1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // STMicroelectronics STM32 SPI Controller driver (master mode only) 4 // 5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved 6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. 7 8 #include <linux/bitfield.h> 9 #include <linux/debugfs.h> 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/dmaengine.h> 13 #include <linux/interrupt.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/of_platform.h> 17 #include <linux/pinctrl/consumer.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/reset.h> 20 #include <linux/spi/spi.h> 21 22 #define DRIVER_NAME "spi_stm32" 23 24 /* STM32F4 SPI registers */ 25 #define STM32F4_SPI_CR1 0x00 26 #define STM32F4_SPI_CR2 0x04 27 #define STM32F4_SPI_SR 0x08 28 #define STM32F4_SPI_DR 0x0C 29 #define STM32F4_SPI_I2SCFGR 0x1C 30 31 /* STM32F4_SPI_CR1 bit fields */ 32 #define STM32F4_SPI_CR1_CPHA BIT(0) 33 #define STM32F4_SPI_CR1_CPOL BIT(1) 34 #define STM32F4_SPI_CR1_MSTR BIT(2) 35 #define STM32F4_SPI_CR1_BR_SHIFT 3 36 #define STM32F4_SPI_CR1_BR GENMASK(5, 3) 37 #define STM32F4_SPI_CR1_SPE BIT(6) 38 #define STM32F4_SPI_CR1_LSBFRST BIT(7) 39 #define STM32F4_SPI_CR1_SSI BIT(8) 40 #define STM32F4_SPI_CR1_SSM BIT(9) 41 #define STM32F4_SPI_CR1_RXONLY BIT(10) 42 #define STM32F4_SPI_CR1_DFF BIT(11) 43 #define STM32F4_SPI_CR1_CRCNEXT BIT(12) 44 #define STM32F4_SPI_CR1_CRCEN BIT(13) 45 #define STM32F4_SPI_CR1_BIDIOE BIT(14) 46 #define STM32F4_SPI_CR1_BIDIMODE BIT(15) 47 #define STM32F4_SPI_CR1_BR_MIN 0 48 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3) 49 50 /* STM32F4_SPI_CR2 bit fields */ 51 #define STM32F4_SPI_CR2_RXDMAEN BIT(0) 52 #define STM32F4_SPI_CR2_TXDMAEN BIT(1) 53 #define STM32F4_SPI_CR2_SSOE BIT(2) 54 #define STM32F4_SPI_CR2_FRF BIT(4) 55 #define STM32F4_SPI_CR2_ERRIE BIT(5) 56 #define STM32F4_SPI_CR2_RXNEIE BIT(6) 57 #define STM32F4_SPI_CR2_TXEIE BIT(7) 58 59 /* STM32F4_SPI_SR bit fields */ 60 #define STM32F4_SPI_SR_RXNE BIT(0) 61 #define STM32F4_SPI_SR_TXE BIT(1) 62 #define STM32F4_SPI_SR_CHSIDE BIT(2) 63 #define STM32F4_SPI_SR_UDR BIT(3) 64 #define STM32F4_SPI_SR_CRCERR BIT(4) 65 #define STM32F4_SPI_SR_MODF BIT(5) 66 #define STM32F4_SPI_SR_OVR BIT(6) 67 #define STM32F4_SPI_SR_BSY BIT(7) 68 #define STM32F4_SPI_SR_FRE BIT(8) 69 70 /* STM32F4_SPI_I2SCFGR bit fields */ 71 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11) 72 73 /* STM32F4 SPI Baud Rate min/max divisor */ 74 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN) 75 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX) 76 77 /* STM32H7 SPI registers */ 78 #define STM32H7_SPI_CR1 0x00 79 #define STM32H7_SPI_CR2 0x04 80 #define STM32H7_SPI_CFG1 0x08 81 #define STM32H7_SPI_CFG2 0x0C 82 #define STM32H7_SPI_IER 0x10 83 #define STM32H7_SPI_SR 0x14 84 #define STM32H7_SPI_IFCR 0x18 85 #define STM32H7_SPI_TXDR 0x20 86 #define STM32H7_SPI_RXDR 0x30 87 #define STM32H7_SPI_I2SCFGR 0x50 88 89 /* STM32H7_SPI_CR1 bit fields */ 90 #define STM32H7_SPI_CR1_SPE BIT(0) 91 #define STM32H7_SPI_CR1_MASRX BIT(8) 92 #define STM32H7_SPI_CR1_CSTART BIT(9) 93 #define STM32H7_SPI_CR1_CSUSP BIT(10) 94 #define STM32H7_SPI_CR1_HDDIR BIT(11) 95 #define STM32H7_SPI_CR1_SSI BIT(12) 96 97 /* STM32H7_SPI_CR2 bit fields */ 98 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) 99 #define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0) 100 101 /* STM32H7_SPI_CFG1 bit fields */ 102 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) 103 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) 104 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14) 105 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15) 106 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) 107 #define STM32H7_SPI_CFG1_MBR_SHIFT 28 108 #define STM32H7_SPI_CFG1_MBR_MIN 0 109 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) 110 111 /* STM32H7_SPI_CFG2 bit fields */ 112 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) 113 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) 114 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19) 115 #define STM32H7_SPI_CFG2_MASTER BIT(22) 116 #define STM32H7_SPI_CFG2_LSBFRST BIT(23) 117 #define STM32H7_SPI_CFG2_CPHA BIT(24) 118 #define STM32H7_SPI_CFG2_CPOL BIT(25) 119 #define STM32H7_SPI_CFG2_SSM BIT(26) 120 #define STM32H7_SPI_CFG2_AFCNTR BIT(31) 121 122 /* STM32H7_SPI_IER bit fields */ 123 #define STM32H7_SPI_IER_RXPIE BIT(0) 124 #define STM32H7_SPI_IER_TXPIE BIT(1) 125 #define STM32H7_SPI_IER_DXPIE BIT(2) 126 #define STM32H7_SPI_IER_EOTIE BIT(3) 127 #define STM32H7_SPI_IER_TXTFIE BIT(4) 128 #define STM32H7_SPI_IER_OVRIE BIT(6) 129 #define STM32H7_SPI_IER_MODFIE BIT(9) 130 #define STM32H7_SPI_IER_ALL GENMASK(10, 0) 131 132 /* STM32H7_SPI_SR bit fields */ 133 #define STM32H7_SPI_SR_RXP BIT(0) 134 #define STM32H7_SPI_SR_TXP BIT(1) 135 #define STM32H7_SPI_SR_EOT BIT(3) 136 #define STM32H7_SPI_SR_OVR BIT(6) 137 #define STM32H7_SPI_SR_MODF BIT(9) 138 #define STM32H7_SPI_SR_SUSP BIT(11) 139 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) 140 #define STM32H7_SPI_SR_RXWNE BIT(15) 141 142 /* STM32H7_SPI_IFCR bit fields */ 143 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3) 144 145 /* STM32H7_SPI_I2SCFGR bit fields */ 146 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0) 147 148 /* STM32H7 SPI Master Baud Rate min/max divisor */ 149 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN) 150 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX) 151 152 /* STM32H7 SPI Communication mode */ 153 #define STM32H7_SPI_FULL_DUPLEX 0 154 #define STM32H7_SPI_SIMPLEX_TX 1 155 #define STM32H7_SPI_SIMPLEX_RX 2 156 #define STM32H7_SPI_HALF_DUPLEX 3 157 158 /* SPI Communication type */ 159 #define SPI_FULL_DUPLEX 0 160 #define SPI_SIMPLEX_TX 1 161 #define SPI_SIMPLEX_RX 2 162 #define SPI_3WIRE_TX 3 163 #define SPI_3WIRE_RX 4 164 165 /* 166 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers 167 * without fifo buffers. 168 */ 169 #define SPI_DMA_MIN_BYTES 16 170 171 /** 172 * struct stm32_spi_reg - stm32 SPI register & bitfield desc 173 * @reg: register offset 174 * @mask: bitfield mask 175 * @shift: left shift 176 */ 177 struct stm32_spi_reg { 178 int reg; 179 int mask; 180 int shift; 181 }; 182 183 /** 184 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data 185 * @en: enable register and SPI enable bit 186 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit 187 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit 188 * @cpol: clock polarity register and polarity bit 189 * @cpha: clock phase register and phase bit 190 * @lsb_first: LSB transmitted first register and bit 191 * @br: baud rate register and bitfields 192 * @rx: SPI RX data register 193 * @tx: SPI TX data register 194 */ 195 struct stm32_spi_regspec { 196 const struct stm32_spi_reg en; 197 const struct stm32_spi_reg dma_rx_en; 198 const struct stm32_spi_reg dma_tx_en; 199 const struct stm32_spi_reg cpol; 200 const struct stm32_spi_reg cpha; 201 const struct stm32_spi_reg lsb_first; 202 const struct stm32_spi_reg br; 203 const struct stm32_spi_reg rx; 204 const struct stm32_spi_reg tx; 205 }; 206 207 struct stm32_spi; 208 209 /** 210 * struct stm32_spi_cfg - stm32 compatible configuration data 211 * @regs: registers descriptions 212 * @get_fifo_size: routine to get fifo size 213 * @get_bpw_mask: routine to get bits per word mask 214 * @disable: routine to disable controller 215 * @config: routine to configure controller as SPI Master 216 * @set_bpw: routine to configure registers to for bits per word 217 * @set_mode: routine to configure registers to desired mode 218 * @set_data_idleness: optional routine to configure registers to desired idle 219 * time between frames (if driver has this functionality) 220 * @set_number_of_data: optional routine to configure registers to desired 221 * number of data (if driver has this functionality) 222 * @can_dma: routine to determine if the transfer is eligible for DMA use 223 * @transfer_one_dma_start: routine to start transfer a single spi_transfer 224 * using DMA 225 * @dma_rx_cb: routine to call after DMA RX channel operation is complete 226 * @dma_tx_cb: routine to call after DMA TX channel operation is complete 227 * @transfer_one_irq: routine to configure interrupts for driver 228 * @irq_handler_event: Interrupt handler for SPI controller events 229 * @irq_handler_thread: thread of interrupt handler for SPI controller 230 * @baud_rate_div_min: minimum baud rate divisor 231 * @baud_rate_div_max: maximum baud rate divisor 232 * @has_fifo: boolean to know if fifo is used for driver 233 * @has_startbit: boolean to know if start bit is used to start transfer 234 */ 235 struct stm32_spi_cfg { 236 const struct stm32_spi_regspec *regs; 237 int (*get_fifo_size)(struct stm32_spi *spi); 238 int (*get_bpw_mask)(struct stm32_spi *spi); 239 void (*disable)(struct stm32_spi *spi); 240 int (*config)(struct stm32_spi *spi); 241 void (*set_bpw)(struct stm32_spi *spi); 242 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type); 243 void (*set_data_idleness)(struct stm32_spi *spi, u32 length); 244 int (*set_number_of_data)(struct stm32_spi *spi, u32 length); 245 void (*transfer_one_dma_start)(struct stm32_spi *spi); 246 void (*dma_rx_cb)(void *data); 247 void (*dma_tx_cb)(void *data); 248 int (*transfer_one_irq)(struct stm32_spi *spi); 249 irqreturn_t (*irq_handler_event)(int irq, void *dev_id); 250 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id); 251 unsigned int baud_rate_div_min; 252 unsigned int baud_rate_div_max; 253 bool has_fifo; 254 }; 255 256 /** 257 * struct stm32_spi - private data of the SPI controller 258 * @dev: driver model representation of the controller 259 * @master: controller master interface 260 * @cfg: compatible configuration data 261 * @base: virtual memory area 262 * @clk: hw kernel clock feeding the SPI clock generator 263 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator 264 * @lock: prevent I/O concurrent access 265 * @irq: SPI controller interrupt line 266 * @fifo_size: size of the embedded fifo in bytes 267 * @cur_midi: master inter-data idleness in ns 268 * @cur_speed: speed configured in Hz 269 * @cur_bpw: number of bits in a single SPI data frame 270 * @cur_fthlv: fifo threshold level (data frames in a single data packet) 271 * @cur_comm: SPI communication mode 272 * @cur_xferlen: current transfer length in bytes 273 * @cur_usedma: boolean to know if dma is used in current transfer 274 * @tx_buf: data to be written, or NULL 275 * @rx_buf: data to be read, or NULL 276 * @tx_len: number of data to be written in bytes 277 * @rx_len: number of data to be read in bytes 278 * @dma_tx: dma channel for TX transfer 279 * @dma_rx: dma channel for RX transfer 280 * @phys_addr: SPI registers physical base address 281 */ 282 struct stm32_spi { 283 struct device *dev; 284 struct spi_master *master; 285 const struct stm32_spi_cfg *cfg; 286 void __iomem *base; 287 struct clk *clk; 288 u32 clk_rate; 289 spinlock_t lock; /* prevent I/O concurrent access */ 290 int irq; 291 unsigned int fifo_size; 292 293 unsigned int cur_midi; 294 unsigned int cur_speed; 295 unsigned int cur_bpw; 296 unsigned int cur_fthlv; 297 unsigned int cur_comm; 298 unsigned int cur_xferlen; 299 bool cur_usedma; 300 301 const void *tx_buf; 302 void *rx_buf; 303 int tx_len; 304 int rx_len; 305 struct dma_chan *dma_tx; 306 struct dma_chan *dma_rx; 307 dma_addr_t phys_addr; 308 }; 309 310 static const struct stm32_spi_regspec stm32f4_spi_regspec = { 311 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE }, 312 313 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN }, 314 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN }, 315 316 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL }, 317 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA }, 318 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST }, 319 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT }, 320 321 .rx = { STM32F4_SPI_DR }, 322 .tx = { STM32F4_SPI_DR }, 323 }; 324 325 static const struct stm32_spi_regspec stm32h7_spi_regspec = { 326 /* SPI data transfer is enabled but spi_ker_ck is idle. 327 * CFG1 and CFG2 registers are write protected when SPE is enabled. 328 */ 329 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE }, 330 331 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN }, 332 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN }, 333 334 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL }, 335 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA }, 336 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST }, 337 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR, 338 STM32H7_SPI_CFG1_MBR_SHIFT }, 339 340 .rx = { STM32H7_SPI_RXDR }, 341 .tx = { STM32H7_SPI_TXDR }, 342 }; 343 344 static inline void stm32_spi_set_bits(struct stm32_spi *spi, 345 u32 offset, u32 bits) 346 { 347 writel_relaxed(readl_relaxed(spi->base + offset) | bits, 348 spi->base + offset); 349 } 350 351 static inline void stm32_spi_clr_bits(struct stm32_spi *spi, 352 u32 offset, u32 bits) 353 { 354 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits, 355 spi->base + offset); 356 } 357 358 /** 359 * stm32h7_spi_get_fifo_size - Return fifo size 360 * @spi: pointer to the spi controller data structure 361 */ 362 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi) 363 { 364 unsigned long flags; 365 u32 count = 0; 366 367 spin_lock_irqsave(&spi->lock, flags); 368 369 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 370 371 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP) 372 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR); 373 374 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 375 376 spin_unlock_irqrestore(&spi->lock, flags); 377 378 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count); 379 380 return count; 381 } 382 383 /** 384 * stm32f4_spi_get_bpw_mask - Return bits per word mask 385 * @spi: pointer to the spi controller data structure 386 */ 387 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi) 388 { 389 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n"); 390 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 391 } 392 393 /** 394 * stm32h7_spi_get_bpw_mask - Return bits per word mask 395 * @spi: pointer to the spi controller data structure 396 */ 397 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi) 398 { 399 unsigned long flags; 400 u32 cfg1, max_bpw; 401 402 spin_lock_irqsave(&spi->lock, flags); 403 404 /* 405 * The most significant bit at DSIZE bit field is reserved when the 406 * maximum data size of periperal instances is limited to 16-bit 407 */ 408 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); 409 410 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); 411 max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1; 412 413 spin_unlock_irqrestore(&spi->lock, flags); 414 415 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); 416 417 return SPI_BPW_RANGE_MASK(4, max_bpw); 418 } 419 420 /** 421 * stm32_spi_prepare_mbr - Determine baud rate divisor value 422 * @spi: pointer to the spi controller data structure 423 * @speed_hz: requested speed 424 * @min_div: minimum baud rate divisor 425 * @max_div: maximum baud rate divisor 426 * 427 * Return baud rate divisor value in case of success or -EINVAL 428 */ 429 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz, 430 u32 min_div, u32 max_div) 431 { 432 u32 div, mbrdiv; 433 434 /* Ensure spi->clk_rate is even */ 435 div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz); 436 437 /* 438 * SPI framework set xfer->speed_hz to master->max_speed_hz if 439 * xfer->speed_hz is greater than master->max_speed_hz, and it returns 440 * an error when xfer->speed_hz is lower than master->min_speed_hz, so 441 * no need to check it there. 442 * However, we need to ensure the following calculations. 