xref: /openbmc/linux/drivers/spi/spi-stm32.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7 
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
18 #include <linux/spi/spi.h>
19 
20 #define DRIVER_NAME "spi_stm32"
21 
22 /* STM32F4 SPI registers */
23 #define STM32F4_SPI_CR1			0x00
24 #define STM32F4_SPI_CR2			0x04
25 #define STM32F4_SPI_SR			0x08
26 #define STM32F4_SPI_DR			0x0C
27 #define STM32F4_SPI_I2SCFGR		0x1C
28 
29 /* STM32F4_SPI_CR1 bit fields */
30 #define STM32F4_SPI_CR1_CPHA		BIT(0)
31 #define STM32F4_SPI_CR1_CPOL		BIT(1)
32 #define STM32F4_SPI_CR1_MSTR		BIT(2)
33 #define STM32F4_SPI_CR1_BR_SHIFT	3
34 #define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
35 #define STM32F4_SPI_CR1_SPE		BIT(6)
36 #define STM32F4_SPI_CR1_LSBFRST		BIT(7)
37 #define STM32F4_SPI_CR1_SSI		BIT(8)
38 #define STM32F4_SPI_CR1_SSM		BIT(9)
39 #define STM32F4_SPI_CR1_RXONLY		BIT(10)
40 #define STM32F4_SPI_CR1_DFF		BIT(11)
41 #define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
42 #define STM32F4_SPI_CR1_CRCEN		BIT(13)
43 #define STM32F4_SPI_CR1_BIDIOE		BIT(14)
44 #define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
45 #define STM32F4_SPI_CR1_BR_MIN		0
46 #define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
47 
48 /* STM32F4_SPI_CR2 bit fields */
49 #define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
50 #define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
51 #define STM32F4_SPI_CR2_SSOE		BIT(2)
52 #define STM32F4_SPI_CR2_FRF		BIT(4)
53 #define STM32F4_SPI_CR2_ERRIE		BIT(5)
54 #define STM32F4_SPI_CR2_RXNEIE		BIT(6)
55 #define STM32F4_SPI_CR2_TXEIE		BIT(7)
56 
57 /* STM32F4_SPI_SR bit fields */
58 #define STM32F4_SPI_SR_RXNE		BIT(0)
59 #define STM32F4_SPI_SR_TXE		BIT(1)
60 #define STM32F4_SPI_SR_CHSIDE		BIT(2)
61 #define STM32F4_SPI_SR_UDR		BIT(3)
62 #define STM32F4_SPI_SR_CRCERR		BIT(4)
63 #define STM32F4_SPI_SR_MODF		BIT(5)
64 #define STM32F4_SPI_SR_OVR		BIT(6)
65 #define STM32F4_SPI_SR_BSY		BIT(7)
66 #define STM32F4_SPI_SR_FRE		BIT(8)
67 
68 /* STM32F4_SPI_I2SCFGR bit fields */
69 #define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
70 
71 /* STM32F4 SPI Baud Rate min/max divisor */
72 #define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
73 #define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
74 
75 /* STM32H7 SPI registers */
76 #define STM32H7_SPI_CR1			0x00
77 #define STM32H7_SPI_CR2			0x04
78 #define STM32H7_SPI_CFG1		0x08
79 #define STM32H7_SPI_CFG2		0x0C
80 #define STM32H7_SPI_IER			0x10
81 #define STM32H7_SPI_SR			0x14
82 #define STM32H7_SPI_IFCR		0x18
83 #define STM32H7_SPI_TXDR		0x20
84 #define STM32H7_SPI_RXDR		0x30
85 #define STM32H7_SPI_I2SCFGR		0x50
86 
87 /* STM32H7_SPI_CR1 bit fields */
88 #define STM32H7_SPI_CR1_SPE		BIT(0)
89 #define STM32H7_SPI_CR1_MASRX		BIT(8)
90 #define STM32H7_SPI_CR1_CSTART		BIT(9)
91 #define STM32H7_SPI_CR1_CSUSP		BIT(10)
92 #define STM32H7_SPI_CR1_HDDIR		BIT(11)
93 #define STM32H7_SPI_CR1_SSI		BIT(12)
94 
95 /* STM32H7_SPI_CR2 bit fields */
96 #define STM32H7_SPI_CR2_TSIZE_SHIFT	0
97 #define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
98 
99 /* STM32H7_SPI_CFG1 bit fields */
100 #define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
101 #define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
102 #define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
103 #define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
106 #define STM32H7_SPI_CFG1_MBR_SHIFT	28
107 #define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
108 #define STM32H7_SPI_CFG1_MBR_MIN	0
109 #define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
110 
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI_SHIFT	4
113 #define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
114 #define STM32H7_SPI_CFG2_COMM_SHIFT	17
115 #define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
116 #define STM32H7_SPI_CFG2_SP_SHIFT	19
117 #define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
118 #define STM32H7_SPI_CFG2_MASTER		BIT(22)
119 #define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
120 #define STM32H7_SPI_CFG2_CPHA		BIT(24)
121 #define STM32H7_SPI_CFG2_CPOL		BIT(25)
122 #define STM32H7_SPI_CFG2_SSM		BIT(26)
123 #define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
124 
125 /* STM32H7_SPI_IER bit fields */
126 #define STM32H7_SPI_IER_RXPIE		BIT(0)
127 #define STM32H7_SPI_IER_TXPIE		BIT(1)
128 #define STM32H7_SPI_IER_DXPIE		BIT(2)
129 #define STM32H7_SPI_IER_EOTIE		BIT(3)
130 #define STM32H7_SPI_IER_TXTFIE		BIT(4)
131 #define STM32H7_SPI_IER_OVRIE		BIT(6)
132 #define STM32H7_SPI_IER_MODFIE		BIT(9)
133 #define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
134 
135 /* STM32H7_SPI_SR bit fields */
136 #define STM32H7_SPI_SR_RXP		BIT(0)
137 #define STM32H7_SPI_SR_TXP		BIT(1)
138 #define STM32H7_SPI_SR_EOT		BIT(3)
139 #define STM32H7_SPI_SR_OVR		BIT(6)
140 #define STM32H7_SPI_SR_MODF		BIT(9)
141 #define STM32H7_SPI_SR_SUSP		BIT(11)
142 #define STM32H7_SPI_SR_RXPLVL_SHIFT	13
143 #define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
144 #define STM32H7_SPI_SR_RXWNE		BIT(15)
145 
146 /* STM32H7_SPI_IFCR bit fields */
147 #define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
148 
149 /* STM32H7_SPI_I2SCFGR bit fields */
150 #define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
151 
152 /* STM32H7 SPI Master Baud Rate min/max divisor */
153 #define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
154 #define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
155 
156 /* STM32H7 SPI Communication mode */
157 #define STM32H7_SPI_FULL_DUPLEX		0
158 #define STM32H7_SPI_SIMPLEX_TX		1
159 #define STM32H7_SPI_SIMPLEX_RX		2
160 #define STM32H7_SPI_HALF_DUPLEX		3
161 
162 /* SPI Communication type */
163 #define SPI_FULL_DUPLEX		0
164 #define SPI_SIMPLEX_TX		1
165 #define SPI_SIMPLEX_RX		2
166 #define SPI_3WIRE_TX		3
167 #define SPI_3WIRE_RX		4
168 
169 #define SPI_1HZ_NS		1000000000
170 
171 /*
172  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
173  * without fifo buffers.
