL_REG 0x08 32 #define SUN4I_CTL_ENABLE BIT(0) 33 #define SUN4I_CTL_MASTER BIT(1) 34 #define SUN4I_CTL_CPHA BIT(2) 35 #define SUN4I_CTL_CPOL BIT(3) 36 #define SUN4I_CTL_CS_ACTIVE_LOW BIT(4) 37 #define SUN4I_CTL_LMTF BIT(6) 38 #define SUN4I_CTL_TF_RST BIT(8) 39 #define SUN4I_CTL_RF_RST BIT(9) 40 #define SUN4I_CTL_XCH BIT(10) 41 #define SUN4I_CTL_CS_MASK 0x3000 42 #define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK) 43 #define SUN4I_CTL_DHB BIT(15) 44 #define SUN4I_CTL_CS_MANUAL BIT(16) 45 #define SUN4I_CTL_CS_LEVEL BIT(17) 46 #define SUN4I_CTL_TP BIT(18) 47 48 #define SUN4I_INT_CTL_REG 0x0c 49 #define SUN4I_INT_CTL_RF_F34 BIT(4) 50 #define SUN4I_INT_CTL_TF_E34 BIT(12) 51 #define SUN4I_INT_CTL_TC BIT(16) 52 53 #define SUN4I_INT_STA_REG 0x10 54 55 #define SUN4I_DMA_CTL_REG 0x14 56 57 #define SUN4I_WAIT_REG 0x18 58 59 #define SUN4I_CLK_CTL_REG 0x1c 60 #define SUN4I_CLK_CTL_CDR2_MASK 0xff 61 #define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK) 62 #define SUN4I_CLK_CTL_CDR1_MASK 0xf 63 #define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8) 64 #define SUN4I_CLK_CTL_DRS BIT(12) 65 66 #define SUN4I_MAX_XFER_SIZE 0xffffff 67 68 #define SUN4I_BURST_CNT_REG 0x20 69 #define SUN4I_BURST_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE) 70 71 #define SUN4I_XMIT_CNT_REG 0x24 72 #define SUN4I_XMIT_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE) 73 74 75 #define SUN4I_FIFO_STA_REG 0x28 76 #define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f 77 #define SUN4I_FIFO_STA_RF_CNT_BITS 0 78 #define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f 79 #define SUN4I_FIFO_STA_TF_CNT_BITS 16 80 81 struct sun4i_spi { 82 struct spi_master *master; 83 void __iomem *base_addr; 84 struct clk *hclk; 85 struct clk *mclk; 86 87 struct completion done; 88 89 const u8 *tx_buf; 90 u8 *rx_buf; 91 int len; 92 }; 93 94 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg) 95 { 96 return readl(sspi->base_addr + reg); 97 } 98 99 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value) 100 { 101 writel(value, sspi->base_addr + reg); 102 } 103 104 static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi) 105 { 106 u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG); 107 108 reg >>= SUN4I_FIFO_STA_TF_CNT_BITS; 109 110 return reg & SUN4I_FIFO_STA_TF_CNT_MASK; 111 } 112 113 static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask) 114 { 115 u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG); 116 117 reg |= mask; 118 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg); 119 } 120 121 static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask) 122 { 123 u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG); 124 125 reg &= ~mask; 126 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg); 127 } 128 129 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len) 130 { 131 u32 reg, cnt; 132 u8 byte; 133 134 /* See how much data is available */ 135 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG); 136 reg &= SUN4I_FIFO_STA_RF_CNT_MASK; 137 cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS; 138 139 if (len > cnt) 140 len = cnt; 141 142 while (len--) { 143 byte = readb(sspi->base_addr + SUN4I_RXDATA_REG); 144 if (sspi->rx_buf) 145 *sspi->rx_buf++ = byte; 146 } 147 } 148 149 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len) 150 { 151 u32 cnt; 152 u8 byte; 153 154 /* See how much data we can fit */ 155 cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi); 156 157 len = min3(len, (int)cnt, sspi->len); 158 159 while (len--) { 160 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0; 161 writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG); 162 sspi->len--; 163 } 164 } 165 166 