xref: /openbmc/linux/drivers/spi/spi-stm32.c (revision dbf563ee)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7 
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 #include <linux/spi/spi.h>
20 
21 #define DRIVER_NAME "spi_stm32"
22 
23 /* STM32F4 SPI registers */
24 #define STM32F4_SPI_CR1			0x00
25 #define STM32F4_SPI_CR2			0x04
26 #define STM32F4_SPI_SR			0x08
27 #define STM32F4_SPI_DR			0x0C
28 #define STM32F4_SPI_I2SCFGR		0x1C
29 
30 /* STM32F4_SPI_CR1 bit fields */
31 #define STM32F4_SPI_CR1_CPHA		BIT(0)
32 #define STM32F4_SPI_CR1_CPOL		BIT(1)
33 #define STM32F4_SPI_CR1_MSTR		BIT(2)
34 #define STM32F4_SPI_CR1_BR_SHIFT	3
35 #define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
36 #define STM32F4_SPI_CR1_SPE		BIT(6)
37 #define STM32F4_SPI_CR1_LSBFRST		BIT(7)
38 #define STM32F4_SPI_CR1_SSI		BIT(8)
39 #define STM32F4_SPI_CR1_SSM		BIT(9)
40 #define STM32F4_SPI_CR1_RXONLY		BIT(10)
41 #define STM32F4_SPI_CR1_DFF		BIT(11)
42 #define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
43 #define STM32F4_SPI_CR1_CRCEN		BIT(13)
44 #define STM32F4_SPI_CR1_BIDIOE		BIT(14)
45 #define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
46 #define STM32F4_SPI_CR1_BR_MIN		0
47 #define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
48 
49 /* STM32F4_SPI_CR2 bit fields */
50 #define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
51 #define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
52 #define STM32F4_SPI_CR2_SSOE		BIT(2)
53 #define STM32F4_SPI_CR2_FRF		BIT(4)
54 #define STM32F4_SPI_CR2_ERRIE		BIT(5)
55 #define STM32F4_SPI_CR2_RXNEIE		BIT(6)
56 #define STM32F4_SPI_CR2_TXEIE		BIT(7)
57 
58 /* STM32F4_SPI_SR bit fields */
59 #define STM32F4_SPI_SR_RXNE		BIT(0)
60 #define STM32F4_SPI_SR_TXE		BIT(1)
61 #define STM32F4_SPI_SR_CHSIDE		BIT(2)
62 #define STM32F4_SPI_SR_UDR		BIT(3)
63 #define STM32F4_SPI_SR_CRCERR		BIT(4)
64 #define STM32F4_SPI_SR_MODF		BIT(5)
65 #define STM32F4_SPI_SR_OVR		BIT(6)
66 #define STM32F4_SPI_SR_BSY		BIT(7)
67 #define STM32F4_SPI_SR_FRE		BIT(8)
68 
69 /* STM32F4_SPI_I2SCFGR bit fields */
70 #define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
71 
72 /* STM32F4 SPI Baud Rate min/max divisor */
73 #define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
74 #define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
75 
76 /* STM32H7 SPI registers */
77 #define STM32H7_SPI_CR1			0x00
78 #define STM32H7_SPI_CR2			0x04
79 #define STM32H7_SPI_CFG1		0x08
80 #define STM32H7_SPI_CFG2		0x0C
81 #define STM32H7_SPI_IER			0x10
82 #define STM32H7_SPI_SR			0x14
83 #define STM32H7_SPI_IFCR		0x18
84 #define STM32H7_SPI_TXDR		0x20
85 #define STM32H7_SPI_RXDR		0x30
86 #define STM32H7_SPI_I2SCFGR		0x50
87 
88 /* STM32H7_SPI_CR1 bit fields */
89 #define STM32H7_SPI_CR1_SPE		BIT(0)
90 #define STM32H7_SPI_CR1_MASRX		BIT(8)
91 #define STM32H7_SPI_CR1_CSTART		BIT(9)
92 #define STM32H7_SPI_CR1_CSUSP		BIT(10)
93 #define STM32H7_SPI_CR1_HDDIR		BIT(11)
94 #define STM32H7_SPI_CR1_SSI		BIT(12)
95 
96 /* STM32H7_SPI_CR2 bit fields */
97 #define STM32H7_SPI_CR2_TSIZE_SHIFT	0
98 #define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
99 
100 /* STM32H7_SPI_CFG1 bit fields */
101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
102 #define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
104 #define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT	28
108 #define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
109 #define STM32H7_SPI_CFG1_MBR_MIN	0
110 #define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
111 
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI_SHIFT	4
114 #define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
115 #define STM32H7_SPI_CFG2_COMM_SHIFT	17
116 #define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
117 #define STM32H7_SPI_CFG2_SP_SHIFT	19
118 #define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
119 #define STM32H7_SPI_CFG2_MASTER		BIT(22)
120 #define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
121 #define STM32H7_SPI_CFG2_CPHA		BIT(24)