174  */
175 #define SPI_DMA_MIN_BYTES	16
176 
177 /**
178  * stm32_spi_reg - stm32 SPI register & bitfield desc
179  * @reg:		register offset
180  * @mask:		bitfield mask
181  * @shift:		left shift
182  */
183 struct stm32_spi_reg {
184 	int reg;
185 	int mask;
186 	int shift;
187 };
188 
189 /**
190  * stm32_spi_regspec - stm32 registers definition, compatible dependent data
191  * en: enable register and SPI enable bit
192  * dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
193  * dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
194  * cpol: clock polarity register and polarity bit
195  * cpha: clock phase register and phase bit
196  * lsb_first: LSB transmitted first register and bit
197  * br: baud rate register and bitfields
198  * rx: SPI RX data register
199  * tx: SPI TX data register
200  */
201 struct stm32_spi_regspec {
202 	const struct stm32_spi_reg en;
203 	const struct stm32_spi_reg dma_rx_en;
204 	const struct stm32_spi_reg dma_tx_en;
205 	const struct stm32_spi_reg cpol;
206 	const struct stm32_spi_reg cpha;
207 	const struct stm32_spi_reg lsb_first;
208 	const struct stm32_spi_reg br;
209 	const struct stm32_spi_reg rx;
210 	const struct stm32_spi_reg tx;
211 };
212 
213 struct stm32_spi;
214 
215 /**
216  * stm32_spi_cfg - stm32 compatible configuration data
217  * @regs: registers descriptions
218  * @get_fifo_size: routine to get fifo size
219  * @get_bpw_mask: routine to get bits per word mask
220  * @disable: routine to disable controller
221  * @config: routine to configure controller as SPI Master
222  * @set_bpw: routine to configure registers to for bits per word
223  * @set_mode: routine to configure registers to desired mode
224  * @set_data_idleness: optional routine to configure registers to desired idle
225  * time between frames (if driver has this functionality)
226  * set_number_of_data: optional routine to configure registers to desired
227  * number of data (if driver has this functionality)
228  * @can_dma: routine to determine if the transfer is eligible for DMA use
229  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
230  * using DMA
231  * @dma_rx cb: routine to call after DMA RX channel operation is complete
232  * @dma_tx cb: routine to call after DMA TX channel operation is complete
233  * @transfer_one_irq: routine to configure interrupts for driver
234  * @irq_handler_event: Interrupt handler for SPI controller events
235  * @irq_handler_thread: thread of interrupt handler for SPI controller
236  * @baud_rate_div_min: minimum baud rate divisor
237  * @baud_rate_div_max: maximum baud rate divisor
238  * @has_fifo: boolean to know if fifo is used for driver
239  * @has_startbit: boolean to know if start bit is used to start transfer
240  */
241 struct stm32_spi_cfg {
242 	const struct stm32_spi_regspec *regs;
243 	int (*get_fifo_size)(struct stm32_spi *spi);
244 	int (*get_bpw_mask)(struct stm32_spi *spi);
245 	void (*disable)(struct stm32_spi *spi);
246 	int (*config)(struct stm32_spi *spi);
247 	void (*set_bpw)(struct stm32_spi *spi);
248 	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
249 	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
250 	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
251 	void (*transfer_one_dma_start)(struct stm32_spi *spi);
252 	void (*dma_rx_cb)(void *data);
253 	void (*dma_tx_cb)(void *data);
254 	int (*transfer_one_irq)(struct stm32_spi *spi);
255 	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
256 	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
257 	unsigned int baud_rate_div_min;
258 	unsigned int baud_rate_div_max;
259 	bool has_fifo;
260 };
261 
262 /**
263  * struct stm32_spi - private data of the SPI controller
264  * @dev: driver model representation of the controller
265  * @master: controller master interface
266  * @cfg: compatible configuration data
267  * @base: virtual memory area
268  * @clk: hw kernel clock feeding the SPI clock generator
269  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
270  * @rst: SPI controller reset line
271  * @lock: prevent I/O concurrent access
272  * @irq: SPI controller interrupt line
273  * @fifo_size: size of the embedded fifo in bytes
274  * @cur_midi: master inter-data idleness in ns
275  * @cur_speed: speed configured in Hz
276  * @cur_bpw: number of bits in a single SPI data frame
277  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
278  * @cur_comm: SPI communication mode
279  * @cur_xferlen: current transfer length in bytes
280  * @cur_usedma: boolean to know if dma is used in current transfer
281  * @tx_buf: data to be written, or NULL
282  * @rx_buf: data to be read, or NULL
283  * @tx_len: number of data to be written in bytes
284  * @rx_len: number of data to be read in bytes
285  * @dma_tx: dma channel for TX transfer
286  * @dma_rx: dma channel for RX transfer
287  * @phys_addr: SPI registers physical base address
288  */
289 struct stm32_spi {
290 	struct device *dev;
291 	struct spi_master *master;
292 	const struct stm32_spi_cfg *cfg;
293 	void __iomem *base;
294 	struct clk *clk;
295 	u32 clk_rate;
296 	struct reset_control *rst;
297 	spinlock_t lock; /* prevent I/O concurrent access */
298 	int irq;
299 	unsigned int fifo_size;
300 
301 	unsigned int cur_midi;
302 	unsigned int cur_speed;
303 	unsigned int cur_bpw;
304 	unsigned int cur_fthlv;
305 	unsigned int cur_comm;
306 	unsigned int cur_xferlen;
307 	bool cur_usedma;
308 
309 	const void *tx_buf;
310 	void *rx_buf;
311 	int tx_len;
312 	int rx_len;
313 	struct dma_chan *dma_tx;
314 	struct dma_chan *dma_rx;
315 	dma_addr_t phys_addr;
316 };
317 
318 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
319 	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
320 
321 	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
322 	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
323 
324 	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
325 	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
326 	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
327 	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
328 
329 	.rx = { STM32F4_SPI_DR },
330 	.tx = { STM32F4_SPI_DR },
331 };
332 
333 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
334 	/* SPI data transfer is enabled but spi_ker_ck is idle.
335 	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
336 	 */
337 	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
338 
339 	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
340 	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
341 
342 	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
343 	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
344 	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
345 	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
346 		STM32H7_SPI_CFG1_MBR_SHIFT },
347 
348 	.rx = { STM32H7_SPI_RXDR },
349 	.tx = { STM32H7_SPI_TXDR },
350 };
351 
352 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
353 				      u32 offset, u32 bits)
354 {
355 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
356 		       spi->base + offset);
357 }
358 
359 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
360 				      u32 offset, u32 bits)
361 {
362 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
363 		       spi->base + offset);
364 }
365 
366 /**
367  * stm32h7_spi_get_fifo_size - Return fifo size
368  * @spi: pointer to the spi controller data structure
369  */
370 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
371 {
372 	unsigned long flags;
373 	u32 count = 0;
374 
375 	spin_lock_irqsave(&spi->lock, flags);
376 
377 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
378 
379 	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
380 		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
381 
382 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
383 
384 	spin_unlock_irqrestore(&spi->lock, flags);
385 
386 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
387 
388 	return count;
389 }
390 
391 /**
392  * stm32f4_spi_get_bpw_mask - Return bits per word mask
393  * @spi: pointer to the spi controller data structure
394  */
395 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
396 {
397 	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
398 	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
399 }
400 
401 /**
402  * stm32h7_spi_get_bpw_mask - Return bits per word mask
403  * @spi: pointer to the spi controller data structure
404  */
405 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
406 {
407 	unsigned long flags;
408 	u32 cfg1, max_bpw;
409 
410 	spin_lock_irqsave(&spi->lock, flags);
411 
412 	/*
413 	 * The most significant bit at DSIZE bit field is reserved when the
414 	 * maximum data size of periperal instances is limited to 16-bit
415 	 */
416 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
417 
418 	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
419 	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
420 		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
421 	max_bpw += 1;
422 
423 	spin_unlock_irqrestore(&spi->lock, flags);
424 
425 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
426 
427 	return SPI_BPW_RANGE_MASK(4, max_bpw);
428 }
429 
430 /**
431  * stm32_spi_prepare_mbr - Determine baud rate divisor value
432  * @spi: pointer to the spi controller data structure
433  * @speed_hz: requested speed
434  * @min_div: minimum baud rate divisor
435  * @max_div: maximum baud rate divisor
436  *
437  * Return baud rate divisor value in case of success or -EINVAL
438  */
439 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
440 				 u32 min_div, u32 max_div)
441 {
442 	u32 div, mbrdiv;
443 
444 	div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
445 
446 	/*
447 	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
448 	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
449 	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
450 	 * no need to check it there.
451 	 * However, we need to ensure the following calculations.