443 */ 444 if ((div < min_div) || (div > max_div)) 445 return -EINVAL; 446 447 /* Determine the first power of 2 greater than or equal to div */ 448 if (div & (div - 1)) 449 mbrdiv = fls(div); 450 else 451 mbrdiv = fls(div) - 1; 452 453 spi->cur_speed = spi->clk_rate / (1 << mbrdiv); 454 455 return mbrdiv - 1; 456 } 457 458 /** 459 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level 460 * @spi: pointer to the spi controller data structure 461 * @xfer_len: length of the message to be transferred 462 */ 463 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len) 464 { 465 u32 packet, bpw; 466 467 /* data packet should not exceed 1/2 of fifo space */ 468 packet = clamp(xfer_len, 1U, spi->fifo_size / 2); 469 470 /* align packet size with data registers access */ 471 bpw = DIV_ROUND_UP(spi->cur_bpw, 8); 472 return DIV_ROUND_UP(packet, bpw); 473 } 474 475 /** 476 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register 477 * @spi: pointer to the spi controller data structure 478 * 479 * Read from tx_buf depends on remaining bytes to avoid to read beyond 480 * tx_buf end. 481 */ 482 static void stm32f4_spi_write_tx(struct stm32_spi *spi) 483 { 484 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 485 STM32F4_SPI_SR_TXE)) { 486 u32 offs = spi->cur_xferlen - spi->tx_len; 487 488 if (spi->cur_bpw == 16) { 489 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 490 491 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR); 492 spi->tx_len -= sizeof(u16); 493 } else { 494 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 495 496 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR); 497 spi->tx_len -= sizeof(u8); 498 } 499 } 500 501 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 502 } 503 504 /** 505 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register 506 * @spi: pointer to the spi controller data structure 507 * 508 * Read from tx_buf depends on remaining bytes to avoid to read beyond 509 * tx_buf end. 510 */ 511 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi) 512 { 513 while ((spi->tx_len > 0) && 514 (readl_relaxed(spi->base + STM32H7_SPI_SR) & 515 STM32H7_SPI_SR_TXP)) { 516 u32 offs = spi->cur_xferlen - spi->tx_len; 517 518 if (spi->tx_len >= sizeof(u32)) { 519 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs); 520 521 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR); 522 spi->tx_len -= sizeof(u32); 523 } else if (spi->tx_len >= sizeof(u16)) { 524 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 525 526 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR); 527 spi->tx_len -= sizeof(u16); 528 } else { 529 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 530 531 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR); 532 spi->tx_len -= sizeof(u8); 533 } 534 } 535 536 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 537 } 538 539 /** 540 * stm32f4_spi_read_rx - Read bytes from Receive Data Register 541 * @spi: pointer to the spi controller data structure 542 * 543 * Write in rx_buf depends on remaining bytes to avoid to write beyond 544 * rx_buf end. 545 */ 546 static void stm32f4_spi_read_rx(struct stm32_spi *spi) 547 { 548 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 549 STM32F4_SPI_SR_RXNE)) { 550 u32 offs = spi->cur_xferlen - spi->rx_len; 551 552 if (spi->cur_bpw == 16) { 553 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 554 555 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR); 556 spi->rx_len -= sizeof(u16); 557 } else { 558 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 559 560 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR); 561 spi->rx_len -= sizeof(u8); 562 } 563 } 564 565 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len); 566 } 567 568 /** 569 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register 570 * @spi: pointer to the spi controller data structure 571 * @flush: boolean indicating that FIFO should be flushed 572 * 573 * Write in rx_buf depends on remaining bytes to avoid to write beyond 574 * rx_buf end. 575 */ 576 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush) 577 { 578 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 579 u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 580 581 while ((spi->rx_len > 0) && 582 ((sr & STM32H7_SPI_SR_RXP) || 583 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) { 584 u32 offs = spi->cur_xferlen - spi->rx_len; 585 586 if ((spi->rx_len >= sizeof(u32)) || 587 (flush && (sr & STM32H7_SPI_SR_RXWNE))) { 588 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs); 589 590 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR); 591 spi->rx_len -= sizeof(u32); 592 } else if ((spi->rx_len >= sizeof(u16)) || 593 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) { 594 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 595 596 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR); 597 spi->rx_len -= sizeof(u16); 598 } else { 599 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 600 601 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR); 602 spi->rx_len -= sizeof(u8); 603 } 604 605 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 606 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 607 } 608 609 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__, 610 flush ? "(flush)" : "", spi->rx_len); 611 } 612 613 /** 614 * stm32_spi_enable - Enable SPI controller 615 * @spi: pointer to the spi controller data structure 616 */ 617 static void stm32_spi_enable(struct stm32_spi *spi) 618 { 619 dev_dbg(spi->dev, "enable controller\n"); 620 621 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg, 622 spi->cfg->regs->en.mask); 623 } 624 625 /** 626 * stm32f4_spi_disable - Disable SPI controller 627 * @spi: pointer to the spi controller data structure 628 */ 629 static void stm32f4_spi_disable(struct stm32_spi *spi) 630 { 631 unsigned long flags; 632 u32 sr; 633 634 dev_dbg(spi->dev, "disable controller\n"); 635 636 spin_lock_irqsave(&spi->lock, flags); 637 638 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) & 639 STM32F4_SPI_CR1_SPE)) { 640 spin_unlock_irqrestore(&spi->lock, flags); 641 return; 642 } 643 644 /* Disable interrupts */ 645 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE | 646 STM32F4_SPI_CR2_RXNEIE | 647 STM32F4_SPI_CR2_ERRIE); 648 649 /* Wait until BSY = 0 */ 650 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR, 651 sr, !(sr & STM32F4_SPI_SR_BSY), 652 10, 100000) < 0) { 653 dev_warn(spi->dev, "disabling condition timeout\n"); 654 } 655 656 if (spi->cur_usedma && spi->dma_tx) 657 dmaengine_terminate_all(spi->dma_tx); 658 if (spi->cur_usedma && spi->dma_rx) 659 dmaengine_terminate_all(spi->dma_rx); 660 661 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE); 662 663 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN | 664 STM32F4_SPI_CR2_RXDMAEN); 665 666 /* Sequence to clear OVR flag */ 667 readl_relaxed(spi->base + STM32F4_SPI_DR); 668 readl_relaxed(spi->base + STM32F4_SPI_SR); 669 670 spin_unlock_irqrestore(&spi->lock, flags); 671 } 672 673 /** 674 * stm32h7_spi_disable - Disable SPI controller 675 * @spi: pointer to the spi controller data structure 676 * 677 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data 678 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in 679 * RX-Fifo. 680 * Normally, if TSIZE has been configured, we should relax the hardware at the 681 * reception of the EOT interrupt. But in case of error, EOT will not be 682 * raised. So the subsystem unprepare_message call allows us to properly 683 * complete the transfer from an hardware point of view. 684 */ 685 static void stm32h7_spi_disable(struct stm32_spi *spi) 686 { 687 unsigned long flags; 688 u32 cr1, sr; 689 690 dev_dbg(spi->dev, "disable controller\n"); 691 692 spin_lock_irqsave(&spi->lock, flags); 693 694 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1); 695 696 if (!(cr1 & STM32H7_SPI_CR1_SPE)) { 697 spin_unlock_irqrestore(&spi->lock, flags); 698 return; 699 } 700 701 /* Wait on EOT or suspend the flow */ 702 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR, 703 sr, !(sr & STM32H7_SPI_SR_EOT), 704 10, 100000) < 0) { 705 if (cr1 & STM32H7_SPI_CR1_CSTART) { 706 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP, 707 spi->base + STM32H7_SPI_CR1); 708 if (readl_relaxed_poll_timeout_atomic( 709 spi->base + STM32H7_SPI_SR, 710 sr, !