122 #define STM32H7_SPI_CFG2_CPOL		BIT(25)
123 #define STM32H7_SPI_CFG2_SSM		BIT(26)
124 #define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
125 
126 /* STM32H7_SPI_IER bit fields */
127 #define STM32H7_SPI_IER_RXPIE		BIT(0)
128 #define STM32H7_SPI_IER_TXPIE		BIT(1)
129 #define STM32H7_SPI_IER_DXPIE		BIT(2)
130 #define STM32H7_SPI_IER_EOTIE		BIT(3)
131 #define STM32H7_SPI_IER_TXTFIE		BIT(4)
132 #define STM32H7_SPI_IER_OVRIE		BIT(6)
133 #define STM32H7_SPI_IER_MODFIE		BIT(9)
134 #define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
135 
136 /* STM32H7_SPI_SR bit fields */
137 #define STM32H7_SPI_SR_RXP		BIT(0)
138 #define STM32H7_SPI_SR_TXP		BIT(1)
139 #define STM32H7_SPI_SR_EOT		BIT(3)
140 #define STM32H7_SPI_SR_OVR		BIT(6)
141 #define STM32H7_SPI_SR_MODF		BIT(9)
142 #define STM32H7_SPI_SR_SUSP		BIT(11)
143 #define STM32H7_SPI_SR_RXPLVL_SHIFT	13
144 #define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
145 #define STM32H7_SPI_SR_RXWNE		BIT(15)
146 
147 /* STM32H7_SPI_IFCR bit fields */
148 #define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
149 
150 /* STM32H7_SPI_I2SCFGR bit fields */
151 #define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
152 
153 /* STM32H7 SPI Master Baud Rate min/max divisor */
154 #define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
155 #define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
156 
157 /* STM32H7 SPI Communication mode */
158 #define STM32H7_SPI_FULL_DUPLEX		0
159 #define STM32H7_SPI_SIMPLEX_TX		1
160 #define STM32H7_SPI_SIMPLEX_RX		2
161 #define STM32H7_SPI_HALF_DUPLEX		3
162 
163 /* SPI Communication type */
164 #define SPI_FULL_DUPLEX		0
165 #define SPI_SIMPLEX_TX		1
166 #define SPI_SIMPLEX_RX		2
167 #define SPI_3WIRE_TX		3
168 #define SPI_3WIRE_RX		4
169 
170 #define SPI_1HZ_NS		1000000000
171 
172 /*
173  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174  * without fifo buffers.
175  */
176 #define SPI_DMA_MIN_BYTES	16
177 
178 /**
179  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180  * @reg:		register offset
181  * @mask:		bitfield mask
182  * @shift:		left shift
183  */
184 struct stm32_spi_reg {
185 	int reg;
186 	int mask;
187 	int shift;
188 };
189 
190 /**
191  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192  * @en: enable register and SPI enable bit
193  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195  * @cpol: clock polarity register and polarity bit
196  * @cpha: clock phase register and phase bit
197  * @lsb_first: LSB transmitted first register and bit
198  * @br: baud rate register and bitfields
199  * @rx: SPI RX data register
200  * @tx: SPI TX data register
201  */
202 struct stm32_spi_regspec {
203 	const struct stm32_spi_reg en;
204 	const struct stm32_spi_reg dma_rx_en;
205 	const struct stm32_spi_reg dma_tx_en;
206 	const struct stm32_spi_reg cpol;
207 	const struct stm32_spi_reg cpha;
208 	const struct stm32_spi_reg lsb_first;
209 	const struct stm32_spi_reg br;
210 	const struct stm32_spi_reg rx;
211 	const struct stm32_spi_reg tx;
212 };
213 
214 struct stm32_spi;
215 
216 /**
217  * struct stm32_spi_cfg - stm32 compatible configuration data
218  * @regs: registers descriptions
219  * @get_fifo_size: routine to get fifo size
220  * @get_bpw_mask: routine to get bits per word mask
221  * @disable: routine to disable controller
222  * @config: routine to configure controller as SPI Master
223  * @set_bpw: routine to configure registers to for bits per word
224  * @set_mode: routine to configure registers to desired mode
225  * @set_data_idleness: optional routine to configure registers to desired idle
226  * time between frames (if driver has this functionality)
227  * @set_number_of_data: optional routine to configure registers to desired
228  * number of data (if driver has this functionality)
229  * @can_dma: routine to determine if the transfer is eligible for DMA use
230  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231  * using DMA
232  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
