xref: /openbmc/linux/drivers/spi/spi-sun4i.c (revision 23c2b932)
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 
23 #include <linux/spi/spi.h>
24 
25 #define SUN4I_FIFO_DEPTH		64
26 
27 #define SUN4I_RXDATA_REG		0x00
28 
29 #define SUN4I_TXDATA_REG		0x04
30 
31 #define SUN4I_CTL_REG			0x08
32 #define SUN4I_CTL_ENABLE			BIT(0)
33 #define SUN4I_CTL_MASTER			BIT(1)
34 #define SUN4I_CTL_CPHA				BIT(2)
35 #define SUN4I_CTL_CPOL				BIT(3)
36 #define SUN4I_CTL_CS_ACTIVE_LOW			BIT(4)
37 #define SUN4I_CTL_LMTF				BIT(6)
38 #define SUN4I_CTL_TF_RST			BIT(8)
39 #define SUN4I_CTL_RF_RST			BIT(9)
40 #define SUN4I_CTL_XCH				BIT(10)
41 #define SUN4I_CTL_CS_MASK			0x3000
42 #define SUN4I_CTL_CS(cs)			(((cs) << 12) & SUN4I_CTL_CS_MASK)
43 #define SUN4I_CTL_DHB				BIT(15)
44 #define SUN4I_CTL_CS_MANUAL			BIT(16)
45 #define SUN4I_CTL_CS_LEVEL			BIT(17)
46 #define SUN4I_CTL_TP				BIT(18)
47 
48 #define SUN4I_INT_CTL_REG		0x0c
49 #define SUN4I_INT_CTL_TC			BIT(16)
50 
51 #define SUN4I_INT_STA_REG		0x10
52 
53 #define SUN4I_DMA_CTL_REG		0x14
54 
55 #define SUN4I_WAIT_REG			0x18
56 
57 #define SUN4I_CLK_CTL_REG		0x1c
58 #define SUN4I_CLK_CTL_CDR2_MASK			0xff
59 #define SUN4I_CLK_CTL_CDR2(div)			((div) & SUN4I_CLK_CTL_CDR2_MASK)
60 #define SUN4I_CLK_CTL_CDR1_MASK			0xf
61 #define SUN4I_CLK_CTL_CDR1(div)			(((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
62 #define SUN4I_CLK_CTL_DRS			BIT(12)
63 
64 #define SUN4I_BURST_CNT_REG		0x20
65 #define SUN4I_BURST_CNT(cnt)			((cnt) & 0xffffff)
66 
67 #define SUN4I_XMIT_CNT_REG		0x24
68 #define SUN4I_XMIT_CNT(cnt)			((cnt) & 0xffffff)
69 
70 #define SUN4I_FIFO_STA_REG		0x28
71 #define SUN4I_FIFO_STA_RF_CNT_MASK		0x7f
72 #define SUN4I_FIFO_STA_RF_CNT_BITS		0
73 #define SUN4I_FIFO_STA_TF_CNT_MASK		0x7f
74 #define SUN4I_FIFO_STA_TF_CNT_BITS		16
75 
76 struct sun4i_spi {
77 	struct spi_master	*master;
78 	void __iomem		*base_addr;
79 	struct clk		*hclk;
80 	struct clk		*mclk;
81 
82 	struct completion	done;
83 
84 	const u8		*tx_buf;
85 	u8			*rx_buf;
86 	int			len;
87 };
88 
89 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
90 {
91 	return readl(sspi->base_addr + reg);
92 }
93 
94 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
95 {
96 	writel(value, sspi->base_addr + reg);
97 }
98 
99 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
100 {
101 	u32 reg, cnt;
102 	u8 byte;
103 
104 	/* See how much data is available */
105 	reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
106 	reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
107 	cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
108 
109 	if (len > cnt)
110 		len = cnt;
111 
112 	while (len--) {
113 		byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
114 		if (sspi->rx_buf)
115 			*sspi->rx_buf++ = byte;
116 	}
117 }
118 
119 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
120 {
121 	u8 byte;
122 
123 	if (len > sspi->len)
124 		len = sspi->len;
125 
126 	while (len--) {
127 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
128 		writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
129 		sspi->len--;
130 	}
131 }
132 
133 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
134 {
135 	struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
136 	u32 reg;
137 
138 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
139 
140 	reg &= ~SUN4I_CTL_CS_MASK;
141 	reg |= SUN4I_CTL_CS(spi->chip_select);
142 
143 	/* We want to control the chip select manually */
144 	reg |= SUN4I_CTL_CS_MANUAL;
145 
146 	if (enable)
147 		reg |= SUN4I_CTL_CS_LEVEL;
148 	else
149 		reg &= ~SUN4I_CTL_CS_LEVEL;
150 
151 	/*
152 	 * Even though this looks irrelevant since we are supposed to
153 	 * be controlling the chip select manually, this bit also
154 	 * controls the levels of the chip select for inactive
155 	 * devices.