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable) 167 { 168 struct sun4i_spi *sspi = spi_master_get_devdata(spi->master); 169 u32 reg; 170 171 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); 172 173 reg &= ~SUN4I_CTL_CS_MASK; 174 reg |= SUN4I_CTL_CS(spi->chip_select); 175 176 /* We want to control the chip select manually */ 177 reg |= SUN4I_CTL_CS_MANUAL; 178 179 if (enable) 180 reg |= SUN4I_CTL_CS_LEVEL; 181 else 182 reg &= ~SUN4I_CTL_CS_LEVEL; 183 184 /* 185 * Even though this looks irrelevant since we are supposed to 186 * be controlling the chip select manually, this bit also 187 * controls the levels of the chip select for inactive 188 * devices. 189 * 190 * If we don't set it, the chip select level will go low by 191 * default when the device is idle, which is not really 192 * expected in the common case where the chip select is active 193 * low. 194 */ 195 if (spi->mode & SPI_CS_HIGH) 196 reg &= ~SUN4I_CTL_CS_ACTIVE_LOW; 197 else 198 reg |= SUN4I_CTL_CS_ACTIVE_LOW; 199 200 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg); 201 } 202 203 static size_t sun4i_spi_max_transfer_size(struct spi_device *spi) 204 { 205 return SUN4I_FIFO_DEPTH - 1; 206 } 207 208 static int sun4i_spi_transfer_one(struct spi_master *master, 209 struct spi_device *spi, 210 struct spi_transfer *tfr) 211 { 212 struct sun4i_spi *sspi = spi_master_get_devdata(master); 213 unsigned int mclk_rate, div, timeout; 214 unsigned int start, end, tx_time; 215 unsigned int tx_len = 0; 216 int ret = 0; 217 u32 reg; 218 219 /* We don't support transfer larger than the FIFO */ 220 if (tfr->len > SUN4I_MAX_XFER_SIZE) 221 return -EMSGSIZE; 222 223 if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE) 224 return -EMSGSIZE; 225 226 reinit_completion(&sspi->done); 227 sspi->tx_buf = tfr->tx_buf; 228 sspi->rx_buf = tfr->rx_buf; 229 sspi->len = tfr->len; 230 231 /* Clear pending interrupts */ 232 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0); 233 234 235 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); 236 237 /* Reset FIFOs */ 238 sun4i_spi_write(sspi, SUN4I_CTL_REG, 239 reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST); 240 241 /* 242 * Setup the transfer control register: Chip Select, 243 * polarities, etc. 244 */ 245 if (spi->mode & SPI_CPOL) 246 reg |= SUN4I_CTL_CPOL; 247 else 248 reg &= ~SUN4I_CTL_CPOL; 249 250 if (spi->mode & SPI_CPHA) 251 reg |= SUN4I_CTL_CPHA; 252 else 253 reg &= ~SUN4I_CTL_CPHA; 254 255 if (spi->mode & SPI_LSB_FIRST) 256 reg |= SUN4I_CTL_LMTF; 257 else 258 reg &= ~SUN4I_CTL_LMTF; 259 260 261 /* 262 * If it's a TX only transfer, we don't want to fill the RX 263 * FIFO with bogus data 264 */ 265 if (sspi->rx_buf) 266 reg &= ~SUN4I_CTL_DHB; 267 else 268 reg |= SUN4I_CTL_DHB; 269 270 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg); 271 272 /* Ensure that we have a parent clock fast enough */ 273 mclk_rate = clk_get_rate(sspi->mclk); 274 if (mclk_rate < (2 * tfr->speed_hz)) { 275 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz); 276 mclk_rate = clk_get_rate(sspi->mclk); 277 } 278 279 /* 280 * Setup clock divider. 281 * 282 * We have two choices there. Either we can use the clock 283 * divide rate 1, which is calculated thanks to this formula: 284 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1)) 285 * Or we can use CDR2, which is calculated with the formula: 286 * SPI_CLK = MOD_CLK / (2 * (cdr + 1)) 287 * Wether we use the former or the latter is set through the 288 * DRS bit. 289 * 290 * First try CDR2, and if we can't reach the expected 291 * frequency, fall back to CDR1. 