xref: /openbmc/linux/drivers/spi/spi-sun4i.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 
23 #include <linux/spi/spi.h>
24 
25 #define SUN4I_FIFO_DEPTH		64
26 
27 #define SUN4I_RXDATA_REG		0x00
28 
29 #define SUN4I_TXDATA_REG		0x04
30 
31 #define SUN4I_CTL_REG			0x08
32 #define SUN4I_CTL_ENABLE			BIT(0)
33 #define SUN4I_CTL_MASTER			BIT(1)
34 #define SUN4I_CTL_CPHA				BIT(2)
35 #define SUN4I_CTL_CPOL				BIT(3)
36 #define SUN4I_CTL_CS_ACTIVE_LOW			BIT(4)
37 #define SUN4I_CTL_LMTF				BIT(6)
38 #define SUN4I_CTL_TF_RST			BIT(8)
39 #define SUN4I_CTL_RF_RST			BIT(9)
40 #define SUN4I_CTL_XCH				BIT(10)
41 #define SUN4I_CTL_CS_MASK			0x3000
42 #define SUN4I_CTL_CS(cs)			(((cs) << 12) & SUN4I_CTL_CS_MASK)
43 #define SUN4I_CTL_DHB				BIT(15)
44 #define SUN4I_CTL_CS_MANUAL			BIT(16)
45 #define SUN4I_CTL_CS_LEVEL			BIT(17)
46 #define SUN4I_CTL_TP				BIT(18)
47 
48 #define SUN4I_INT_CTL_REG		0x0c
49 #define SUN4I_INT_CTL_RF_F34			BIT(4)
50 #define SUN4I_INT_CTL_TF_E34			BIT(12)
51 #define SUN4I_INT_CTL_TC			BIT(16)
52 
53 #define SUN4I_INT_STA_REG		0x10
54 
55 #define SUN4I_DMA_CTL_REG		0x14
56 
57 #define SUN4I_WAIT_REG			0x18
58 
59 #define SUN4I_CLK_CTL_REG		0x1c
60 #define SUN4I_CLK_CTL_CDR2_MASK			0xff
61 #define SUN4I_CLK_CTL_CDR2(div)			((div) & SUN4I_CLK_CTL_CDR2_MASK)
62 #define SUN4I_CLK_CTL_CDR1_MASK			0xf
63 #define SUN4I_CLK_CTL_CDR1(div)			(((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
64 #define SUN4I_CLK_CTL_DRS			BIT(12)
65 
66 #define SUN4I_MAX_XFER_SIZE			0xffffff
67 
68 #define SUN4I_BURST_CNT_REG		0x20
69 #define SUN4I_BURST_CNT(cnt)			((cnt) & SUN4I_MAX_XFER_SIZE)
70 
71 #define SUN4I_XMIT_CNT_REG		0x24
72 #define SUN4I_XMIT_CNT(cnt)			((cnt) & SUN4I_MAX_XFER_SIZE)
73 
74 
75 #define SUN4I_FIFO_STA_REG		0x28
76 #define SUN4I_FIFO_STA_RF_CNT_MASK		0x7f
77 #define SUN4I_FIFO_STA_RF_CNT_BITS		0
78 #define SUN4I_FIFO_STA_TF_CNT_MASK		0x7f
79 #define SUN4I_FIFO_STA_TF_CNT_BITS		16
80 
81 struct sun4i_spi {
82 	struct spi_master	*master;
83 	void __iomem		*base_addr;
84 	struct clk		*hclk;
85 	struct clk		*mclk;
86 
87 	struct completion	done;
88 
89 	const u8		*tx_buf;
90 	u8			*rx_buf;
91 	int			len;
92 };
93 
94 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
95 {
96 	return readl(sspi->base_addr + reg);
97 }
98 
99 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
100 {
101 	writel(value, sspi->base_addr + reg);
102 }
103 
104 static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
105 {
106 	u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
107 
108 	reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
109 
110 	return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
111 }
112 
113 static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
114 {
115 	u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
116 
117 	reg |= mask;
118 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
119 }
120 
121 static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
122 {
123 	u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
124 
125 	reg &= ~mask;
126 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
127 }
128 
129 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
130 {
131 	u32 reg, cnt;
132 	u8 byte;
133 
134 	/* See how much data is available */
135 	reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
136 	reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
137 	cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
138 
139 	if (len > cnt)
140 		len = cnt;
141 
142 	while (len--) {
143 		byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
144 		if (sspi->rx_buf)
145 			*sspi->rx_buf++ = byte;
146 	}
147 }
148 