452 	 */
453 	if ((div < min_div) || (div > max_div))
454 		return -EINVAL;
455 
456 	/* Determine the first power of 2 greater than or equal to div */
457 	if (div & (div - 1))
458 		mbrdiv = fls(div);
459 	else
460 		mbrdiv = fls(div) - 1;
461 
462 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
463 
464 	return mbrdiv - 1;
465 }
466 
467 /**
468  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
469  * @spi: pointer to the spi controller data structure
470  */
471 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi)
472 {
473 	u32 fthlv, half_fifo;
474 
475 	/* data packet should not exceed 1/2 of fifo space */
476 	half_fifo = (spi->fifo_size / 2);
477 
478 	if (spi->cur_bpw <= 8)
479 		fthlv = half_fifo;
480 	else if (spi->cur_bpw <= 16)
481 		fthlv = half_fifo / 2;
482 	else
483 		fthlv = half_fifo / 4;
484 
485 	/* align packet size with data registers access */
486 	if (spi->cur_bpw > 8)
487 		fthlv -= (fthlv % 2); /* multiple of 2 */
488 	else
489 		fthlv -= (fthlv % 4); /* multiple of 4 */
490 
491 	return fthlv;
492 }
493 
494 /**
495  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
496  * @spi: pointer to the spi controller data structure
497  *
498  * Read from tx_buf depends on remaining bytes to avoid to read beyond
499  * tx_buf end.
500  */
501 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
502 {
503 	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
504 				  STM32F4_SPI_SR_TXE)) {
505 		u32 offs = spi->cur_xferlen - spi->tx_len;
506 
507 		if (spi->cur_bpw == 16) {
508 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
509 
510 			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
511 			spi->tx_len -= sizeof(u16);
512 		} else {
513 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
514 
515 			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
516 			spi->tx_len -= sizeof(u8);
517 		}
518 	}
519 
520 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
521 }
522 
523 /**
524  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
525  * @spi: pointer to the spi controller data structure
526  *
527  * Read from tx_buf depends on remaining bytes to avoid to read beyond
528  * tx_buf end.
529  */
530 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
531 {
532 	while ((spi->tx_len > 0) &&
533 		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
534 			STM32H7_SPI_SR_TXP)) {
535 		u32 offs = spi->cur_xferlen - spi->tx_len;
536 
537 		if (spi->tx_len >= sizeof(u32)) {
538 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
539 
540 			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
541 			spi->tx_len -= sizeof(u32);
542 		} else if (spi->tx_len >= sizeof(u16)) {
543 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
544 
545 			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
546 			spi->tx_len -= sizeof(u16);
547 		} else {
548 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
549 
550 			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
551 			spi->tx_len -= sizeof(u8);
552 		}
553 	}
554 
555 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
556 }
557 
558 /**
559  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
560  * @spi: pointer to the spi controller data structure
561  *
562  * Write in rx_buf depends on remaining bytes to avoid to write beyond
563  * rx_buf end.
564  */
565 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
566 {
567 	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
568 				  STM32F4_SPI_SR_RXNE)) {
569 		u32 offs = spi->cur_xferlen - spi->rx_len;
570 
571 		if (spi->cur_bpw == 16) {
572 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
573 
574 			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
575 			spi->rx_len -= sizeof(u16);
576 		} else {
577 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
578 
579 			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
580 			spi->rx_len -= sizeof(u8);
581 		}
582 	}
583 
584 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
585 }
586 
587 /**
588  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
589  * @spi: pointer to the spi controller data structure
590  *
591  * Write in rx_buf depends on remaining bytes to avoid to write beyond
592  * rx_buf end.
593  */
594 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
595 {
596 	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
597 	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
598 		     STM32H7_SPI_SR_RXPLVL_SHIFT;
599 
600 	while ((spi->rx_len > 0) &&
601 	       ((sr & STM32H7_SPI_SR_RXP) ||
602 		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
603 		u32 offs = spi->cur_xferlen - spi->rx_len;
604 
605 		if ((spi->rx_len >= sizeof(u32)) ||
606 		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
607 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
608 
609 			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
610 			spi->rx_len -= sizeof(u32);
611 		} else if ((spi->rx_len >= sizeof(u16)) ||
612 			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
613 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
614 
615 			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
616 			spi->rx_len -= sizeof(u16);
617 		} else {
618 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
619 
620 			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
621 			spi->rx_len -= sizeof(u8);
622 		}
623 
624 		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
625 		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
626 			 STM32H7_SPI_SR_RXPLVL_SHIFT;
627 	}
628 
629 	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
630 		flush ? "(flush)" : "", spi->rx_len);
631 }
632 
633 /**
634  * stm32_spi_enable - Enable SPI controller
635  * @spi: pointer to the spi controller data structure
636  */
637 static void stm32_spi_enable(struct stm32_spi *spi)
638 {
639 	dev_dbg(spi->dev, "enable controller\n");
640 
641 	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
642 			   spi->cfg->regs->en.mask);
643 }
644 
645 /**
646  * stm32f4_spi_disable - Disable SPI controller
647  * @spi: pointer to the spi controller data structure
648  */
649 static void stm32f4_spi_disable(struct stm32_spi *spi)
650 {
651 	unsigned long flags;
652 	u32 sr;
653 
654 	dev_dbg(spi->dev, "disable controller\n");
655 
656 	spin_lock_irqsave(&spi->lock, flags);
657 
658 	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
659 	      STM32F4_SPI_CR1_SPE)) {
660 		spin_unlock_irqrestore(&spi->lock, flags);
661 		return;
662 	}
663 
664 	/* Disable interrupts */
665 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
666 						 STM32F4_SPI_CR2_RXNEIE |
667 						 STM32F4_SPI_CR2_ERRIE);
668 
669 	/* Wait until BSY = 0 */
670 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
671 					      sr, !(sr & STM32F4_SPI_SR_BSY),
672 					      10, 100000) < 0) {
673 		dev_warn(spi->dev, "disabling condition timeout\n");
674 	}
675 
676 	if (spi->cur_usedma && spi->dma_tx)
677 		dmaengine_terminate_all(spi->dma_tx);
678 	if (spi->cur_usedma && spi->dma_rx)
679 		dmaengine_terminate_all(spi->dma_rx);
680 
681 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
682 
683 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
684 						 STM32F4_SPI_CR2_RXDMAEN);
685 
686 	/* Sequence to clear OVR flag */
687 	readl_relaxed(spi->base + STM32F4_SPI_DR);
688 	readl_relaxed(spi->base + STM32F4_SPI_SR);
689 
690 	spin_unlock_irqrestore(&spi->lock, flags);
691 }
692 
693 /**
694  * stm32h7_spi_disable - Disable SPI controller
695  * @spi: pointer to the spi controller data structure
696  *
697  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
698  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
699  * RX-Fifo.
700  * Normally, if TSIZE has been configured, we should relax the hardware at the
701  * reception of the EOT interrupt. But in case of error, EOT will not be
702  * raised. So the subsystem unprepare_message call allows us to properly
703  * complete the transfer from an hardware point of view.
704  */
705 static void stm32h7_spi_disable(struct stm32_spi *spi)
706 {
707 	unsigned long flags;
708 	u32 cr1, sr;
709 
710 	dev_dbg(spi->dev, "disable controller\n");
711 
712 	spin_lock_irqsave(&spi->lock, flags);
713 
714 	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
715 
716 	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
717 		spin_unlock_irqrestore(&spi->lock, flags);
718 		return;
719 	}
720 
721 	/* Wait on EOT or suspend the flow */
722 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
723 					      sr, !(sr & STM32H7_SPI_SR_EOT),
724 					      10, 100000) < 0) {
725 		if (cr1 & STM32H7_SPI_CR1_CSTART) {
726 			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
727 				       spi->base + STM32H7_SPI_CR1);
728 			if (readl_relaxed_poll_timeout_atomic(
729 						spi->base + STM32H7_SPI_SR,
730 						sr, !(sr & STM32H7_SPI_SR_SUSP),
731 						10, 100000) < 0)
732 				dev_warn(spi->dev,
733 					 "Suspend request timeout\n");
734 		}
735 	}
736 
737 	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
738 		stm32h7_spi_read_rxfifo(spi, true);
739 
740 	if (spi->cur_usedma && spi->dma_tx)
741 		dmaengine_terminate_all(spi->dma_tx);
742 	if (spi->cur_usedma && spi->dma_rx)
743 		dmaengine_terminate_all(spi->dma_rx);
744 
745 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
746 
747 	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
748 						STM32H7_SPI_CFG1_RXDMAEN);
749 
750 	/* Disable interrupts and clear status flags */
751 	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
752 	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
753 
754 	spin_unlock_irqrestore(&spi->lock, flags);
755 }
756 
757 /**
758  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
759  *
760  * If driver has fifo and the current transfer size is greater than fifo size,
761  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
762  */
763 static bool stm32_spi_can_dma(struct spi_master *master,
764 			      struct spi_device *spi_dev,
765 			      struct spi_transfer *transfer)
766 {
767 	unsigned int dma_size;
768 	struct stm32_spi *spi = spi_master_get_devdata(master);
769 
770 	if (spi->cfg->has_fifo)
771 		dma_size = spi->fifo_size;
772 	else
773 		dma_size = SPI_DMA_MIN_BYTES;
774 
775 	dev_dbg(spi->dev, "%s: %s\n", __func__,
776 		(transfer->len > dma_size) ? "true" : "false");
777 
778 	return (transfer->len > dma_size);
779 }
780 
781 /**
782  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
783  * @irq: interrupt line
784  * @dev_id: SPI controller master interface
785  */
786 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
787 {
788 	struct spi_master *master = dev_id;
789 	struct stm32_spi *spi = spi_master_get_devdata(master);
790 	u32 sr, mask = 0;
791 	unsigned long flags;
792 	bool end = false;
793 
794 	spin_lock_irqsave(&spi->lock, flags);
795 
796 	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
797 	/*
798 	 * BSY flag is not handled in interrupt but it is normal behavior when
799 	 * this flag is set.