292 */ 293 div = mclk_rate / (2 * tfr->speed_hz); 294 if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) { 295 if (div > 0) 296 div--; 297 298 reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS; 299 } else { 300 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz); 301 reg = SUN4I_CLK_CTL_CDR1(div); 302 } 303 304 sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg); 305 306 /* Setup the transfer now... */ 307 if (sspi->tx_buf) 308 tx_len = tfr->len; 309 310 /* Setup the counters */ 311 sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len)); 312 sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len)); 313 314 /* 315 * Fill the TX FIFO 316 * Filling the FIFO fully causes timeout for some reason 317 * at least on spi2 on A10s 318 */ 319 sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1); 320 321 /* Enable the interrupts */ 322 sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC | 323 SUN4I_INT_CTL_RF_F34); 324 /* Only enable Tx FIFO interrupt if we really need it */ 325 if (tx_len > SUN4I_FIFO_DEPTH) 326 sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34); 327 328 /* Start the transfer */ 329 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); 330 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH); 331 332 tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U); 333 start = jiffies; 334 timeout = wait_for_completion_timeout(&sspi->done, 335 msecs_to_jiffies(tx_time)); 336 end = jiffies; 337 if (!timeout) { 338 dev_warn(&master->dev, 339 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms", 340 dev_name(&spi->dev), tfr->len, tfr->speed_hz, 341 jiffies_to_msecs(end - start), tx_time); 342 ret = -ETIMEDOUT; 343 goto out; 344 } 345 346 347 out: 348 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0); 349 350 return ret; 351 } 352 353 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id) 354 { 355 struct sun4i_spi *sspi = dev_id; 356 u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG); 357 358 /* Transfer complete */ 359 if (status & SUN4I_INT_CTL_TC) { 360 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC); 361 sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH); 362 complete(&sspi->done); 363 return IRQ_HANDLED; 364 } 365 366 /* Receive FIFO 3/4 full */ 367 if (status & SUN4I_INT_CTL_RF_F34) { 368 sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH); 369 /* Only clear the interrupt _after_ draining the FIFO */ 370 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34); 371 return IRQ_HANDLED; 372 } 373 374 /* Transmit FIFO 3/4 empty */ 375 if (status & SUN4I_INT_CTL_TF_E34) { 376 sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH); 377 378 if (!sspi->len) 379 /* nothing left to transmit */ 380 sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34); 381 382 /* Only clear the interrupt _after_ re-seeding the FIFO */ 383 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34); 384 385 return IRQ_HANDLED; 386 } 387 388 return IRQ_NONE; 389 } 390 391 static int sun4i_spi_runtime_resume(struct device *dev) 392 { 393 struct spi_master *master = dev_get_drvdata(dev); 394 struct sun4i_spi *sspi = spi_master_get_devdata(master); 395 int ret; 396 397 ret = clk_prepare_enable(sspi->hclk); 398 if (ret) { 399 dev_err(dev, "Couldn't enable AHB clock\n"); 400 goto out; 401 } 402 403 ret = clk_prepare_enable(sspi->mclk); 404 if (ret) { 405 dev_err(dev, "Couldn't enable module clock\n"); 406 goto err; 407 } 408 409 sun4i_spi_write(sspi, SUN4I_CTL_REG, 410 SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP); 411 412 return 0; 413 414 err: 415 clk_disable_unprepare(sspi->hclk); 416 out: 417 return ret; 418 } 419 420 static int sun4i_spi_runtime_suspend(struct device *dev) 421 { 422 struct spi_master *master = dev_get_drvdata(dev); 423 struct sun4i_spi *sspi = spi_master_get_devdata(master); 424 425 clk_disable_unprepare(sspi->mclk); 426 clk_disable_unprepare(sspi->hclk); 