(sr & STM32H7_SPI_SR_SUSP), 711 10, 100000) < 0) 712 dev_warn(spi->dev, 713 "Suspend request timeout\n"); 714 } 715 } 716 717 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0)) 718 stm32h7_spi_read_rxfifo(spi, true); 719 720 if (spi->cur_usedma && spi->dma_tx) 721 dmaengine_terminate_all(spi->dma_tx); 722 if (spi->cur_usedma && spi->dma_rx) 723 dmaengine_terminate_all(spi->dma_rx); 724 725 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 726 727 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN | 728 STM32H7_SPI_CFG1_RXDMAEN); 729 730 /* Disable interrupts and clear status flags */ 731 writel_relaxed(0, spi->base + STM32H7_SPI_IER); 732 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR); 733 734 spin_unlock_irqrestore(&spi->lock, flags); 735 } 736 737 /** 738 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use 739 * @master: controller master interface 740 * @spi_dev: pointer to the spi device 741 * @transfer: pointer to spi transfer 742 * 743 * If driver has fifo and the current transfer size is greater than fifo size, 744 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes. 745 */ 746 static bool stm32_spi_can_dma(struct spi_master *master, 747 struct spi_device *spi_dev, 748 struct spi_transfer *transfer) 749 { 750 unsigned int dma_size; 751 struct stm32_spi *spi = spi_master_get_devdata(master); 752 753 if (spi->cfg->has_fifo) 754 dma_size = spi->fifo_size; 755 else 756 dma_size = SPI_DMA_MIN_BYTES; 757 758 dev_dbg(spi->dev, "%s: %s\n", __func__, 759 (transfer->len > dma_size) ? "true" : "false"); 760 761 return (transfer->len > dma_size); 762 } 763 764 /** 765 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events 766 * @irq: interrupt line 767 * @dev_id: SPI controller master interface 768 */ 769 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id) 770 { 771 struct spi_master *master = dev_id; 772 struct stm32_spi *spi = spi_master_get_devdata(master); 773 u32 sr, mask = 0; 774 bool end = false; 775 776 spin_lock(&spi->lock); 777 778 sr = readl_relaxed(spi->base + STM32F4_SPI_SR); 779 /* 780 * BSY flag is not handled in interrupt but it is normal behavior when 781 * this flag is set. 782 */ 783 sr &= ~STM32F4_SPI_SR_BSY; 784 785 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX || 786 spi->cur_comm == SPI_3WIRE_TX)) { 787 /* OVR flag shouldn't be handled for TX only mode */ 788 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE; 789 mask |= STM32F4_SPI_SR_TXE; 790 } 791 792 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX || 793 spi->cur_comm == SPI_SIMPLEX_RX || 794 spi->cur_comm == SPI_3WIRE_RX)) { 795 /* TXE flag is set and is handled when RXNE flag occurs */ 796 sr &= ~STM32F4_SPI_SR_TXE; 797 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR; 798 } 799 800 if (!(sr & mask)) { 801 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr); 802 spin_unlock(&spi->lock); 803 return IRQ_NONE; 804 } 805 806 if (sr & STM32F4_SPI_SR_OVR) { 807 dev_warn(spi->dev, "Overrun: received value discarded\n"); 808 809 /* Sequence to clear OVR flag */ 810 readl_relaxed(spi->base + STM32F4_SPI_DR); 811 readl_relaxed(spi->base + STM32F4_SPI_SR); 812 813 /* 814 * If overrun is detected, it means that something went wrong, 815 * so stop the current transfer. Transfer can wait for next 816 * RXNE but DR is already read and end never happens. 817 */ 818 end = true; 819 goto end_irq; 820 } 821 822 if (sr & STM32F4_SPI_SR_TXE) { 823 if (spi->tx_buf) 824 stm32f4_spi_write_tx(spi); 825 if (spi->tx_len == 0) 826 end = true; 827 } 828 829 if (sr & STM32F4_SPI_SR_RXNE) { 830 stm32f4_spi_read_rx(spi); 831 if (spi->rx_len == 0) 832 end = true; 833 else if (spi->tx_buf)/* Load data for discontinuous mode */ 834 stm32f4_spi_write_tx(spi); 835 } 836 837 end_irq: 838 if (end) { 839 /* Immediately disable interrupts to do not generate new one */ 840 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, 841 STM32F4_SPI_CR2_TXEIE | 842 STM32F4_SPI_CR2_RXNEIE | 843 STM32F4_SPI_CR2_ERRIE); 844 spin_unlock(&spi->lock); 845 return IRQ_WAKE_THREAD; 846 } 847 848 spin_unlock(&spi->lock); 849 return IRQ_HANDLED; 850 } 851 852 /** 853 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller 854 * @irq: interrupt line 855 * @dev_id: SPI controller master interface 856 */ 857 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id) 858 { 859 struct spi_master *master = dev_id; 860 struct stm32_spi *spi = spi_master_get_devdata(master); 861 862 spi_finalize_current_transfer(master); 863 stm32f4_spi_disable(spi); 864 865 return IRQ_HANDLED; 866 } 867 868 /** 869 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller 870 * @irq: interrupt line 871 * @dev_id: SPI controller master interface 872 */ 873 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) 874 { 875 struct spi_master *master = dev_id; 876 struct stm32_spi *spi = spi_master_get_devdata(master); 877 u32 sr, ier, mask; 878 unsigned long flags; 879 bool end = false; 880 881 spin_lock_irqsave(&spi->lock, flags); 882 883 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 884 ier = readl_relaxed(spi->base + STM32H7_SPI_IER); 885 886 mask = ier; 887 /* EOTIE is triggered on EOT, SUSP and TXC events. */ 888 mask |= STM32H7_SPI_SR_SUSP; 889 /* 890 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of 891 * Full-Duplex, need to poll RXP event to know if there are remaining 892 * data, before disabling SPI. 893 */ 894 if (spi->rx_buf && !spi->cur_usedma) 895 mask |= STM32H7_SPI_SR_RXP; 896 897 if (!(sr & mask)) { 898 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", 899 sr, ier); 900 spin_unlock_irqrestore(&spi->lock, flags); 901 return IRQ_NONE; 902 } 903 904 if (sr & STM32H7_SPI_SR_SUSP) { 905 static DEFINE_RATELIMIT_STATE(rs, 906 DEFAULT_RATELIMIT_INTERVAL * 10, 907 1); 908 if (__ratelimit(&rs)) 909 dev_dbg_ratelimited(spi->dev, "Communication suspended\n"); 910 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 911 stm32h7_spi_read_rxfifo(spi, false); 912 /* 913 * If communication is suspended while using DMA, it means 914 * that something went wrong, so stop the current transfer 915 */ 916 if (spi->cur_usedma) 917 end = true; 918 } 919 920 if (sr & STM32H7_SPI_SR_MODF) { 921 dev_warn(spi->dev, "Mode fault: transfer aborted\n"); 922 end = true; 923 } 924 925 if (sr & STM32H7_SPI_SR_OVR) { 926 dev_err(spi->dev, "Overrun: RX data lost\n"); 927 end = true; 928 } 929 930 if (sr & STM32H7_SPI_SR_EOT) { 931 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 932 stm32h7_spi_read_rxfifo(spi, true); 933 end = true; 934 } 935 936 if (sr & STM32H7_SPI_SR_TXP) 937 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0))) 938 stm32h7_spi_write_txfifo(spi); 939 940 if (sr & STM32H7_SPI_SR_RXP) 941 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 942 stm32h7_spi_read_rxfifo(spi, false); 943 944 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR); 945 946 spin_unlock_irqrestore(&spi->lock, flags); 947 948 if (end) { 949 stm32h7_spi_disable(spi); 950 spi_finalize_current_transfer(master); 951 } 952 953 return IRQ_HANDLED; 954 } 955 956 /** 957 * stm32_spi_prepare_msg - set up the controller to transfer a single message 958 * @master: controller master interface 959 * @msg: pointer to spi message 960 */ 961 static int stm32_spi_prepare_msg(struct spi_master *master, 962 struct spi_message *msg) 963 { 964 struct stm32_spi *spi = spi_master_get_devdata(master); 965 struct spi_device *spi_dev = msg->spi; 966 struct device_node *np = spi_dev->dev.of_node; 967 unsigned long flags; 968 u32 clrb = 0, setb = 0; 969 970 /* SPI slave device may need time between data frames */ 971 spi->cur_midi = 0; 972 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi)) 973 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi); 974 975 if (spi_dev->mode & SPI_CPOL) 976 setb |= spi->cfg->regs->cpol.mask; 977 else 978 clrb |= spi->cfg->regs->cpol.mask; 979 980 if (spi_dev->mode & SPI_CPHA) 981 setb |= spi->cfg->regs->cpha.mask; 982 else 983 clrb |= spi->cfg->regs->cpha.mask; 984 985 if (spi_dev->mode & SPI_LSB_FIRST) 986 setb |= spi->cfg->regs->lsb_first.mask; 987 else 988 clrb |= spi->cfg->regs->lsb_first.mask; 989 990 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", 991 !!(spi_dev->mode & SPI_CPOL), 992 !!(spi_dev->mode & SPI_CPHA), 993 !!