156 	 *
157 	 * If we don't set it, the chip select level will go low by
158 	 * default when the device is idle, which is not really
159 	 * expected in the common case where the chip select is active
160 	 * low.
161 	 */
162 	if (spi->mode & SPI_CS_HIGH)
163 		reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
164 	else
165 		reg |= SUN4I_CTL_CS_ACTIVE_LOW;
166 
167 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
168 }
169 
170 static int sun4i_spi_transfer_one(struct spi_master *master,
171 				  struct spi_device *spi,
172 				  struct spi_transfer *tfr)
173 {
174 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
175 	unsigned int mclk_rate, div, timeout;
176 	unsigned int start, end, tx_time;
177 	unsigned int tx_len = 0;
178 	int ret = 0;
179 	u32 reg;
180 
181 	/* We don't support transfer larger than the FIFO */
182 	if (tfr->len > SUN4I_FIFO_DEPTH)
183 		return -EMSGSIZE;
184 
185 	if (tfr->tx_buf && tfr->len >= SUN4I_FIFO_DEPTH)
186 		return -EMSGSIZE;
187 
188 	reinit_completion(&sspi->done);
189 	sspi->tx_buf = tfr->tx_buf;
190 	sspi->rx_buf = tfr->rx_buf;
191 	sspi->len = tfr->len;
192 
193 	/* Clear pending interrupts */
194 	sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
195 
196 
197 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
198 
199 	/* Reset FIFOs */
200 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
201 			reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
202 
203 	/*
204 	 * Setup the transfer control register: Chip Select,
205 	 * polarities, etc.
206 	 */
207 	if (spi->mode & SPI_CPOL)
208 		reg |= SUN4I_CTL_CPOL;
209 	else
210 		reg &= ~SUN4I_CTL_CPOL;
211 
212 	if (spi->mode & SPI_CPHA)
213 		reg |= SUN4I_CTL_CPHA;
214 	else
215 		reg &= ~SUN4I_CTL_CPHA;
216 
217 	if (spi->mode & SPI_LSB_FIRST)
218 		reg |= SUN4I_CTL_LMTF;
219 	else
220 		reg &= ~SUN4I_CTL_LMTF;
221 
222 
223 	/*
224 	 * If it's a TX only transfer, we don't want to fill the RX
225 	 * FIFO with bogus data
226 	 */
227 	if (sspi->rx_buf)
228 		reg &= ~SUN4I_CTL_DHB;
229 	else
230 		reg |= SUN4I_CTL_DHB;
231 
232 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
233 
234 	/* Ensure that we have a parent clock fast enough */
235 	mclk_rate = clk_get_rate(sspi->mclk);
236 	if (mclk_rate < (2 * tfr->speed_hz)) {
237 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
238 		mclk_rate = clk_get_rate(sspi->mclk);
239 	}
240 
241 	/*
242 	 * Setup clock divider.
243 	 *
244 	 * We have two choices there. Either we can use the clock
245 	 * divide rate 1, which is calculated thanks to this formula:
246 	 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
247 	 * Or we can use CDR2, which is calculated with the formula:
248 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
249 	 * Wether we use the former or the latter is set through the
250 	 * DRS bit.
251 	 *
252 	 * First try CDR2, and if we can't reach the expected
253 	 * frequency, fall back to CDR1.
254 	 */
255 	div = mclk_rate / (2 * tfr->speed_hz);
256 	if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
257 		if (div > 0)
258 			div--;
259 
260 		reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
261 	} else {
262 		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
263 		reg = SUN4I_CLK_CTL_CDR1(div);
264 	}
265 
266 	sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
267 
268 	/* Setup the transfer now... */
269 	if (sspi->tx_buf)
270 		tx_len = tfr->len;
271 
272 	/* Setup the counters */
273 	sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
274 	sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
275 
276 	/*
277 	 * Fill the TX FIFO
278 	 * Filling the FIFO fully causes timeout for some reason
279 	 * at least on spi2 on A10s
280 	 */
281 	sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
282 
283 	/* Enable the interrupts */
284 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, SUN4I_INT_CTL_TC);
285 
286 	/* Start the transfer */
287 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
288 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
289 
290 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
291 	start = jiffies;
292 	timeout = wait_for_completion_timeout(&sspi->done,
293 					      msecs_to_jiffies(tx_time));
294 	end = jiffies;
295 	if (!timeout) {
296 		dev_warn(&master->dev,
297 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
298 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
299 			 jiffies_to_msecs(end - start), tx_time);
300 		ret = -ETIMEDOUT;
301 		goto out;
302 	}
303 
304 	sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
305 
306 out:
307 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
308 
309 	return ret;
310 }
311 
312 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
313 {
314 	struct sun4i_spi *sspi = dev_id;
315 	u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
316 