800 	 */
801 	sr &= ~STM32F4_SPI_SR_BSY;
802 
803 	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
804 				 spi->cur_comm == SPI_3WIRE_TX)) {
805 		/* OVR flag shouldn't be handled for TX only mode */
806 		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
807 		mask |= STM32F4_SPI_SR_TXE;
808 	}
809 
810 	if (!spi->cur_usedma && spi->cur_comm == SPI_FULL_DUPLEX) {
811 		/* TXE flag is set and is handled when RXNE flag occurs */
812 		sr &= ~STM32F4_SPI_SR_TXE;
813 		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
814 	}
815 
816 	if (!(sr & mask)) {
817 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
818 		spin_unlock_irqrestore(&spi->lock, flags);
819 		return IRQ_NONE;
820 	}
821 
822 	if (sr & STM32F4_SPI_SR_OVR) {
823 		dev_warn(spi->dev, "Overrun: received value discarded\n");
824 
825 		/* Sequence to clear OVR flag */
826 		readl_relaxed(spi->base + STM32F4_SPI_DR);
827 		readl_relaxed(spi->base + STM32F4_SPI_SR);
828 
829 		/*
830 		 * If overrun is detected, it means that something went wrong,
831 		 * so stop the current transfer. Transfer can wait for next
832 		 * RXNE but DR is already read and end never happens.
833 		 */
834 		end = true;
835 		goto end_irq;
836 	}
837 
838 	if (sr & STM32F4_SPI_SR_TXE) {
839 		if (spi->tx_buf)
840 			stm32f4_spi_write_tx(spi);
841 		if (spi->tx_len == 0)
842 			end = true;
843 	}
844 
845 	if (sr & STM32F4_SPI_SR_RXNE) {
846 		stm32f4_spi_read_rx(spi);
847 		if (spi->rx_len == 0)
848 			end = true;
849 		else /* Load data for discontinuous mode */
850 			stm32f4_spi_write_tx(spi);
851 	}
852 
853 end_irq:
854 	if (end) {
855 		/* Immediately disable interrupts to do not generate new one */
856 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
857 					STM32F4_SPI_CR2_TXEIE |
858 					STM32F4_SPI_CR2_RXNEIE |
859 					STM32F4_SPI_CR2_ERRIE);
860 		spin_unlock_irqrestore(&spi->lock, flags);
861 		return IRQ_WAKE_THREAD;
862 	}
863 
864 	spin_unlock_irqrestore(&spi->lock, flags);
865 	return IRQ_HANDLED;
866 }
867 
868 /**
869  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
870  * @irq: interrupt line
871  * @dev_id: SPI controller master interface
872  */
873 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
874 {
875 	struct spi_master *master = dev_id;
876 	struct stm32_spi *spi = spi_master_get_devdata(master);
877 
878 	spi_finalize_current_transfer(master);
879 	stm32f4_spi_disable(spi);
880 
881 	return IRQ_HANDLED;
882 }
883 
884 /**
885  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
886  * @irq: interrupt line
887  * @dev_id: SPI controller master interface
888  */
889 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
890 {
891 	struct spi_master *master = dev_id;
892 	struct stm32_spi *spi = spi_master_get_devdata(master);
893 	u32 sr, ier, mask;
894 	unsigned long flags;
895 	bool end = false;
896 
897 	spin_lock_irqsave(&spi->lock, flags);
898 
899 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
900 	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
901 
902 	mask = ier;
903 	/* EOTIE is triggered on EOT, SUSP and TXC events. */
904 	mask |= STM32H7_SPI_SR_SUSP;
905 	/*
906 	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
907 	 * Full-Duplex, need to poll RXP event to know if there are remaining
908 	 * data, before disabling SPI.
909 	 */
910 	if (spi->rx_buf && !spi->cur_usedma)
911 		mask |= STM32H7_SPI_SR_RXP;
912 
913 	if (!(sr & mask)) {
914 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
915 			sr, ier);
916 		spin_unlock_irqrestore(&spi->lock, flags);
917 		return IRQ_NONE;
918 	}
919 
920 	if (sr & STM32H7_SPI_SR_SUSP) {
921 		dev_warn(spi->dev, "Communication suspended\n");
922 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
923 			stm32h7_spi_read_rxfifo(spi, false);
924 		/*
925 		 * If communication is suspended while using DMA, it means
926 		 * that something went wrong, so stop the current transfer
927 		 */
928 		if (spi->cur_usedma)
929 			end = true;
930 	}
931 
932 	if (sr & STM32H7_SPI_SR_MODF) {
933 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
934 		end = true;
935 	}
936 
937 	if (sr & STM32H7_SPI_SR_OVR) {
938 		dev_warn(spi->dev, "Overrun: received value discarded\n");
939 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
940 			stm32h7_spi_read_rxfifo(spi, false);
941 		/*
942 		 * If overrun is detected while using DMA, it means that
943 		 * something went wrong, so stop the current transfer
944 		 */
945 		if (spi->cur_usedma)
946 			end = true;
947 	}
948 
949 	if (sr & STM32H7_SPI_SR_EOT) {
950 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
951 			stm32h7_spi_read_rxfifo(spi, true);
952 		end = true;
953 	}
954 
955 	if (sr & STM32H7_SPI_SR_TXP)
956 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
957 			stm32h7_spi_write_txfifo(spi);
958 
959 	if (sr & STM32H7_SPI_SR_RXP)
960 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
961 			stm32h7_spi_read_rxfifo(spi, false);
962 
963 	writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR);
964 
965 	spin_unlock_irqrestore(&spi->lock, flags);
966 
967 	if (end) {
968 		spi_finalize_current_transfer(master);
969 		stm32h7_spi_disable(spi);
970 	}
971 
972 	return IRQ_HANDLED;
973 }
974 
975 /**
976  * stm32_spi_prepare_msg - set up the controller to transfer a single message
977  */
978 static int stm32_spi_prepare_msg(struct spi_master *master,
979 				 struct spi_message *msg)
980 {
981 	struct stm32_spi *spi = spi_master_get_devdata(master);
982 	struct spi_device *spi_dev = msg->spi;
983 	struct device_node *np = spi_dev->dev.of_node;
984 	unsigned long flags;
985 	u32 clrb = 0, setb = 0;
986 
987 	/* SPI slave device may need time between data frames */
988 	spi->cur_midi = 0;
989 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
990 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
991 
992 	if (spi_dev->mode & SPI_CPOL)
993 		setb |= spi->cfg->regs->cpol.mask;
994 	else
995 		clrb |= spi->cfg->regs->cpol.mask;
996 
997 	if (spi_dev->mode & SPI_CPHA)
998 		setb |= spi->cfg->regs->cpha.mask;
999 	else
1000 		clrb |= spi->cfg->regs->cpha.mask;
1001 
1002 	if (spi_dev->mode & SPI_LSB_FIRST)
1003 		setb |= spi->cfg->regs->lsb_first.mask;
1004 	else
1005 		clrb |= spi->cfg->regs->lsb_first.mask;
1006 
1007 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1008 		spi_dev->mode & SPI_CPOL,
1009 		spi_dev->mode & SPI_CPHA,
1010 		spi_dev->mode & SPI_LSB_FIRST,
1011 		spi_dev->mode & SPI_CS_HIGH);
1012 
1013 	spin_lock_irqsave(&spi->lock, flags);
1014 
1015 	/* CPOL, CPHA and LSB FIRST bits have common register */
1016 	if (clrb || setb)
1017 		writel_relaxed(
1018 			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1019 			 ~clrb) | setb,
1020 			spi->base + spi->cfg->regs->cpol.reg);
1021 
1022 	spin_unlock_irqrestore(&spi->lock, flags);
1023 
1024 	return 0;
1025 }
1026 
1027 /**
1028  * stm32f4_spi_dma_tx_cb - dma callback
1029  *
1030  * DMA callback is called when the transfer is complete for DMA TX channel.