(spi_dev->mode & SPI_LSB_FIRST), 994 !!(spi_dev->mode & SPI_CS_HIGH)); 995 996 /* On STM32H7, messages should not exceed a maximum size setted 997 * afterward via the set_number_of_data function. In order to 998 * ensure that, split large messages into several messages 999 */ 1000 if (spi->cfg->set_number_of_data) { 1001 int ret; 1002 1003 ret = spi_split_transfers_maxsize(master, msg, 1004 STM32H7_SPI_TSIZE_MAX, 1005 GFP_KERNEL | GFP_DMA); 1006 if (ret) 1007 return ret; 1008 } 1009 1010 spin_lock_irqsave(&spi->lock, flags); 1011 1012 /* CPOL, CPHA and LSB FIRST bits have common register */ 1013 if (clrb || setb) 1014 writel_relaxed( 1015 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) & 1016 ~clrb) | setb, 1017 spi->base + spi->cfg->regs->cpol.reg); 1018 1019 spin_unlock_irqrestore(&spi->lock, flags); 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * stm32f4_spi_dma_tx_cb - dma callback 1026 * @data: pointer to the spi controller data structure 1027 * 1028 * DMA callback is called when the transfer is complete for DMA TX channel. 1029 */ 1030 static void stm32f4_spi_dma_tx_cb(void *data) 1031 { 1032 struct stm32_spi *spi = data; 1033 1034 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1035 spi_finalize_current_transfer(spi->master); 1036 stm32f4_spi_disable(spi); 1037 } 1038 } 1039 1040 /** 1041 * stm32f4_spi_dma_rx_cb - dma callback 1042 * @data: pointer to the spi controller data structure 1043 * 1044 * DMA callback is called when the transfer is complete for DMA RX channel. 1045 */ 1046 static void stm32f4_spi_dma_rx_cb(void *data) 1047 { 1048 struct stm32_spi *spi = data; 1049 1050 spi_finalize_current_transfer(spi->master); 1051 stm32f4_spi_disable(spi); 1052 } 1053 1054 /** 1055 * stm32h7_spi_dma_cb - dma callback 1056 * @data: pointer to the spi controller data structure 1057 * 1058 * DMA callback is called when the transfer is complete or when an error 1059 * occurs. If the transfer is complete, EOT flag is raised. 1060 */ 1061 static void stm32h7_spi_dma_cb(void *data) 1062 { 1063 struct stm32_spi *spi = data; 1064 unsigned long flags; 1065 u32 sr; 1066 1067 spin_lock_irqsave(&spi->lock, flags); 1068 1069 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 1070 1071 spin_unlock_irqrestore(&spi->lock, flags); 1072 1073 if (!(sr & STM32H7_SPI_SR_EOT)) 1074 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr); 1075 1076 /* Now wait for EOT, or SUSP or OVR in case of error */ 1077 } 1078 1079 /** 1080 * stm32_spi_dma_config - configure dma slave channel depending on current 1081 * transfer bits_per_word. 1082 * @spi: pointer to the spi controller data structure 1083 * @dma_conf: pointer to the dma_slave_config structure 1084 * @dir: direction of the dma transfer 1085 */ 1086 static void stm32_spi_dma_config(struct stm32_spi *spi, 1087 struct dma_slave_config *dma_conf, 1088 enum dma_transfer_direction dir) 1089 { 1090 enum dma_slave_buswidth buswidth; 1091 u32 maxburst; 1092 1093 if (spi->cur_bpw <= 8) 1094 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1095 else if (spi->cur_bpw <= 16) 1096 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1097 else 1098 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1099 1100 if (spi->cfg->has_fifo) { 1101 /* Valid for DMA Half or Full Fifo threshold */ 1102 if (spi->cur_fthlv == 2) 1103 maxburst = 1; 1104 else 1105 maxburst = spi->cur_fthlv; 1106 } else { 1107 maxburst = 1; 1108 } 1109 1110 memset(dma_conf, 0, sizeof(struct dma_slave_config)); 1111 dma_conf->direction = dir; 1112 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */ 1113 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg; 1114 dma_conf->src_addr_width = buswidth; 1115 dma_conf->src_maxburst = maxburst; 1116 1117 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n", 1118 buswidth, maxburst); 1119 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */ 1120 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg; 1121 dma_conf->dst_addr_width = buswidth; 1122 dma_conf->dst_maxburst = maxburst; 1123 1124 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n", 1125 buswidth, maxburst); 1126 } 1127 } 1128 1129 /** 1130 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using 1131 * interrupts 1132 * @spi: pointer to the spi controller data structure 1133 * 1134 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1135 * in progress. 1136 */ 1137 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi) 1138 { 1139 unsigned long flags; 1140 u32 cr2 = 0; 1141 1142 /* Enable the interrupts relative to the current communication mode */ 1143 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1144 cr2 |= STM32F4_SPI_CR2_TXEIE; 1145 } else if (spi->cur_comm == SPI_FULL_DUPLEX || 1146 spi->cur_comm == SPI_SIMPLEX_RX || 1147 spi->cur_comm == SPI_3WIRE_RX) { 1148 /* In transmit-only mode, the OVR flag is set in the SR register 1149 * since the received data are never read. Therefore set OVR 1150 * interrupt only when rx buffer is available. 1151 */ 1152 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE; 1153 } else { 1154 return -EINVAL; 1155 } 1156 1157 spin_lock_irqsave(&spi->lock, flags); 1158 1159 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2); 1160 1161 stm32_spi_enable(spi); 1162 1163 /* starting data transfer when buffer is loaded */ 1164 if (spi->tx_buf) 1165 stm32f4_spi_write_tx(spi); 1166 1167 spin_unlock_irqrestore(&spi->lock, flags); 1168 1169 return 1; 1170 } 1171 1172 /** 1173 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using 1174 * interrupts 1175 * @spi: pointer to the spi controller data structure 1176 * 1177 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1178 * in progress. 1179 */ 1180 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi) 1181 { 1182 unsigned long flags; 1183 u32 ier = 0; 1184 1185 /* Enable the interrupts relative to the current communication mode */ 1186 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */ 1187 ier |= STM32H7_SPI_IER_DXPIE; 1188 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */ 1189 ier |= STM32H7_SPI_IER_TXPIE; 1190 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */ 1191 ier |= STM32H7_SPI_IER_RXPIE; 1192 1193 /* Enable the interrupts relative to the end of transfer */ 1194 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE | 1195 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1196 1197 spin_lock_irqsave(&spi->lock, flags); 1198 1199 stm32_spi_enable(spi); 1200 1201 /* Be sure to have data in fifo before starting data transfer */ 1202 if (spi->tx_buf) 1203 stm32h7_spi_write_txfifo(spi); 1204 1205 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1206 1207 writel_relaxed(ier, spi->base + STM32H7_SPI_IER); 1208 1209 spin_unlock_irqrestore(&spi->lock, flags); 1210 1211 return 1; 1212 } 1213 1214 /** 1215 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start 1216 * transfer using DMA 1217 * @spi: pointer to the spi controller data structure 1218 */ 1219 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi) 1220 { 1221 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */ 1222 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX || 1223 spi->cur_comm == SPI_FULL_DUPLEX) { 1224 /* 1225 * In transmit-only mode, the OVR flag is set in the SR register 1226 * since the received data are never read. Therefore set OVR 1227 * interrupt only when rx buffer is available. 1228 */ 1229 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE); 1230 } 1231 1232 stm32_spi_enable(spi); 1233 } 1234 1235 /** 1236 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start 1237 * transfer using DMA 1238 * @spi: pointer to the spi controller data structure 1239 */ 1240 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi) 1241 { 1242 /* Enable the interrupts relative to the end of transfer */ 1243 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE | 1244 STM32H7_SPI_IER_TXTFIE | 1245 STM32H7_SPI_IER_OVRIE | 1246 STM32H7_SPI_IER_MODFIE); 1247 1248 stm32_spi_enable(spi); 1249 1250 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1251 } 1252 1253 /** 1254 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA 1255 * @spi: pointer to the spi controller data structure 1256 * @xfer: pointer to the spi_transfer structure 1257 * 1258 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1259 * in progress. 