427 428 return 0; 429 } 430 431 static int sun4i_spi_probe(struct platform_device *pdev) 432 { 433 struct spi_master *master; 434 struct sun4i_spi *sspi; 435 struct resource *res; 436 int ret = 0, irq; 437 438 master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi)); 439 if (!master) { 440 dev_err(&pdev->dev, "Unable to allocate SPI Master\n"); 441 return -ENOMEM; 442 } 443 444 platform_set_drvdata(pdev, master); 445 sspi = spi_master_get_devdata(master); 446 447 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 448 sspi->base_addr = devm_ioremap_resource(&pdev->dev, res); 449 if (IS_ERR(sspi->base_addr)) { 450 ret = PTR_ERR(sspi->base_addr); 451 goto err_free_master; 452 } 453 454 irq = platform_get_irq(pdev, 0); 455 if (irq < 0) { 456 dev_err(&pdev->dev, "No spi IRQ specified\n"); 457 ret = -ENXIO; 458 goto err_free_master; 459 } 460 461 ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler, 462 0, "sun4i-spi", sspi); 463 if (ret) { 464 dev_err(&pdev->dev, "Cannot request IRQ\n"); 465 goto err_free_master; 466 } 467 468 sspi->master = master; 469 master->max_speed_hz = 100 * 1000 * 1000; 470 master->min_speed_hz = 3 * 1000; 471 master->set_cs = sun4i_spi_set_cs; 472 master->transfer_one = sun4i_spi_transfer_one; 473 master->num_chipselect = 4; 474 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; 475 master->bits_per_word_mask = SPI_BPW_MASK(8); 476 master->dev.of_node = pdev->dev.of_node; 477 master->auto_runtime_pm = true; 478 master->max_transfer_size = sun4i_spi_max_transfer_size; 479 480 sspi->hclk = devm_clk_get(&pdev->dev, "ahb"); 481 if (IS_ERR(sspi->hclk)) { 482 dev_err(&pdev->dev, "Unable to acquire AHB clock\n"); 483 ret = PTR_ERR(sspi->hclk); 484 goto err_free_master; 485 } 486 487 sspi->mclk = devm_clk_get(&pdev->dev, "mod"); 488 if (IS_ERR(sspi->mclk)) { 489 dev_err(&pdev->dev, "Unable to acquire module clock\n"); 490 ret = PTR_ERR(sspi->mclk); 491 goto err_free_master; 492 } 493 494 init_completion(&sspi->done); 495 496 /* 497 * This wake-up/shutdown pattern is to be able to have the 498 * device woken up, even if runtime_pm is disabled 499 */ 500 ret = sun4i_spi_runtime_resume(&pdev->dev); 501 if (ret) { 502 dev_err(&pdev->dev, "Couldn't resume the device\n"); 503 goto err_free_master; 504 } 505 506 pm_runtime_set_active(&pdev->dev); 507 pm_runtime_enable(&pdev->dev); 508 pm_runtime_idle(&pdev->dev); 509 510 ret = devm_spi_register_master(&pdev->dev, master); 511 if (ret) { 512 dev_err(&pdev->dev, "cannot register SPI master\n"); 513 goto err_pm_disable; 514 } 515 516 return 0; 517 518 err_pm_disable: 519 pm_runtime_disable(&pdev->dev); 520 sun4i_spi_runtime_suspend(&pdev->dev); 521 err_free_master: 522 spi_master_put(master); 523 return ret; 524 } 525 526 static int sun4i_spi_remove(struct platform_device *pdev) 527 { 528 pm_runtime_force_suspend(&pdev->dev); 529 530 return 0; 531 } 532 533 static const struct of_device_id sun4i_spi_match[] = { 534 { .compatible = "allwinner,sun4i-a10-spi", }, 535 {} 536 }; 537 MODULE_DEVICE_TABLE(of, sun4i_spi_match); 538 539 static const struct dev_pm_ops sun4i_spi_pm_ops = { 540 .runtime_resume = sun4i_spi_runtime_resume, 541 .runtime_suspend = sun4i_spi_runtime_suspend, 542 }; 543 544 static struct platform_driver sun4i_spi_driver = { 545 .probe = sun4i_spi_probe, 546 .remove = sun4i_spi_remove, 547 .driver = { 548 .name = "sun4i-spi", 549 .of_match_table = sun4i_spi_match, 550 .pm = &sun4i_spi_pm_ops, 551 }, 552 }; 553 module_platform_driver(sun4i_spi_driver); 554 555 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>"); 556 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); 557 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver"); 558 MODULE_LICENSE("GPL"); 559