1031  */
1032 static void stm32f4_spi_dma_tx_cb(void *data)
1033 {
1034 	struct stm32_spi *spi = data;
1035 
1036 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1037 		spi_finalize_current_transfer(spi->master);
1038 		stm32f4_spi_disable(spi);
1039 	}
1040 }
1041 
1042 /**
1043  * stm32f4_spi_dma_rx_cb - dma callback
1044  *
1045  * DMA callback is called when the transfer is complete for DMA RX channel.
1046  */
1047 static void stm32f4_spi_dma_rx_cb(void *data)
1048 {
1049 	struct stm32_spi *spi = data;
1050 
1051 	spi_finalize_current_transfer(spi->master);
1052 	stm32f4_spi_disable(spi);
1053 }
1054 
1055 /**
1056  * stm32h7_spi_dma_cb - dma callback
1057  *
1058  * DMA callback is called when the transfer is complete or when an error
1059  * occurs. If the transfer is complete, EOT flag is raised.
1060  */
1061 static void stm32h7_spi_dma_cb(void *data)
1062 {
1063 	struct stm32_spi *spi = data;
1064 	unsigned long flags;
1065 	u32 sr;
1066 
1067 	spin_lock_irqsave(&spi->lock, flags);
1068 
1069 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1070 
1071 	spin_unlock_irqrestore(&spi->lock, flags);
1072 
1073 	if (!(sr & STM32H7_SPI_SR_EOT))
1074 		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1075 
1076 	/* Now wait for EOT, or SUSP or OVR in case of error */
1077 }
1078 
1079 /**
1080  * stm32_spi_dma_config - configure dma slave channel depending on current
1081  *			  transfer bits_per_word.
1082  */
1083 static void stm32_spi_dma_config(struct stm32_spi *spi,
1084 				 struct dma_slave_config *dma_conf,
1085 				 enum dma_transfer_direction dir)
1086 {
1087 	enum dma_slave_buswidth buswidth;
1088 	u32 maxburst;
1089 
1090 	if (spi->cur_bpw <= 8)
1091 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1092 	else if (spi->cur_bpw <= 16)
1093 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1094 	else
1095 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1096 
1097 	if (spi->cfg->has_fifo) {
1098 		/* Valid for DMA Half or Full Fifo threshold */
1099 		if (spi->cur_fthlv == 2)
1100 			maxburst = 1;
1101 		else
1102 			maxburst = spi->cur_fthlv;
1103 	} else {
1104 		maxburst = 1;
1105 	}
1106 
1107 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1108 	dma_conf->direction = dir;
1109 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1110 		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1111 		dma_conf->src_addr_width = buswidth;
1112 		dma_conf->src_maxburst = maxburst;
1113 
1114 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1115 			buswidth, maxburst);
1116 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1117 		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1118 		dma_conf->dst_addr_width = buswidth;
1119 		dma_conf->dst_maxburst = maxburst;
1120 
1121 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1122 			buswidth, maxburst);
1123 	}
1124 }
1125 
1126 /**
1127  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1128  *				  interrupts
1129  *
1130  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1131  * in progress.
1132  */
1133 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1134 {
1135 	unsigned long flags;
1136 	u32 cr2 = 0;
1137 
1138 	/* Enable the interrupts relative to the current communication mode */
1139 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1140 		cr2 |= STM32F4_SPI_CR2_TXEIE;
1141 	} else if (spi->cur_comm == SPI_FULL_DUPLEX) {
1142 		/* In transmit-only mode, the OVR flag is set in the SR register
1143 		 * since the received data are never read. Therefore set OVR
1144 		 * interrupt only when rx buffer is available.
1145 		 */
1146 		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1147 	} else {
1148 		return -EINVAL;
1149 	}
1150 
1151 	spin_lock_irqsave(&spi->lock, flags);
1152 
1153 	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1154 
1155 	stm32_spi_enable(spi);
1156 
1157 	/* starting data transfer when buffer is loaded */
1158 	if (spi->tx_buf)
1159 		stm32f4_spi_write_tx(spi);
1160 
1161 	spin_unlock_irqrestore(&spi->lock, flags);
1162 
1163 	return 1;
1164 }
1165 
1166 /**
1167  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1168  *				  interrupts
1169  *
1170  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1171  * in progress.
1172  */
1173 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1174 {
1175 	unsigned long flags;
1176 	u32 ier = 0;
1177 
1178 	/* Enable the interrupts relative to the current communication mode */
1179 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1180 		ier |= STM32H7_SPI_IER_DXPIE;
1181 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1182 		ier |= STM32H7_SPI_IER_TXPIE;
1183 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1184 		ier |= STM32H7_SPI_IER_RXPIE;
1185 
1186 	/* Enable the interrupts relative to the end of transfer */
1187 	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1188 	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1189 
1190 	spin_lock_irqsave(&spi->lock, flags);
1191 
1192 	stm32_spi_enable(spi);
1193 
1194 	/* Be sure to have data in fifo before starting data transfer */
1195 	if (spi->tx_buf)
1196 		stm32h7_spi_write_txfifo(spi);
1197 
1198 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1199 
1200 	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1201 
1202 	spin_unlock_irqrestore(&spi->lock, flags);
1203 
1204 	return 1;
1205 }
1206 
1207 /**
1208  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1209  *					transfer using DMA
1210  */
1211 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1212 {
1213 	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1214 	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1215 	    spi->cur_comm == SPI_FULL_DUPLEX) {
1216 		/*
1217 		 * In transmit-only mode, the OVR flag is set in the SR register
1218 		 * since the received data are never read. Therefore set OVR
1219 		 * interrupt only when rx buffer is available.
1220 		 */
1221 		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1222 	}
1223 
1224 	stm32_spi_enable(spi);
1225 }
1226 
1227 /**
1228  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1229  *					transfer using DMA
1230  */
1231 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1232 {
1233 	/* Enable the interrupts relative to the end of transfer */
1234 	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1235 						 STM32H7_SPI_IER_TXTFIE |
1236 						 STM32H7_SPI_IER_OVRIE |
1237 						 STM32H7_SPI_IER_MODFIE);
1238 
1239 	stm32_spi_enable(spi);
1240 
1241 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1242 }
1243 
1244 /**
1245  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1246  *
1247  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1248  * in progress.