233  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234  * @transfer_one_irq: routine to configure interrupts for driver
235  * @irq_handler_event: Interrupt handler for SPI controller events
236  * @irq_handler_thread: thread of interrupt handler for SPI controller
237  * @baud_rate_div_min: minimum baud rate divisor
238  * @baud_rate_div_max: maximum baud rate divisor
239  * @has_fifo: boolean to know if fifo is used for driver
240  * @has_startbit: boolean to know if start bit is used to start transfer
241  */
242 struct stm32_spi_cfg {
243 	const struct stm32_spi_regspec *regs;
244 	int (*get_fifo_size)(struct stm32_spi *spi);
245 	int (*get_bpw_mask)(struct stm32_spi *spi);
246 	void (*disable)(struct stm32_spi *spi);
247 	int (*config)(struct stm32_spi *spi);
248 	void (*set_bpw)(struct stm32_spi *spi);
249 	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250 	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251 	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252 	void (*transfer_one_dma_start)(struct stm32_spi *spi);
253 	void (*dma_rx_cb)(void *data);
254 	void (*dma_tx_cb)(void *data);
255 	int (*transfer_one_irq)(struct stm32_spi *spi);
256 	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257 	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258 	unsigned int baud_rate_div_min;
259 	unsigned int baud_rate_div_max;
260 	bool has_fifo;
261 };
262 
263 /**
264  * struct stm32_spi - private data of the SPI controller
265  * @dev: driver model representation of the controller
266  * @master: controller master interface
267  * @cfg: compatible configuration data
268  * @base: virtual memory area
269  * @clk: hw kernel clock feeding the SPI clock generator
270  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271  * @rst: SPI controller reset line
272  * @lock: prevent I/O concurrent access
273  * @irq: SPI controller interrupt line
274  * @fifo_size: size of the embedded fifo in bytes
275  * @cur_midi: master inter-data idleness in ns
276  * @cur_speed: speed configured in Hz
277  * @cur_bpw: number of bits in a single SPI data frame
278  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279  * @cur_comm: SPI communication mode
280  * @cur_xferlen: current transfer length in bytes
281  * @cur_usedma: boolean to know if dma is used in current transfer
282  * @tx_buf: data to be written, or NULL
283  * @rx_buf: data to be read, or NULL
284  * @tx_len: number of data to be written in bytes
285  * @rx_len: number of data to be read in bytes
286  * @dma_tx: dma channel for TX transfer
287  * @dma_rx: dma channel for RX transfer
288  * @phys_addr: SPI registers physical base address
289  */
290 struct stm32_spi {
291 	struct device *dev;
292 	struct spi_master *master;
293 	const struct stm32_spi_cfg *cfg;
294 	void __iomem *base;
295 	struct clk *clk;
296 	u32 clk_rate;
297 	struct reset_control *rst;
298 	spinlock_t lock; /* prevent I/O concurrent access */
299 	int irq;
300 	unsigned int fifo_size;
301 
302 	unsigned int cur_midi;
303 	unsigned int cur_speed;
304 	unsigned int cur_bpw;
305 	unsigned int cur_fthlv;
306 	unsigned int cur_comm;
307 	unsigned int cur_xferlen;
308 	bool cur_usedma;
309 
310 	const void *tx_buf;
311 	void *rx_buf;
312 	int tx_len;
313 	int rx_len;
314 	struct dma_chan *dma_tx;
315 	struct dma_chan *dma_rx;
316 	dma_addr_t phys_addr;
317 };
318 
319 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320 	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321 
322 	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323 	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324 
325 	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326 	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327 	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328 	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329 
330 	.rx = { STM32F4_SPI_DR },
331 	.tx = { STM32F4_SPI_DR },
332 };
333 
334 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335 	/* SPI data transfer is enabled but spi_ker_ck is idle.