149 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
150 {
151 	u32 cnt;
152 	u8 byte;
153 
154 	/* See how much data we can fit */
155 	cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
156 
157 	len = min3(len, (int)cnt, sspi->len);
158 
159 	while (len--) {
160 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
161 		writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
162 		sspi->len--;
163 	}
164 }
165 
166 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
167 {
168 	struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
169 	u32 reg;
170 
171 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
172 
173 	reg &= ~SUN4I_CTL_CS_MASK;
174 	reg |= SUN4I_CTL_CS(spi->chip_select);
175 
176 	/* We want to control the chip select manually */
177 	reg |= SUN4I_CTL_CS_MANUAL;
178 
179 	if (enable)
180 		reg |= SUN4I_CTL_CS_LEVEL;
181 	else
182 		reg &= ~SUN4I_CTL_CS_LEVEL;
183 
184 	/*
185 	 * Even though this looks irrelevant since we are supposed to
186 	 * be controlling the chip select manually, this bit also
187 	 * controls the levels of the chip select for inactive
188 	 * devices.
189 	 *
190 	 * If we don't set it, the chip select level will go low by
191 	 * default when the device is idle, which is not really
192 	 * expected in the common case where the chip select is active
193 	 * low.
194 	 */
195 	if (spi->mode & SPI_CS_HIGH)
196 		reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
197 	else
198 		reg |= SUN4I_CTL_CS_ACTIVE_LOW;
199 
200 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
201 }
202 
203 static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
204 {
205 	return SUN4I_FIFO_DEPTH - 1;
206 }
207 
208 static int sun4i_spi_transfer_one(struct spi_master *master,
209 				  struct spi_device *spi,
210 				  struct spi_transfer *tfr)
211 {
212 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
213 	unsigned int mclk_rate, div, timeout;
214 	unsigned int start, end, tx_time;
215 	unsigned int tx_len = 0;
216 	int ret = 0;
217 	u32 reg;
218 
219 	/* We don't support transfer larger than the FIFO */
220 	if (tfr->len > SUN4I_MAX_XFER_SIZE)
221 		return -EMSGSIZE;
222 
223 	if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
224 		return -EMSGSIZE;
225 
226 	reinit_completion(&sspi->done);
227 	sspi->tx_buf = tfr->tx_buf;
228 	sspi->rx_buf = tfr->rx_buf;
229 	sspi->len = tfr->len;
230 
231 	/* Clear pending interrupts */
232 	sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
233 
234 
235 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
236 
237 	/* Reset FIFOs */
238 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
239 			reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
240 
241 	/*
242 	 * Setup the transfer control register: Chip Select,
243 	 * polarities, etc.
244 	 */
245 	if (spi->mode & SPI_CPOL)
246 		reg |= SUN4I_CTL_CPOL;
247 	else
248 		reg &= ~SUN4I_CTL_CPOL;
249 
250 	if (spi->mode & SPI_CPHA)
251 		reg |= SUN4I_CTL_CPHA;
252 	else
253 		reg &= ~SUN4I_CTL_CPHA;
254 
255 	if (spi->mode & SPI_LSB_FIRST)
256 		reg |= SUN4I_CTL_LMTF;
257 	else
258 		reg &= ~SUN4I_CTL_LMTF;
259 
260 
261 	/*
262 	 * If it's a TX only transfer, we don't want to fill the RX
263 	 * FIFO with bogus data
264 	 */
265 	if (sspi->rx_buf)
266 		reg &= ~SUN4I_CTL_DHB;
267 	else
268 		reg |= SUN4I_CTL_DHB;
269 
270 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
271 
272 	/* Ensure that we have a parent clock fast enough */
273 	mclk_rate = clk_get_rate(sspi->mclk);
274 	if (mclk_rate < (2 * tfr->speed_hz)) {
275 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
276 		mclk_rate = clk_get_rate(sspi->mclk);
277 	}
278 
279 	/*
280 	 * Setup clock divider.