1249  */
1250 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1251 				      struct spi_transfer *xfer)
1252 {
1253 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1254 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1255 	unsigned long flags;
1256 
1257 	spin_lock_irqsave(&spi->lock, flags);
1258 
1259 	rx_dma_desc = NULL;
1260 	if (spi->rx_buf && spi->dma_rx) {
1261 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1262 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1263 
1264 		/* Enable Rx DMA request */
1265 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1266 				   spi->cfg->regs->dma_rx_en.mask);
1267 
1268 		rx_dma_desc = dmaengine_prep_slave_sg(
1269 					spi->dma_rx, xfer->rx_sg.sgl,
1270 					xfer->rx_sg.nents,
1271 					rx_dma_conf.direction,
1272 					DMA_PREP_INTERRUPT);
1273 	}
1274 
1275 	tx_dma_desc = NULL;
1276 	if (spi->tx_buf && spi->dma_tx) {
1277 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1278 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1279 
1280 		tx_dma_desc = dmaengine_prep_slave_sg(
1281 					spi->dma_tx, xfer->tx_sg.sgl,
1282 					xfer->tx_sg.nents,
1283 					tx_dma_conf.direction,
1284 					DMA_PREP_INTERRUPT);
1285 	}
1286 
1287 	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1288 	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1289 		goto dma_desc_error;
1290 
1291 	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1292 		goto dma_desc_error;
1293 
1294 	if (rx_dma_desc) {
1295 		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1296 		rx_dma_desc->callback_param = spi;
1297 
1298 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1299 			dev_err(spi->dev, "Rx DMA submit failed\n");
1300 			goto dma_desc_error;
1301 		}
1302 		/* Enable Rx DMA channel */
1303 		dma_async_issue_pending(spi->dma_rx);
1304 	}
1305 
1306 	if (tx_dma_desc) {
1307 		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1308 		    spi->cur_comm == SPI_3WIRE_TX) {
1309 			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1310 			tx_dma_desc->callback_param = spi;
1311 		}
1312 
1313 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1314 			dev_err(spi->dev, "Tx DMA submit failed\n");
1315 			goto dma_submit_error;
1316 		}
1317 		/* Enable Tx DMA channel */
1318 		dma_async_issue_pending(spi->dma_tx);
1319 
1320 		/* Enable Tx DMA request */
1321 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1322 				   spi->cfg->regs->dma_tx_en.mask);
1323 	}
1324 
1325 	spi->cfg->transfer_one_dma_start(spi);
1326 
1327 	spin_unlock_irqrestore(&spi->lock, flags);
1328 
1329 	return 1;
1330 
1331 dma_submit_error:
1332 	if (spi->dma_rx)
1333 		dmaengine_terminate_all(spi->dma_rx);
1334 
1335 dma_desc_error:
1336 	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1337 			   spi->cfg->regs->dma_rx_en.mask);
1338 
1339 	spin_unlock_irqrestore(&spi->lock, flags);
1340 
1341 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1342 
1343 	spi->cur_usedma = false;
1344 	return spi->cfg->transfer_one_irq(spi);
1345 }
1346 
1347 /**
1348  * stm32f4_spi_set_bpw - Configure bits per word
1349  * @spi: pointer to the spi controller data structure
1350  */
1351 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1352 {
1353 	if (spi->cur_bpw == 16)
1354 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1355 	else
1356 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1357 }
1358 
1359 /**
1360  * stm32h7_spi_set_bpw - configure bits per word
1361  * @spi: pointer to the spi controller data structure
1362  */
1363 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1364 {
1365 	u32 bpw, fthlv;
1366 	u32 cfg1_clrb = 0, cfg1_setb = 0;
1367 
1368 	bpw = spi->cur_bpw - 1;
1369 
1370 	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1371 	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1372 		     STM32H7_SPI_CFG1_DSIZE;
1373 
1374 	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi);
1375 	fthlv = spi->cur_fthlv - 1;
1376 
1377 	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1378 	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1379 		     STM32H7_SPI_CFG1_FTHLV;
1380 
1381 	writel_relaxed(
1382 		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1383 		 ~cfg1_clrb) | cfg1_setb,
1384 		spi->base + STM32H7_SPI_CFG1);
1385 }
1386 
1387 /**
1388  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1389  * @spi: pointer to the spi controller data structure
1390  * @mbrdiv: baud rate divisor value
1391  */
1392 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1393 {
1394 	u32 clrb = 0, setb = 0;
1395 
1396 	clrb |= spi->cfg->regs->br.mask;
1397 	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1398 		spi->cfg->regs->br.mask;
1399 
1400 	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1401 			~clrb) | setb,
1402 		       spi->base + spi->cfg->regs->br.reg);
1403 }
1404 
1405 /**
1406  * stm32_spi_communication_type - return transfer communication type
1407  * @spi_dev: pointer to the spi device
1408  * transfer: pointer to spi transfer
1409  */
1410 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1411 						 struct spi_transfer *transfer)
1412 {
1413 	unsigned int type = SPI_FULL_DUPLEX;
1414 
1415 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1416 		/*
1417 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1418 		 * is forbidden and unvalidated by SPI subsystem so depending
1419 		 * on the valid buffer, we can determine the direction of the
1420 		 * transfer.
1421 		 */
1422 		if (!transfer->tx_buf)
1423 			type = SPI_3WIRE_RX;
1424 		else
1425 			type = SPI_3WIRE_TX;
1426 	} else {
1427 		if (!transfer->tx_buf)
1428 			type = SPI_SIMPLEX_RX;
1429 		else if (!transfer->rx_buf)
1430 			type = SPI_SIMPLEX_TX;
1431 	}
1432 
1433 	return type;
1434 }
1435 
1436 /**
1437  * stm32f4_spi_set_mode - configure communication mode
1438  * @spi: pointer to the spi controller data structure
1439  * @comm_type: type of communication to configure
1440  */
1441 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1442 {
1443 	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1444 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1445 					STM32F4_SPI_CR1_BIDIMODE |
1446 					STM32F4_SPI_CR1_BIDIOE);
1447 	} else if (comm_type == SPI_FULL_DUPLEX) {
1448 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1449 					STM32F4_SPI_CR1_BIDIMODE |
1450 					STM32F4_SPI_CR1_BIDIOE);
1451 	} else {
1452 		return -EINVAL;
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 /**
1459  * stm32h7_spi_set_mode - configure communication mode
1460  * @spi: pointer to the spi controller data structure
1461  * @comm_type: type of communication to configure
1462  */
1463 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1464 {
1465 	u32 mode;
1466 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1467 
1468 	if (comm_type == SPI_3WIRE_RX) {
1469 		mode = STM32H7_SPI_HALF_DUPLEX;
1470 		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1471 	} else if (comm_type == SPI_3WIRE_TX) {
1472 		mode = STM32H7_SPI_HALF_DUPLEX;
1473 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1474 	} else if (comm_type == SPI_SIMPLEX_RX) {
1475 		mode = STM32H7_SPI_SIMPLEX_RX;
1476 	} else if (comm_type == SPI_SIMPLEX_TX) {
1477 		mode = STM32H7_SPI_SIMPLEX_TX;
1478 	} else {
1479 		mode = STM32H7_SPI_FULL_DUPLEX;
1480 	}
1481 
1482 	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1483 	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1484 		     STM32H7_SPI_CFG2_COMM;
1485 
1486 	writel_relaxed(
1487 		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1488 		 ~cfg2_clrb) | cfg2_setb,
1489 		spi->base + STM32H7_SPI_CFG2);
1490 
1491 	return 0;
1492 }
1493 
1494 /**
1495  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1496  *			       consecutive data frames in master mode
1497  * @spi: pointer to the spi controller data structure
1498  * @len: transfer len
1499  */
1500 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1501 {
1502 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1503 
1504 	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1505 	if ((len > 1) && (spi->cur_midi > 0)) {
1506 		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1507 		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1508 			       (u32)STM32H7_SPI_CFG2_MIDI >>
1509 			       STM32H7_SPI_CFG2_MIDI_SHIFT);
1510 
1511 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1512 			sck_period_ns, midi, midi * sck_period_ns);
1513 		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1514 			     STM32H7_SPI_CFG2_MIDI;
1515 	}
1516 
1517 	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1518 			~cfg2_clrb) | cfg2_setb,
1519 		       spi->base + STM32H7_SPI_CFG2);
1520 }
1521 
1522 /**
1523  * stm32h7_spi_number_of_data - configure number of data at current transfer
1524  * @spi: pointer to the spi controller data structure
1525  * @len: transfer length
1526  */
1527 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1528 {
1529 	u32 cr2_clrb = 0, cr2_setb = 0;
1530 
1531 	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1532 			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1533 		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1534 		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1535 		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1536 				~cr2_clrb) | cr2_setb,
1537 			       spi->base + STM32H7_SPI_CR2);
1538 	} else {
1539 		return -EMSGSIZE;
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 /**
1546  * stm32_spi_transfer_one_setup - common setup to transfer a single
1547  *				  spi_transfer either using DMA or
1548  *				  interrupts.