336 	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
337 	 */
338 	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339 
340 	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341 	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342 
343 	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344 	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345 	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346 	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347 		STM32H7_SPI_CFG1_MBR_SHIFT },
348 
349 	.rx = { STM32H7_SPI_RXDR },
350 	.tx = { STM32H7_SPI_TXDR },
351 };
352 
353 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354 				      u32 offset, u32 bits)
355 {
356 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357 		       spi->base + offset);
358 }
359 
360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361 				      u32 offset, u32 bits)
362 {
363 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364 		       spi->base + offset);
365 }
366 
367 /**
368  * stm32h7_spi_get_fifo_size - Return fifo size
369  * @spi: pointer to the spi controller data structure
370  */
371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 {
373 	unsigned long flags;
374 	u32 count = 0;
375 
376 	spin_lock_irqsave(&spi->lock, flags);
377 
378 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379 
380 	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381 		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382 
383 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384 
385 	spin_unlock_irqrestore(&spi->lock, flags);
386 
387 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388 
389 	return count;
390 }
391 
392 /**
393  * stm32f4_spi_get_bpw_mask - Return bits per word mask
394  * @spi: pointer to the spi controller data structure
395  */
396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 {
398 	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399 	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
400 }
401 
402 /**
403  * stm32h7_spi_get_bpw_mask - Return bits per word mask
404  * @spi: pointer to the spi controller data structure
405  */
406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 {
408 	unsigned long flags;
409 	u32 cfg1, max_bpw;
410 
411 	spin_lock_irqsave(&spi->lock, flags);
412 
413 	/*
414 	 * The most significant bit at DSIZE bit field is reserved when the
415 	 * maximum data size of periperal instances is limited to 16-bit
416 	 */
417 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418 
419 	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420 	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421 		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
422 	max_bpw += 1;
423 
424 	spin_unlock_irqrestore(&spi->lock, flags);
425 
426 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427 
428 	return SPI_BPW_RANGE_MASK(4, max_bpw);
429 }
430 
431 /**
432  * stm32_spi_prepare_mbr - Determine baud rate divisor value
433  * @spi: pointer to the spi controller data structure
434  * @speed_hz: requested speed
435  * @min_div: minimum baud rate divisor
436  * @max_div: maximum baud rate divisor
437  *
438  * Return baud rate divisor value in case of success or -EINVAL
439  */
440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441 				 u32 min_div, u32 max_div)
442 {
443 	u32 div, mbrdiv;
444 
445 	/* Ensure spi->clk_rate is even */
446 	div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
447 
448 	/*
449 	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
450 	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
451 	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
452 	 * no need to check it there.
453 	 * However, we need to ensure the following calculations.
454 	 */
455 	if ((div < min_div) || (div > max_div))
456 		return -EINVAL;
457 
458 	/* Determine the first power of 2 greater than or equal to div */
459 	if (div & (div - 1))
460 		mbrdiv = fls(div);
461 	else
462 		mbrdiv = fls(div) - 1;
463 
464 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
465 
466 	return mbrdiv - 1;
467 }
468 
469 /**
470  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471  * @spi: pointer to the spi controller data structure
472  * @xfer_len: length of the message to be transferred
473  */
474 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475 {
476 	u32 fthlv, half_fifo, packet;
477 
478 	/* data packet should not exceed 1/2 of fifo space */
479 	half_fifo = (spi->fifo_size / 2);
480 
481 	/* data_packet should not exceed transfer length */
482 	if (half_fifo > xfer_len)
483 		packet = xfer_len;
484 	else
485 		packet = half_fifo;
486 
487 	if (spi->cur_bpw <= 8)
488 		fthlv = packet;
489 	else if (spi->cur_bpw <= 16)
490 		fthlv = packet / 2;
491 	else
492 		fthlv = packet / 4;
493 
494 	/* align packet size with data registers access */
495 	if (spi->cur_bpw > 8)
496 		fthlv -= (fthlv % 2); /* multiple of 2 */
497 	else
498 		fthlv -= (fthlv % 4); /* multiple of 4 */
499 
500 	if (!fthlv)
501 		fthlv = 1;
502 
503 	return fthlv;
504 }
505 
506 /**
507  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
508  * @spi: pointer to the spi controller data structure
509  *
510  * Read from tx_buf depends on remaining bytes to avoid to read beyond
511  * tx_buf end.