1260 */ 1261 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi, 1262 struct spi_transfer *xfer) 1263 { 1264 struct dma_slave_config tx_dma_conf, rx_dma_conf; 1265 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc; 1266 unsigned long flags; 1267 1268 spin_lock_irqsave(&spi->lock, flags); 1269 1270 rx_dma_desc = NULL; 1271 if (spi->rx_buf && spi->dma_rx) { 1272 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM); 1273 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); 1274 1275 /* Enable Rx DMA request */ 1276 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1277 spi->cfg->regs->dma_rx_en.mask); 1278 1279 rx_dma_desc = dmaengine_prep_slave_sg( 1280 spi->dma_rx, xfer->rx_sg.sgl, 1281 xfer->rx_sg.nents, 1282 rx_dma_conf.direction, 1283 DMA_PREP_INTERRUPT); 1284 } 1285 1286 tx_dma_desc = NULL; 1287 if (spi->tx_buf && spi->dma_tx) { 1288 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV); 1289 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf); 1290 1291 tx_dma_desc = dmaengine_prep_slave_sg( 1292 spi->dma_tx, xfer->tx_sg.sgl, 1293 xfer->tx_sg.nents, 1294 tx_dma_conf.direction, 1295 DMA_PREP_INTERRUPT); 1296 } 1297 1298 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) || 1299 (spi->rx_buf && spi->dma_rx && !rx_dma_desc)) 1300 goto dma_desc_error; 1301 1302 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc)) 1303 goto dma_desc_error; 1304 1305 if (rx_dma_desc) { 1306 rx_dma_desc->callback = spi->cfg->dma_rx_cb; 1307 rx_dma_desc->callback_param = spi; 1308 1309 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) { 1310 dev_err(spi->dev, "Rx DMA submit failed\n"); 1311 goto dma_desc_error; 1312 } 1313 /* Enable Rx DMA channel */ 1314 dma_async_issue_pending(spi->dma_rx); 1315 } 1316 1317 if (tx_dma_desc) { 1318 if (spi->cur_comm == SPI_SIMPLEX_TX || 1319 spi->cur_comm == SPI_3WIRE_TX) { 1320 tx_dma_desc->callback = spi->cfg->dma_tx_cb; 1321 tx_dma_desc->callback_param = spi; 1322 } 1323 1324 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) { 1325 dev_err(spi->dev, "Tx DMA submit failed\n"); 1326 goto dma_submit_error; 1327 } 1328 /* Enable Tx DMA channel */ 1329 dma_async_issue_pending(spi->dma_tx); 1330 1331 /* Enable Tx DMA request */ 1332 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg, 1333 spi->cfg->regs->dma_tx_en.mask); 1334 } 1335 1336 spi->cfg->transfer_one_dma_start(spi); 1337 1338 spin_unlock_irqrestore(&spi->lock, flags); 1339 1340 return 1; 1341 1342 dma_submit_error: 1343 if (spi->dma_rx) 1344 dmaengine_terminate_all(spi->dma_rx); 1345 1346 dma_desc_error: 1347 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1348 spi->cfg->regs->dma_rx_en.mask); 1349 1350 spin_unlock_irqrestore(&spi->lock, flags); 1351 1352 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n"); 1353 1354 spi->cur_usedma = false; 1355 return spi->cfg->transfer_one_irq(spi); 1356 } 1357 1358 /** 1359 * stm32f4_spi_set_bpw - Configure bits per word 1360 * @spi: pointer to the spi controller data structure 1361 */ 1362 static void stm32f4_spi_set_bpw(struct stm32_spi *spi) 1363 { 1364 if (spi->cur_bpw == 16) 1365 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1366 else 1367 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1368 } 1369 1370 /** 1371 * stm32h7_spi_set_bpw - configure bits per word 1372 * @spi: pointer to the spi controller data structure 1373 */ 1374 static void stm32h7_spi_set_bpw(struct stm32_spi *spi) 1375 { 1376 u32 bpw, fthlv; 1377 u32 cfg1_clrb = 0, cfg1_setb = 0; 1378 1379 bpw = spi->cur_bpw - 1; 1380 1381 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; 1382 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw); 1383 1384 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen); 1385 fthlv = spi->cur_fthlv - 1; 1386 1387 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; 1388 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv); 1389 1390 writel_relaxed( 1391 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) & 1392 ~cfg1_clrb) | cfg1_setb, 1393 spi->base + STM32H7_SPI_CFG1); 1394 } 1395 1396 /** 1397 * stm32_spi_set_mbr - Configure baud rate divisor in master mode 1398 * @spi: pointer to the spi controller data structure 1399 * @mbrdiv: baud rate divisor value 1400 */ 1401 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv) 1402 { 1403 u32 clrb = 0, setb = 0; 1404 1405 clrb |= spi->cfg->regs->br.mask; 1406 setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask; 1407 1408 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & 1409 ~clrb) | setb, 1410 spi->base + spi->cfg->regs->br.reg); 1411 } 1412 1413 /** 1414 * stm32_spi_communication_type - return transfer communication type 1415 * @spi_dev: pointer to the spi device 1416 * @transfer: pointer to spi transfer 1417 */ 1418 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev, 1419 struct spi_transfer *transfer) 1420 { 1421 unsigned int type = SPI_FULL_DUPLEX; 1422 1423 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */ 1424 /* 1425 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL 1426 * is forbidden and unvalidated by SPI subsystem so depending 1427 * on the valid buffer, we can determine the direction of the 1428 * transfer. 1429 */ 1430 if (!transfer->tx_buf) 1431 type = SPI_3WIRE_RX; 1432 else 1433 type = SPI_3WIRE_TX; 1434 } else { 1435 if (!transfer->tx_buf) 1436 type = SPI_SIMPLEX_RX; 1437 else if (!transfer->rx_buf) 1438 type = SPI_SIMPLEX_TX; 1439 } 1440 1441 return type; 1442 } 1443 1444 /** 1445 * stm32f4_spi_set_mode - configure communication mode 1446 * @spi: pointer to the spi controller data structure 1447 * @comm_type: type of communication to configure 1448 */ 1449 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1450 { 1451 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) { 1452 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1453 STM32F4_SPI_CR1_BIDIMODE | 1454 STM32F4_SPI_CR1_BIDIOE); 1455 } else if (comm_type == SPI_FULL_DUPLEX || 1456 comm_type == SPI_SIMPLEX_RX) { 1457 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1458 STM32F4_SPI_CR1_BIDIMODE | 1459 STM32F4_SPI_CR1_BIDIOE); 1460 } else if (comm_type == SPI_3WIRE_RX) { 1461 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1462 STM32F4_SPI_CR1_BIDIMODE); 1463 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1464 STM32F4_SPI_CR1_BIDIOE); 1465 } else { 1466 return -EINVAL; 1467 } 1468 1469 return 0; 1470 } 1471 1472 /** 1473 * stm32h7_spi_set_mode - configure communication mode 1474 * @spi: pointer to the spi controller data structure 1475 * @comm_type: type of communication to configure 1476 */ 1477 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1478 { 1479 u32 mode; 1480 u32 cfg2_clrb = 0, cfg2_setb = 0; 1481 1482 if (comm_type == SPI_3WIRE_RX) { 1483 mode = STM32H7_SPI_HALF_DUPLEX; 1484 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1485 } else if (comm_type == SPI_3WIRE_TX) { 1486 mode = STM32H7_SPI_HALF_DUPLEX; 1487 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1488 } else if (comm_type == SPI_SIMPLEX_RX) { 1489 mode = STM32H7_SPI_SIMPLEX_RX; 1490 } else if (comm_type == SPI_SIMPLEX_TX) { 1491 mode = STM32H7_SPI_SIMPLEX_TX; 1492 } else { 1493 mode = STM32H7_SPI_FULL_DUPLEX; 1494 } 1495 1496 cfg2_clrb |= STM32H7_SPI_CFG2_COMM; 1497 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode); 1498 1499 writel_relaxed( 1500 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1501 ~cfg2_clrb) | cfg2_setb, 1502 spi->base + STM32H7_SPI_CFG2); 1503 1504 return 0; 1505 } 1506 1507 /** 1508 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two 1509 * consecutive data frames in master mode 1510 * @spi: pointer to the spi controller data structure 1511 * @len: transfer len 1512 */ 1513 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len) 1514 { 1515 u32 cfg2_clrb = 0, cfg2_setb = 0; 1516 1517 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; 1518 if ((len > 1) && (spi->cur_midi > 0)) { 1519 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed); 1520 u32 midi = min_t(u32, 1521 DIV_ROUND_UP(spi->cur_midi, sck_period_ns), 1522 FIELD_GET(STM32H7_SPI_CFG2_MIDI, 1523 STM32H7_SPI_CFG2_MIDI)); 1524 1525 1526 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", 1527 sck_period_ns, midi, midi * sck_period_ns); 1528 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi); 1529 } 1530 1531 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1532 ~cfg2_clrb) | cfg2_setb, 1533 spi->base + STM32H7_SPI_CFG2); 1534 } 1535 1536 /** 1537 * stm32h7_spi_number_of_data - configure number of data at current transfer 1538 * @spi: pointer to the spi controller data structure 1539 * @nb_words: transfer length (in words) 1540 */ 1541 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) 1542 { 1543 if (nb_words <= STM32H7_SPI_TSIZE_MAX) { 1544 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words), 1545 spi->base + STM32H7_SPI_CR2); 1546 } else { 1547 return -EMSGSIZE; 1548 } 1549 1550 return 0; 1551 } 1552 1553 /** 1554 * stm32_spi_transfer_one_setup - common setup to transfer a single 1555 * spi_transfer either using DMA or 1556 * interrupts. 