1549  */
1550 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1551 					struct spi_device *spi_dev,
1552 					struct spi_transfer *transfer)
1553 {
1554 	unsigned long flags;
1555 	unsigned int comm_type;
1556 	int nb_words, ret = 0;
1557 
1558 	spin_lock_irqsave(&spi->lock, flags);
1559 
1560 	if (spi->cur_bpw != transfer->bits_per_word) {
1561 		spi->cur_bpw = transfer->bits_per_word;
1562 		spi->cfg->set_bpw(spi);
1563 	}
1564 
1565 	if (spi->cur_speed != transfer->speed_hz) {
1566 		int mbr;
1567 
1568 		/* Update spi->cur_speed with real clock speed */
1569 		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1570 					    spi->cfg->baud_rate_div_min,
1571 					    spi->cfg->baud_rate_div_max);
1572 		if (mbr < 0) {
1573 			ret = mbr;
1574 			goto out;
1575 		}
1576 
1577 		transfer->speed_hz = spi->cur_speed;
1578 		stm32_spi_set_mbr(spi, mbr);
1579 	}
1580 
1581 	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1582 	if (spi->cur_comm != comm_type) {
1583 		ret = spi->cfg->set_mode(spi, comm_type);
1584 
1585 		if (ret < 0)
1586 			goto out;
1587 
1588 		spi->cur_comm = comm_type;
1589 	}
1590 
1591 	if (spi->cfg->set_data_idleness)
1592 		spi->cfg->set_data_idleness(spi, transfer->len);
1593 
1594 	if (spi->cur_bpw <= 8)
1595 		nb_words = transfer->len;
1596 	else if (spi->cur_bpw <= 16)
1597 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1598 	else
1599 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1600 
1601 	if (spi->cfg->set_number_of_data) {
1602 		ret = spi->cfg->set_number_of_data(spi, nb_words);
1603 		if (ret < 0)
1604 			goto out;
1605 	}
1606 
1607 	spi->cur_xferlen = transfer->len;
1608 
1609 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1610 		spi->cur_comm);
1611 	dev_dbg(spi->dev,
1612 		"data frame of %d-bit, data packet of %d data frames\n",
1613 		spi->cur_bpw, spi->cur_fthlv);
1614 	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1615 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1616 		spi->cur_xferlen, nb_words);
1617 	dev_dbg(spi->dev, "dma %s\n",
1618 		(spi->cur_usedma) ? "enabled" : "disabled");
1619 
1620 out:
1621 	spin_unlock_irqrestore(&spi->lock, flags);
1622 
1623 	return ret;
1624 }
1625 
1626 /**
1627  * stm32_spi_transfer_one - transfer a single spi_transfer
1628  *
1629  * It must return 0 if the transfer is finished or 1 if the transfer is still
1630  * in progress.
1631  */
1632 static int stm32_spi_transfer_one(struct spi_master *master,
1633 				  struct spi_device *spi_dev,
1634 				  struct spi_transfer *transfer)
1635 {
1636 	struct stm32_spi *spi = spi_master_get_devdata(master);
1637 	int ret;
1638 
1639 	spi->tx_buf = transfer->tx_buf;
1640 	spi->rx_buf = transfer->rx_buf;
1641 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1642 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1643 
1644 	spi->cur_usedma = (master->can_dma &&
1645 			   master->can_dma(master, spi_dev, transfer));
1646 
1647 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1648 	if (ret) {
1649 		dev_err(spi->dev, "SPI transfer setup failed\n");
1650 		return ret;
1651 	}
1652 
1653 	if (spi->cur_usedma)
1654 		return stm32_spi_transfer_one_dma(spi, transfer);
1655 	else
1656 		return spi->cfg->transfer_one_irq(spi);
1657 }
1658 
1659 /**
1660  * stm32_spi_unprepare_msg - relax the hardware
1661  */
1662 static int stm32_spi_unprepare_msg(struct spi_master *master,
1663 				   struct spi_message *msg)
1664 {
1665 	struct stm32_spi *spi = spi_master_get_devdata(master);
1666 
1667 	spi->cfg->disable(spi);
1668 
1669 	return 0;
1670 }
1671 
1672 /**
1673  * stm32f4_spi_config - Configure SPI controller as SPI master
1674  */
1675 static int stm32f4_spi_config(struct stm32_spi *spi)
1676 {
1677 	unsigned long flags;
1678 
1679 	spin_lock_irqsave(&spi->lock, flags);
1680 
1681 	/* Ensure I2SMOD bit is kept cleared */
1682 	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1683 			   STM32F4_SPI_I2SCFGR_I2SMOD);
1684 
1685 	/*
1686 	 * - SS input value high
1687 	 * - transmitter half duplex direction
1688 	 * - Set the master mode (default Motorola mode)
1689 	 * - Consider 1 master/n slaves configuration and
1690 	 *   SS input value is determined by the SSI bit
1691 	 */
1692 	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1693 						 STM32F4_SPI_CR1_BIDIOE |
1694 						 STM32F4_SPI_CR1_MSTR |
1695 						 STM32F4_SPI_CR1_SSM);
1696 
1697 	spin_unlock_irqrestore(&spi->lock, flags);
1698 
1699 	return 0;
1700 }
1701 
1702 /**
1703  * stm32h7_spi_config - Configure SPI controller as SPI master
1704  */
1705 static int stm32h7_spi_config(struct stm32_spi *spi)
1706 {
1707 	unsigned long flags;
1708 
1709 	spin_lock_irqsave(&spi->lock, flags);
1710 
1711 	/* Ensure I2SMOD bit is kept cleared */
1712 	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1713 			   STM32H7_SPI_I2SCFGR_I2SMOD);
1714 
1715 	/*
1716 	 * - SS input value high
1717 	 * - transmitter half duplex direction
1718 	 * - automatic communication suspend when RX-Fifo is full
1719 	 */
1720 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1721 						 STM32H7_SPI_CR1_HDDIR |
1722 						 STM32H7_SPI_CR1_MASRX);
1723 
1724 	/*
1725 	 * - Set the master mode (default Motorola mode)
1726 	 * - Consider 1 master/n slaves configuration and
1727 	 *   SS input value is determined by the SSI bit
1728 	 * - keep control of all associated GPIOs
1729 	 */
1730 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1731 						  STM32H7_SPI_CFG2_SSM |
1732 						  STM32H7_SPI_CFG2_AFCNTR);
1733 
1734 	spin_unlock_irqrestore(&spi->lock, flags);
1735 
1736 	return 0;
1737 }
1738 
1739 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1740 	.regs = &stm32f4_spi_regspec,
1741 	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1742 	.disable = stm32f4_spi_disable,
1743 	.config = stm32f4_spi_config,
1744 	.set_bpw = stm32f4_spi_set_bpw,
1745 	.set_mode = stm32f4_spi_set_mode,
1746 	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1747 	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1748 	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
1749 	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1750 	.irq_handler_event = stm32f4_spi_irq_event,
1751 	.irq_handler_thread = stm32f4_spi_irq_thread,
1752 	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1753 	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1754 	.has_fifo = false,
1755 };
1756 
1757 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1758 	.regs = &stm32h7_spi_regspec,
1759 	.get_fifo_size = stm32h7_spi_get_fifo_size,
1760 	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1761 	.disable = stm32h7_spi_disable,
1762 	.config = stm32h7_spi_config,
1763 	.set_bpw = stm32h7_spi_set_bpw,
1764 	.set_mode = stm32h7_spi_set_mode,
1765 	.set_data_idleness = stm32h7_spi_data_idleness,
1766 	.set_number_of_data = stm32h7_spi_number_of_data,
1767 	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1768 	.dma_rx_cb = stm32h7_spi_dma_cb,
1769 	.dma_tx_cb = stm32h7_spi_dma_cb,
1770 	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1771 	.irq_handler_thread = stm32h7_spi_irq_thread,
1772 	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1773 	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1774 	.has_fifo = true,
1775 };
1776 
1777 static const struct of_device_id stm32_spi_of_match[] = {