317 	/* Transfer complete */
318 	if (status & SUN4I_INT_CTL_TC) {
319 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
320 		complete(&sspi->done);
321 		return IRQ_HANDLED;
322 	}
323 
324 	return IRQ_NONE;
325 }
326 
327 static int sun4i_spi_runtime_resume(struct device *dev)
328 {
329 	struct spi_master *master = dev_get_drvdata(dev);
330 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
331 	int ret;
332 
333 	ret = clk_prepare_enable(sspi->hclk);
334 	if (ret) {
335 		dev_err(dev, "Couldn't enable AHB clock\n");
336 		goto out;
337 	}
338 
339 	ret = clk_prepare_enable(sspi->mclk);
340 	if (ret) {
341 		dev_err(dev, "Couldn't enable module clock\n");
342 		goto err;
343 	}
344 
345 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
346 			SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
347 
348 	return 0;
349 
350 err:
351 	clk_disable_unprepare(sspi->hclk);
352 out:
353 	return ret;
354 }
355 
356 static int sun4i_spi_runtime_suspend(struct device *dev)
357 {
358 	struct spi_master *master = dev_get_drvdata(dev);
359 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
360 
361 	clk_disable_unprepare(sspi->mclk);
362 	clk_disable_unprepare(sspi->hclk);
363 
364 	return 0;
365 }
366 
367 static int sun4i_spi_probe(struct platform_device *pdev)
368 {
369 	struct spi_master *master;
370 	struct sun4i_spi *sspi;
371 	struct resource	*res;
372 	int ret = 0, irq;
373 
374 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
375 	if (!master) {
376 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
377 		return -ENOMEM;
378 	}
379 
380 	platform_set_drvdata(pdev, master);
381 	sspi = spi_master_get_devdata(master);
382 
383 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
384 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
385 	if (IS_ERR(sspi->base_addr)) {
386 		ret = PTR_ERR(sspi->base_addr);
387 		goto err_free_master;
388 	}
389 
390 	irq = platform_get_irq(pdev, 0);
391 	if (irq < 0) {
392 		dev_err(&pdev->dev, "No spi IRQ specified\n");
393 		ret = -ENXIO;
394 		goto err_free_master;
395 	}
396 
397 	ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
398 			       0, "sun4i-spi", sspi);
399 	if (ret) {
400 		dev_err(&pdev->dev, "Cannot request IRQ\n");
401 		goto err_free_master;
402 	}
403 
404 	sspi->master = master;
405 	master->set_cs = sun4i_spi_set_cs;
406 	master->transfer_one = sun4i_spi_transfer_one;
407 	master->num_chipselect = 4;
408 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
409 	master->bits_per_word_mask = SPI_BPW_MASK(8);
410 	master->dev.of_node = pdev->dev.of_node;
411 	master->auto_runtime_pm = true;
412 
413 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
414 	if (IS_ERR(sspi->hclk)) {
415 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
416 		ret = PTR_ERR(sspi->hclk);
417 		goto err_free_master;
418 	}
419 
420 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
421 	if (IS_ERR(sspi->mclk)) {
422 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
423 		ret = PTR_ERR(sspi->mclk);
424 		goto err_free_master;
425 	}
426 
427 	init_completion(&sspi->done);
428 
429 	/*
430 	 * This wake-up/shutdown pattern is to be able to have the
431 	 * device woken up, even if runtime_pm is disabled
432 	 */
433 	ret = sun4i_spi_runtime_resume(&pdev->dev);
434 	if (ret) {
435 		dev_err(&pdev->dev, "Couldn't resume the device\n");
436 		goto err_free_master;
437 	}
438 
439 	pm_runtime_set_active(&pdev->dev);
440 	pm_runtime_enable(&pdev->dev);
441 	pm_runtime_idle(&pdev->dev);
442 
443 	ret = devm_spi_register_master(&pdev->dev, master);
444 	if (ret) {
445 		dev_err(&pdev->dev, "cannot register SPI master\n");
446 		goto err_pm_disable;
447 	}
448 
449 	return 0;
450 
451 err_pm_disable:
452 	pm_runtime_disable(&pdev->dev);
453 	sun4i_spi_runtime_suspend(&pdev->dev);
454 err_free_master:
455 	spi_master_put(master);
456 	return ret;
457 }
458 
459 static int sun4i_spi_remove(struct platform_device *pdev)
460 {
461 	pm_runtime_disable(&pdev->dev);
462 
463 	return 0;
464 }
465 
466 static const struct of_device_id sun4i_spi_match[] = {
467 	{ .compatible = "allwinner,sun4i-a10-spi", },
468 	{}
469 };
470 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
471 
472 static const struct dev_pm_ops sun4i_spi_pm_ops = {
473 	.runtime_resume		= sun4i_spi_runtime_resume,
474 	.runtime_suspend	= sun4i_spi_runtime_suspend,
475 };
476 
477 static struct platform_driver sun4i_spi_driver = {
478 	.probe	= sun4i_spi_probe,
479 	.remove	= sun4i_spi_remove,
480 	.driver	= {
481 		.name		= "sun4i-spi",
482 		.of_match_table	= sun4i_spi_match,
483 		.pm		= &sun4i_spi_pm_ops,
484 	},
485 };
486 module_platform_driver(sun4i_spi_driver);
487 
488 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
489 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
490 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
491 MODULE_LICENSE("GPL");
492