1557 * @spi: pointer to the spi controller data structure 1558 * @spi_dev: pointer to the spi device 1559 * @transfer: pointer to spi transfer 1560 */ 1561 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi, 1562 struct spi_device *spi_dev, 1563 struct spi_transfer *transfer) 1564 { 1565 unsigned long flags; 1566 unsigned int comm_type; 1567 int nb_words, ret = 0; 1568 int mbr; 1569 1570 spin_lock_irqsave(&spi->lock, flags); 1571 1572 spi->cur_xferlen = transfer->len; 1573 1574 spi->cur_bpw = transfer->bits_per_word; 1575 spi->cfg->set_bpw(spi); 1576 1577 /* Update spi->cur_speed with real clock speed */ 1578 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz, 1579 spi->cfg->baud_rate_div_min, 1580 spi->cfg->baud_rate_div_max); 1581 if (mbr < 0) { 1582 ret = mbr; 1583 goto out; 1584 } 1585 1586 transfer->speed_hz = spi->cur_speed; 1587 stm32_spi_set_mbr(spi, mbr); 1588 1589 comm_type = stm32_spi_communication_type(spi_dev, transfer); 1590 ret = spi->cfg->set_mode(spi, comm_type); 1591 if (ret < 0) 1592 goto out; 1593 1594 spi->cur_comm = comm_type; 1595 1596 if (spi->cfg->set_data_idleness) 1597 spi->cfg->set_data_idleness(spi, transfer->len); 1598 1599 if (spi->cur_bpw <= 8) 1600 nb_words = transfer->len; 1601 else if (spi->cur_bpw <= 16) 1602 nb_words = DIV_ROUND_UP(transfer->len * 8, 16); 1603 else 1604 nb_words = DIV_ROUND_UP(transfer->len * 8, 32); 1605 1606 if (spi->cfg->set_number_of_data) { 1607 ret = spi->cfg->set_number_of_data(spi, nb_words); 1608 if (ret < 0) 1609 goto out; 1610 } 1611 1612 dev_dbg(spi->dev, "transfer communication mode set to %d\n", 1613 spi->cur_comm); 1614 dev_dbg(spi->dev, 1615 "data frame of %d-bit, data packet of %d data frames\n", 1616 spi->cur_bpw, spi->cur_fthlv); 1617 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed); 1618 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n", 1619 spi->cur_xferlen, nb_words); 1620 dev_dbg(spi->dev, "dma %s\n", 1621 (spi->cur_usedma) ? "enabled" : "disabled"); 1622 1623 out: 1624 spin_unlock_irqrestore(&spi->lock, flags); 1625 1626 return ret; 1627 } 1628 1629 /** 1630 * stm32_spi_transfer_one - transfer a single spi_transfer 1631 * @master: controller master interface 1632 * @spi_dev: pointer to the spi device 1633 * @transfer: pointer to spi transfer 1634 * 1635 * It must return 0 if the transfer is finished or 1 if the transfer is still 1636 * in progress. 1637 */ 1638 static int stm32_spi_transfer_one(struct spi_master *master, 1639 struct spi_device *spi_dev, 1640 struct spi_transfer *transfer) 1641 { 1642 struct stm32_spi *spi = spi_master_get_devdata(master); 1643 int ret; 1644 1645 /* Don't do anything on 0 bytes transfers */ 1646 if (transfer->len == 0) 1647 return 0; 1648 1649 spi->tx_buf = transfer->tx_buf; 1650 spi->rx_buf = transfer->rx_buf; 1651 spi->tx_len = spi->tx_buf ? transfer->len : 0; 1652 spi->rx_len = spi->rx_buf ? transfer->len : 0; 1653 1654 spi->cur_usedma = (master->can_dma && 1655 master->can_dma(master, spi_dev, transfer)); 1656 1657 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer); 1658 if (ret) { 1659 dev_err(spi->dev, "SPI transfer setup failed\n"); 1660 return ret; 1661 } 1662 1663 if (spi->cur_usedma) 1664 return stm32_spi_transfer_one_dma(spi, transfer); 1665 else 1666 return spi->cfg->transfer_one_irq(spi); 1667 } 1668 1669 /** 1670 * stm32_spi_unprepare_msg - relax the hardware 1671 * @master: controller master interface 1672 * @msg: pointer to the spi message 1673 */ 1674 static int stm32_spi_unprepare_msg(struct spi_master *master, 1675 struct spi_message *msg) 1676 { 1677 struct stm32_spi *spi = spi_master_get_devdata(master); 1678 1679 spi->cfg->disable(spi); 1680 1681 return 0; 1682 } 1683 1684 /** 1685 * stm32f4_spi_config - Configure SPI controller as SPI master 1686 * @spi: pointer to the spi controller data structure 1687 */ 1688 static int stm32f4_spi_config(struct stm32_spi *spi) 1689 { 1690 unsigned long flags; 1691 1692 spin_lock_irqsave(&spi->lock, flags); 1693 1694 /* Ensure I2SMOD bit is kept cleared */ 1695 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR, 1696 STM32F4_SPI_I2SCFGR_I2SMOD); 1697 1698 /* 1699 * - SS input value high 1700 * - transmitter half duplex direction 1701 * - Set the master mode (default Motorola mode) 1702 * - Consider 1 master/n slaves configuration and 1703 * SS input value is determined by the SSI bit 1704 */ 1705 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI | 1706 STM32F4_SPI_CR1_BIDIOE | 1707 STM32F4_SPI_CR1_MSTR | 1708 STM32F4_SPI_CR1_SSM); 1709 1710 spin_unlock_irqrestore(&spi->lock, flags); 1711 1712 return 0; 1713 } 1714 1715 /** 1716 * stm32h7_spi_config - Configure SPI controller as SPI master 1717 * @spi: pointer to the spi controller data structure 1718 */ 1719 static int stm32h7_spi_config(struct stm32_spi *spi) 1720 { 1721 unsigned long flags; 1722 1723 spin_lock_irqsave(&spi->lock, flags); 1724 1725 /* Ensure I2SMOD bit is kept cleared */ 1726 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR, 1727 STM32H7_SPI_I2SCFGR_I2SMOD); 1728 1729 /* 1730 * - SS input value high 1731 * - transmitter half duplex direction 1732 * - automatic communication suspend when RX-Fifo is full 1733 */ 1734 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI | 1735 STM32H7_SPI_CR1_HDDIR | 1736 STM32H7_SPI_CR1_MASRX); 1737 1738 /* 1739 * - Set the master mode (default Motorola mode) 1740 * - Consider 1 master/n slaves configuration and 1741 * SS input value is determined by the SSI bit 1742 * - keep control of all associated GPIOs 1743 */ 1744 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER | 1745 STM32H7_SPI_CFG2_SSM | 1746 STM32H7_SPI_CFG2_AFCNTR); 1747 1748 spin_unlock_irqrestore(&spi->lock, flags); 1749 1750 return 0; 1751 } 1752 1753 static const struct stm32_spi_cfg stm32f4_spi_cfg = { 1754 .regs = &stm32f4_spi_regspec, 1755 .get_bpw_mask = stm32f4_spi_get_bpw_mask, 1756 .disable = stm32f4_spi_disable, 1757 .config = stm32f4_spi_config, 1758 .set_bpw = stm32f4_spi_set_bpw, 1759 .set_mode = stm32f4_spi_set_mode, 1760 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start, 1761 .dma_tx_cb = stm32f4_spi_dma_tx_cb, 1762 .dma_rx_cb = stm32f4_spi_dma_rx_cb, 1763 .transfer_one_irq = stm32f4_spi_transfer_one_irq, 1764 .irq_handler_event = stm32f4_spi_irq_event, 1765 .irq_handler_thread = stm32f4_spi_irq_thread, 1766 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN, 1767 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX, 1768 .has_fifo = false, 1769 }; 1770 1771 static const struct stm32_spi_cfg stm32h7_spi_cfg = { 1772 .regs = &stm32h7_spi_regspec, 1773 .get_fifo_size = stm32h7_spi_get_fifo_size, 1774 .get_bpw_mask = stm32h7_spi_get_bpw_mask, 1775 .disable = stm32h7_spi_disable, 1776 .config = stm32h7_spi_config, 1777 .set_bpw = stm32h7_spi_set_bpw, 1778 .set_mode = stm32h7_spi_set_mode, 1779 .set_data_idleness = stm32h7_spi_data_idleness, 1780 .set_number_of_data = stm32h7_spi_number_of_data, 1781 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start, 1782 .dma_rx_cb = stm32h7_spi_dma_cb, 1783 .dma_tx_cb = stm32h7_spi_dma_cb, 1784 .transfer_one_irq = stm32h7_spi_transfer_one_irq, 1785 .irq_handler_thread = stm32h7_spi_irq_thread, 1786 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN, 1787 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX, 1788 .has_fifo = true, 1789 }; 1790 1791 static const struct of_device_id stm32_spi_of_match[] = { 1792 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg }, 1793 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg }, 1794 {}, 1795 }; 1796 MODULE_DEVICE_TABLE(of, stm32_spi_of_match); 1797 1798 static int stm32_spi_probe(struct platform_device *pdev) 1799 { 1800 struct spi_master *master; 1801 struct stm32_spi *spi; 1802 struct resource *res; 1803 struct reset_control *rst; 1804 int ret; 1805 1806 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); 1807 if (!master) { 1808 dev_err(&pdev->dev, "spi master allocation failed\n"); 1809 return -ENOMEM; 1810 } 1811 platform_set_drvdata(pdev, master); 1812 1813 spi = spi_master_get_devdata(master); 1814 spi->dev = &pdev->dev; 1815 spi->master = master; 1816 spin_lock_init(&spi->lock); 1817 1818 spi->cfg = (const struct stm32_spi_cfg *) 1819 of_match_device(pdev->dev.driver->of_match_table, 1820 &pdev->dev)->data; 1821 1822 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1823 spi->base = devm_ioremap_resource(&pdev->dev, res); 1824 if (IS_ERR(spi->base)) 1825 return PTR_ERR(spi->base); 1826 1827 spi->phys_addr = (dma_addr_t)res->start; 1828 1829 spi->irq = platform_get_irq(pdev, 0); 1830 if (spi->irq <= 0) 1831 return dev_err_probe(&pdev->dev, spi->irq, 1832 "failed to get irq\n"); 1833 1834 ret = devm_request_threaded_irq(&pdev->dev, spi->irq, 1835 spi->cfg->irq_handler_event, 1836 spi->cfg->irq_handler_thread, 1837 IRQF_ONESHOT, pdev->name, master); 1838 if (ret) { 1839 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq, 1840 ret); 1841 return ret; 1842 } 1843 1844 spi->clk = devm_clk_get(&pdev->dev, NULL); 1845 if (IS_ERR(spi->clk)) { 1846 ret = PTR_ERR(spi->clk); 1847 dev_err(&pdev->dev, "clk get failed: %d\n", ret); 1848 return ret; 1849 } 1850 1851 ret = clk_prepare_enable(spi->clk); 1852 if (ret) { 1853 dev_err(&pdev->dev, "clk enable failed: %d\n", ret); 1854 return ret; 1855 } 1856 spi->clk_rate = clk_get_rate(spi->clk); 1857 if (!spi->clk_rate) { 1858 dev_err(&pdev->dev, "clk rate = 0\n"); 1859 ret = -EINVAL; 1860 goto err_clk_disable; 1861 } 1862 1863 rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); 1864 if (rst) { 1865 if (IS_ERR(rst)) { 1866 ret = dev_err_probe(&pdev->dev, PTR_ERR(rst), 1867 "failed to get reset\n"); 1868 goto err_clk_disable; 1869 } 1870 1871 reset_control_assert(rst); 1872 udelay(2); 1873 reset_control_deassert(rst); 1874 } 1875 1876 if (spi->cfg->has_fifo) 1877 spi->fifo_size = spi->cfg->get_fifo_size(spi); 1878 1879 ret = spi->cfg->config(spi); 1880 if (ret) { 1881 dev_err(&pdev->dev, "controller configuration failed: %d\n", 1882 ret); 1883 goto err_clk_disable; 1884 } 1885 1886 master->dev.of_node = pdev->dev.of_node; 1887 master->auto_runtime_pm = true; 1888 master->bus_num = pdev->id; 1889 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | 1890 SPI_3WIRE; 1891 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi); 1892 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min; 1893 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max; 1894 master->use_gpio_descriptors = true; 1895 master->prepare_message = stm32_spi_prepare_msg; 1896 master->transfer_one = stm32_spi_transfer_one; 1897 master->unprepare_message = stm32_spi_unprepare_msg; 1898 master->flags = SPI_MASTER_MUST_TX; 1899 1900 spi->dma_tx = dma_request_chan(spi->dev, "tx"); 1901 if (IS_ERR(spi->dma_tx)) { 1902 ret = PTR_ERR(spi->dma_tx); 1903 spi->dma_tx = NULL; 1904 if (ret == -EPROBE_DEFER) 1905 goto err_clk_disable; 1906 1907 dev_warn(&pdev->dev, "failed to request tx dma channel\n"); 1908 } else { 1909 master->dma_tx = spi->dma_tx; 1910 } 1911 1912 spi->dma_rx = dma_request_chan(spi->dev, "rx"); 1913 if (IS_ERR(spi->dma_rx)) { 1914 ret = PTR_ERR(spi->dma_rx); 1915 spi->dma_rx = NULL; 1916 if (ret == -EPROBE_DEFER) 1917 goto err_dma_release; 1918 1919 dev_warn(&pdev->dev, "failed to request rx dma channel\n"); 1920 } else { 1921 master->dma_rx = spi->dma_rx; 1922 } 1923 1924 if (spi->dma_tx || spi->dma_rx) 1925 master->can_dma = stm32_spi_can_dma; 1926 1927 pm_runtime_set_active(&pdev->dev); 1928 pm_runtime_enable(&pdev->dev); 1929 1930 ret = spi_register_master(master); 1931 if (ret) { 1932 dev_err(&pdev->dev, "spi master registration failed: %d\n", 1933 ret); 1934 goto err_pm_disable; 1935 } 1936 1937 dev_info(&pdev->dev, "driver initialized\n"); 1938 1939 return 0; 1940 1941 err_pm_disable: 1942 pm_runtime_disable(&pdev->dev); 1943 err_dma_release: 1944 if (spi->dma_tx) 1945 dma_release_channel(spi->dma_tx); 1946 if (spi->dma_rx) 1947 dma_release_channel(spi->dma_rx); 1948 err_clk_disable: 1949 clk_disable_unprepare(spi->clk); 1950 1951 return ret; 1952 } 1953 1954 static int stm32_spi_remove(struct platform_device *pdev) 1955 { 1956 struct spi_master *master = platform_get_drvdata(pdev); 1957 struct stm32_spi *spi = spi_master_get_devdata(master); 1958 1959 spi_unregister_master(master); 1960 spi->cfg->disable(spi); 1961 1962 if (master->dma_tx) 1963 dma_release_channel(master->dma_tx); 1964 if (master->dma_rx) 1965 dma_release_channel(master->dma_rx); 1966 1967 clk_disable_unprepare(spi->clk); 1968 1969 pm_runtime_disable(&pdev->dev); 1970 1971 pinctrl_pm_select_sleep_state(&pdev->dev); 1972 1973 return 0; 1974 } 1975 1976 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev) 1977 { 1978 struct spi_master *master = dev_get_drvdata(dev); 1979 struct stm32_spi *spi = spi_master_get_devdata(master); 1980 1981 clk_disable_unprepare(spi->clk); 1982 1983 return pinctrl_pm_select_sleep_state(dev); 1984 } 1985 1986 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev) 1987 { 1988 struct spi_master *master = dev_get_drvdata(dev); 1989 struct stm32_spi *spi = spi_master_get_devdata(master); 1990 int ret; 1991 1992 ret = pinctrl_pm_select_default_state(dev); 1993 if (ret) 1994 return ret; 1995 1996 return clk_prepare_enable(spi->clk); 1997 } 1998 1999 static int __maybe_unused stm32_spi_suspend(struct device *dev) 2000 { 2001 struct spi_master *master = dev_get_drvdata(dev); 2002 int ret; 2003 2004 ret = spi_master_suspend(master); 2005 if (ret) 2006 return ret; 2007 2008 return pm_runtime_force_suspend(dev); 2009 } 2010 2011 static int __maybe_unused stm32_spi_resume(struct device *dev) 2012 { 2013 struct spi_master *master = dev_get_drvdata(dev); 2014 struct stm32_spi *spi = spi_master_get_devdata(master); 2015 int ret; 2016 2017 ret = pm_runtime_force_resume(dev); 2018 if (ret) 2019 return ret; 2020 2021 ret = spi_master_resume(master); 2022 if (ret) { 2023 clk_disable_unprepare(spi->clk); 2024 return ret; 2025 } 2026 2027 ret = pm_runtime_get_sync(dev); 2028 if (ret < 0) { 2029 pm_runtime_put_noidle(dev); 2030 dev_err(dev, "Unable to power device:%d\n", ret); 2031 return ret; 2032 } 2033 2034 spi->cfg->config(spi); 2035 2036 pm_runtime_mark_last_busy(dev); 2037 pm_runtime_put_autosuspend(dev); 2038 2039 return 0; 2040 } 2041 2042 static const struct dev_pm_ops stm32_spi_pm_ops = { 2043 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume) 2044 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend, 2045 stm32_spi_runtime_resume, NULL) 2046 }; 2047 2048 static struct platform_driver stm32_spi_driver = { 2049 .probe = stm32_spi_probe, 2050 .remove = stm32_spi_remove, 2051 .driver = { 2052 .name = DRIVER_NAME, 2053 .pm = &stm32_spi_pm_ops, 2054 .of_match_table = stm32_spi_of_match, 2055 }, 2056 }; 2057 2058 module_platform_driver(stm32_spi_driver); 2059 2060 MODULE_ALIAS("platform:" DRIVER_NAME); 2061 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver"); 2062 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); 2063 MODULE_LICENSE("GPL v2"); 2064