281 	 *
282 	 * We have two choices there. Either we can use the clock
283 	 * divide rate 1, which is calculated thanks to this formula:
284 	 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
285 	 * Or we can use CDR2, which is calculated with the formula:
286 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
287 	 * Wether we use the former or the latter is set through the
288 	 * DRS bit.
289 	 *
290 	 * First try CDR2, and if we can't reach the expected
291 	 * frequency, fall back to CDR1.
292 	 */
293 	div = mclk_rate / (2 * tfr->speed_hz);
294 	if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
295 		if (div > 0)
296 			div--;
297 
298 		reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
299 	} else {
300 		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
301 		reg = SUN4I_CLK_CTL_CDR1(div);
302 	}
303 
304 	sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
305 
306 	/* Setup the transfer now... */
307 	if (sspi->tx_buf)
308 		tx_len = tfr->len;
309 
310 	/* Setup the counters */
311 	sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
312 	sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
313 
314 	/*
315 	 * Fill the TX FIFO
316 	 * Filling the FIFO fully causes timeout for some reason
317 	 * at least on spi2 on A10s
318 	 */
319 	sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
320 
321 	/* Enable the interrupts */
322 	sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
323 					 SUN4I_INT_CTL_RF_F34);
324 	/* Only enable Tx FIFO interrupt if we really need it */
325 	if (tx_len > SUN4I_FIFO_DEPTH)
326 		sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
327 
328 	/* Start the transfer */
329 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
330 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
331 
332 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
333 	start = jiffies;
334 	timeout = wait_for_completion_timeout(&sspi->done,
335 					      msecs_to_jiffies(tx_time));
336 	end = jiffies;
337 	if (!timeout) {
338 		dev_warn(&master->dev,
339 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
340 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
341 			 jiffies_to_msecs(end - start), tx_time);
342 		ret = -ETIMEDOUT;
343 		goto out;
344 	}
345 
346 
347 out:
348 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
349 
350 	return ret;
351 }
352 
353 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
354 {
355 	struct sun4i_spi *sspi = dev_id;
356 	u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
357 
358 	/* Transfer complete */
359 	if (status & SUN4I_INT_CTL_TC) {
360 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
361 		sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
362 		complete(&sspi->done);
363 		return IRQ_HANDLED;
364 	}
365 
366 	/* Receive FIFO 3/4 full */
367 	if (status & SUN4I_INT_CTL_RF_F34) {
368 		sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
369 		/* Only clear the interrupt _after_ draining the FIFO */
370 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
371 		return IRQ_HANDLED;
372 	}
373 
374 	/* Transmit FIFO 3/4 empty */
375 	if (status & SUN4I_INT_CTL_TF_E34) {
376 		sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
377 
378 		if (!sspi->len)
379 			/* nothing left to transmit */
380 			sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
381 
382 		/* Only clear the interrupt _after_ re-seeding the FIFO */
383 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
384 
385 		return IRQ_HANDLED;
386 	}
387 
388 	return IRQ_NONE;
389 }
390 
391 static int sun4i_spi_runtime_resume(struct device *dev)
392 {
393 	struct spi_master *master = dev_get_drvdata(dev);
394 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
395 	int ret;
396 
397 	ret = clk_prepare_enable(sspi->hclk);
398 	if (ret) {
399 		dev_err(dev, "Couldn't enable AHB clock\n");
400 		goto out;
401 	}
402 
403 	ret = clk_prepare_enable(sspi->mclk);
404 	if (ret) {
405 		dev_err(dev, "Couldn't enable module clock\n");
406 		goto err;
407 	}
408 
409 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
410 			SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
411 
412 	return 0;
413 
414 err:
415 	clk_disable_unprepare(sspi->hclk);
416 out:
417 	return ret;
418 }
419 
420 static int sun4i_spi_runtime_suspend(struct device *dev)
421 {
422 	struct spi_master *master = dev_get_drvdata(dev);
423 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
424 
425 	clk_disable_unprepare(sspi->mclk);
426 	clk_disable_unprepare(sspi->hclk);
427 
428 	return 0;
429 }
430 
431 static int sun4i_spi_probe(struct platform_device *pdev)
432 {
433 	struct spi_master *master;
434 	struct sun4i_spi *sspi;
435 	struct resource	*res;
436 	int ret = 0, irq;
437 
438 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
439 	if (!master) {
440 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
441 		return -ENOMEM;
442 	}
443 
444 	platform_set_drvdata(pdev, master);
445 	sspi = spi_master_get_devdata(master);
446 
447 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
448 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
449 	if (IS_ERR(sspi->base_addr)) {
450 		ret = PTR_ERR(sspi->base_addr);
451 		goto err_free_master;
452 	}
453 
454 	irq = platform_get_irq(pdev, 0);
455 	if (irq < 0) {
456 		dev_err(&pdev->dev, "No spi IRQ specified\n");
457 		ret = -ENXIO;
458 		goto err_free_master;
459 	}
460 
461 	ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
462 			       0, "sun4i-spi", sspi);
463 	if (ret) {
464 		dev_err(&pdev->dev, "Cannot request IRQ\n");
465 		goto err_free_master;
466 	}
467 
468 	sspi->master = master;
469 	master->max_speed_hz = 100 * 1000 * 1000;
470 	master->min_speed_hz = 3 * 1000;
471 	master->set_cs = sun4i_spi_set_cs;
472 	master->transfer_one = sun4i_spi_transfer_one;
473 	master->num_chipselect = 4;
474 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
475 	master->bits_per_word_mask = SPI_BPW_MASK(8);
476 	master->dev.of_node = pdev->dev.of_node;
477 	master->auto_runtime_pm = true;
478 	master->max_transfer_size = sun4i_spi_max_transfer_size;
479 
480 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
481 	if (IS_ERR(sspi->hclk)) {
482 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
483 		ret = PTR_ERR(sspi->hclk);
484 		goto err_free_master;
485 	}
486 
487 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
488 	if (IS_ERR(sspi->mclk)) {
489 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
490 		ret = PTR_ERR(sspi->mclk);
491 		goto err_free_master;
492 	}
493 
494 	init_completion(&sspi->done);
495 
496 	/*
497 	 * This wake-up/shutdown pattern is to be able to have the
498 	 * device woken up, even if runtime_pm is disabled
499 	 */
500 	ret = sun4i_spi_runtime_resume(&pdev->dev);
501 	if (ret) {
502 		dev_err(&pdev->dev, "Couldn't resume the device\n");
503 		goto err_free_master;
504 	}
505 
506 	pm_runtime_set_active(&pdev->dev);
507 	pm_runtime_enable(&pdev->dev);
508 	pm_runtime_idle(&pdev->dev);
509 
510 	ret = devm_spi_register_master(&pdev->dev, master);
511 	if (ret) {
512 		dev_err(&pdev->dev, "cannot register SPI master\n");
513 		goto err_pm_disable;
514 	}
515 
516 	return 0;
517 
518 err_pm_disable:
519 	pm_runtime_disable(&pdev->dev);
520 	sun4i_spi_runtime_suspend(&pdev->dev);
521 err_free_master:
522 	spi_master_put(master);
523 	return ret;
524 }
525 
526 static int sun4i_spi_remove(struct platform_device *pdev)
527 {
528 	pm_runtime_force_suspend(&pdev->dev);
529 
530 	return 0;
531 }
532 
533 static const struct of_device_id sun4i_spi_match[] = {
534 	{ .compatible = "allwinner,sun4i-a10-spi", },
535 	{}
536 };
537 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
538 
539 static const struct dev_pm_ops sun4i_spi_pm_ops = {
540 	.runtime_resume		= sun4i_spi_runtime_resume,
541 	.runtime_suspend	= sun4i_spi_runtime_suspend,
542 };
543 
544 static struct platform_driver sun4i_spi_driver = {
545 	.probe	= sun4i_spi_probe,
546 	.remove	= sun4i_spi_remove,
547 	.driver	= {
548 		.name		= "sun4i-spi",
549 		.of_match_table	= sun4i_spi_match,
550 		.pm		= &sun4i_spi_pm_ops,
551 	},
552 };
553 module_platform_driver(sun4i_spi_driver);
554 
555 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
556 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
557 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
558 MODULE_LICENSE("GPL");
559