1778 	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1779 	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1780 	{},
1781 };
1782 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1783 
1784 static int stm32_spi_probe(struct platform_device *pdev)
1785 {
1786 	struct spi_master *master;
1787 	struct stm32_spi *spi;
1788 	struct resource *res;
1789 	int ret;
1790 
1791 	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1792 	if (!master) {
1793 		dev_err(&pdev->dev, "spi master allocation failed\n");
1794 		return -ENOMEM;
1795 	}
1796 	platform_set_drvdata(pdev, master);
1797 
1798 	spi = spi_master_get_devdata(master);
1799 	spi->dev = &pdev->dev;
1800 	spi->master = master;
1801 	spin_lock_init(&spi->lock);
1802 
1803 	spi->cfg = (const struct stm32_spi_cfg *)
1804 		of_match_device(pdev->dev.driver->of_match_table,
1805 				&pdev->dev)->data;
1806 
1807 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1808 	spi->base = devm_ioremap_resource(&pdev->dev, res);
1809 	if (IS_ERR(spi->base)) {
1810 		ret = PTR_ERR(spi->base);
1811 		goto err_master_put;
1812 	}
1813 
1814 	spi->phys_addr = (dma_addr_t)res->start;
1815 
1816 	spi->irq = platform_get_irq(pdev, 0);
1817 	if (spi->irq <= 0) {
1818 		ret = spi->irq;
1819 		if (ret != -EPROBE_DEFER)
1820 			dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1821 		goto err_master_put;
1822 	}
1823 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1824 					spi->cfg->irq_handler_event,
1825 					spi->cfg->irq_handler_thread,
1826 					IRQF_ONESHOT, pdev->name, master);
1827 	if (ret) {
1828 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1829 			ret);
1830 		goto err_master_put;
1831 	}
1832 
1833 	spi->clk = devm_clk_get(&pdev->dev, NULL);
1834 	if (IS_ERR(spi->clk)) {
1835 		ret = PTR_ERR(spi->clk);
1836 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1837 		goto err_master_put;
1838 	}
1839 
1840 	ret = clk_prepare_enable(spi->clk);
1841 	if (ret) {
1842 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1843 		goto err_master_put;
1844 	}
1845 	spi->clk_rate = clk_get_rate(spi->clk);
1846 	if (!spi->clk_rate) {
1847 		dev_err(&pdev->dev, "clk rate = 0\n");
1848 		ret = -EINVAL;
1849 		goto err_clk_disable;
1850 	}
1851 
1852 	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1853 	if (!IS_ERR(spi->rst)) {
1854 		reset_control_assert(spi->rst);
1855 		udelay(2);
1856 		reset_control_deassert(spi->rst);
1857 	}
1858 
1859 	if (spi->cfg->has_fifo)
1860 		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1861 
1862 	ret = spi->cfg->config(spi);
1863 	if (ret) {
1864 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1865 			ret);
1866 		goto err_clk_disable;
1867 	}
1868 
1869 	master->dev.of_node = pdev->dev.of_node;
1870 	master->auto_runtime_pm = true;
1871 	master->bus_num = pdev->id;
1872 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1873 			    SPI_3WIRE;
1874 	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1875 	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1876 	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1877 	master->use_gpio_descriptors = true;
1878 	master->prepare_message = stm32_spi_prepare_msg;
1879 	master->transfer_one = stm32_spi_transfer_one;
1880 	master->unprepare_message = stm32_spi_unprepare_msg;
1881 
1882 	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1883 	if (IS_ERR(spi->dma_tx)) {
1884 		ret = PTR_ERR(spi->dma_tx);
1885 		spi->dma_tx = NULL;
1886 		if (ret == -EPROBE_DEFER)
1887 			goto err_clk_disable;
1888 
1889 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1890 	} else {
1891 		master->dma_tx = spi->dma_tx;
1892 	}
1893 
1894 	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1895 	if (IS_ERR(spi->dma_rx)) {
1896 		ret = PTR_ERR(spi->dma_rx);
1897 		spi->dma_rx = NULL;
1898 		if (ret == -EPROBE_DEFER)
1899 			goto err_dma_release;
1900 
1901 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1902 	} else {
1903 		master->dma_rx = spi->dma_rx;
1904 	}
1905 
1906 	if (spi->dma_tx || spi->dma_rx)
1907 		master->can_dma = stm32_spi_can_dma;
1908 
1909 	pm_runtime_set_active(&pdev->dev);
1910 	pm_runtime_enable(&pdev->dev);
1911 
1912 	ret = devm_spi_register_master(&pdev->dev, master);
1913 	if (ret) {
1914 		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1915 			ret);
1916 		goto err_pm_disable;
1917 	}
1918 
1919 	if (!master->cs_gpiods) {
1920 		dev_err(&pdev->dev, "no CS gpios available\n");
1921 		ret = -EINVAL;
1922 		goto err_pm_disable;
1923 	}
1924 
1925 	dev_info(&pdev->dev, "driver initialized\n");
1926 
1927 	return 0;
1928 
1929 err_pm_disable:
1930 	pm_runtime_disable(&pdev->dev);
1931 err_dma_release:
1932 	if (spi->dma_tx)
1933 		dma_release_channel(spi->dma_tx);
1934 	if (spi->dma_rx)
1935 		dma_release_channel(spi->dma_rx);
1936 err_clk_disable:
1937 	clk_disable_unprepare(spi->clk);
1938 err_master_put:
1939 	spi_master_put(master);
1940 
1941 	return ret;
1942 }
1943 
1944 static int stm32_spi_remove(struct platform_device *pdev)
1945 {
1946 	struct spi_master *master = platform_get_drvdata(pdev);
1947 	struct stm32_spi *spi = spi_master_get_devdata(master);
1948 
1949 	spi->cfg->disable(spi);
1950 
1951 	if (master->dma_tx)
1952 		dma_release_channel(master->dma_tx);
1953 	if (master->dma_rx)
1954 		dma_release_channel(master->dma_rx);
1955 
1956 	clk_disable_unprepare(spi->clk);
1957 
1958 	pm_runtime_disable(&pdev->dev);
1959 
1960 	return 0;
1961 }
1962 
1963 #ifdef CONFIG_PM
1964 static int stm32_spi_runtime_suspend(struct device *dev)
1965 {
1966 	struct spi_master *master = dev_get_drvdata(dev);
1967 	struct stm32_spi *spi = spi_master_get_devdata(master);
1968 
1969 	clk_disable_unprepare(spi->clk);
1970 
1971 	return 0;
1972 }
1973 
1974 static int stm32_spi_runtime_resume(struct device *dev)
1975 {
1976 	struct spi_master *master = dev_get_drvdata(dev);
1977 	struct stm32_spi *spi = spi_master_get_devdata(master);
1978 
1979 	return clk_prepare_enable(spi->clk);
1980 }
1981 #endif
1982 
1983 #ifdef CONFIG_PM_SLEEP
1984 static int stm32_spi_suspend(struct device *dev)
1985 {
1986 	struct spi_master *master = dev_get_drvdata(dev);
1987 	int ret;
1988 
1989 	ret = spi_master_suspend(master);
1990 	if (ret)
1991 		return ret;
1992 
1993 	return pm_runtime_force_suspend(dev);
1994 }
1995 
1996 static int stm32_spi_resume(struct device *dev)
1997 {
1998 	struct spi_master *master = dev_get_drvdata(dev);
1999 	struct stm32_spi *spi = spi_master_get_devdata(master);
2000 	int ret;
2001 
2002 	ret = pm_runtime_force_resume(dev);
2003 	if (ret)
2004 		return ret;
2005 
2006 	ret = spi_master_resume(master);
2007 	if (ret)
2008 		clk_disable_unprepare(spi->clk);
2009 
2010 	return ret;
2011 }
2012 #endif
2013 
2014 static const struct dev_pm_ops stm32_spi_pm_ops = {
2015 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2016 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2017 			   stm32_spi_runtime_resume, NULL)
2018 };
2019 
2020 static struct platform_driver stm32_spi_driver = {
2021 	.probe = stm32_spi_probe,
2022 	.remove = stm32_spi_remove,
2023 	.driver = {
2024 		.name = DRIVER_NAME,
2025 		.pm = &stm32_spi_pm_ops,
2026 		.of_match_table = stm32_spi_of_match,
2027 	},
2028 };
2029 
2030 module_platform_driver(stm32_spi_driver);
2031 
2032 MODULE_ALIAS("platform:" DRIVER_NAME);
2033 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2034 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2035 MODULE_LICENSE("GPL v2");
2036