512  */
513 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
514 {
515 	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
516 				  STM32F4_SPI_SR_TXE)) {
517 		u32 offs = spi->cur_xferlen - spi->tx_len;
518 
519 		if (spi->cur_bpw == 16) {
520 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
521 
522 			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
523 			spi->tx_len -= sizeof(u16);
524 		} else {
525 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
526 
527 			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
528 			spi->tx_len -= sizeof(u8);
529 		}
530 	}
531 
532 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
533 }
534 
535 /**
536  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537  * @spi: pointer to the spi controller data structure
538  *
539  * Read from tx_buf depends on remaining bytes to avoid to read beyond
540  * tx_buf end.
541  */
542 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543 {
544 	while ((spi->tx_len > 0) &&
545 		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
546 			STM32H7_SPI_SR_TXP)) {
547 		u32 offs = spi->cur_xferlen - spi->tx_len;
548 
549 		if (spi->tx_len >= sizeof(u32)) {
550 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
551 
552 			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553 			spi->tx_len -= sizeof(u32);
554 		} else if (spi->tx_len >= sizeof(u16)) {
555 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
556 
557 			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558 			spi->tx_len -= sizeof(u16);
559 		} else {
560 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
561 
562 			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563 			spi->tx_len -= sizeof(u8);
564 		}
565 	}
566 
567 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
568 }
569 
570 /**
571  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
572  * @spi: pointer to the spi controller data structure
573  *
574  * Write in rx_buf depends on remaining bytes to avoid to write beyond
575  * rx_buf end.
576  */
577 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
578 {
579 	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
580 				  STM32F4_SPI_SR_RXNE)) {
581 		u32 offs = spi->cur_xferlen - spi->rx_len;
582 
583 		if (spi->cur_bpw == 16) {
584 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
585 
586 			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
587 			spi->rx_len -= sizeof(u16);
588 		} else {
589 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
590 
591 			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
592 			spi->rx_len -= sizeof(u8);
593 		}
594 	}
595 
596 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
597 }
598 
599 /**
600  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601  * @spi: pointer to the spi controller data structure
602  * @flush: boolean indicating that FIFO should be flushed
603  *
604  * Write in rx_buf depends on remaining bytes to avoid to write beyond
605  * rx_buf end.
606  */
607 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608 {
609 	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
610 	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
611 		     STM32H7_SPI_SR_RXPLVL_SHIFT;
612 
613 	while ((spi->rx_len > 0) &&
614 	       ((sr & STM32H7_SPI_SR_RXP) ||
615 		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616 		u32 offs = spi->cur_xferlen - spi->rx_len;
617 
618 		if ((spi->rx_len >= sizeof(u32)) ||
619 		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
621 
622 			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623 			spi->rx_len -= sizeof(u32);
624 		} else if ((spi->rx_len >= sizeof(u16)) ||
625 			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
626 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
627 
628 			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629 			spi->rx_len -= sizeof(u16);
630 		} else {
631 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
632 
633 			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634 			spi->rx_len -= sizeof(u8);
635 		}
636 
637 		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
638 		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
639 			 STM32H7_SPI_SR_RXPLVL_SHIFT;
640 	}
641 
642 	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
643 		flush ? "(flush)" : "", spi->rx_len);
644 }
645 
646 /**
647  * stm32_spi_enable - Enable SPI controller
648  * @spi: pointer to the spi controller data structure
649  */
650 static void stm32_spi_enable(struct stm32_spi *spi)
651 {
652 	dev_dbg(spi->dev, "enable controller\n");
653 
654 	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
655 			   spi->cfg->regs->en.mask);
656 }
657 
658 /**
659  * stm32f4_spi_disable - Disable SPI controller
660  * @spi: pointer to the spi controller data structure
661  */
662 static void stm32f4_spi_disable(struct stm32_spi *spi)
663 {
664 	unsigned long flags;
665 	u32 sr;
666 
667 	dev_dbg(spi->dev, "disable controller\n");
668 
669 	spin_lock_irqsave(&spi->lock, flags);
670 
671 	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
672 	      STM32F4_SPI_CR1_SPE)) {
673 		spin_unlock_irqrestore(&spi->lock, flags);
674 		return;
675 	}
676 
677 	/* Disable interrupts */
678 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
679 						 STM32F4_SPI_CR2_RXNEIE |
680 						 STM32F4_SPI_CR2_ERRIE);
681 
682 	/* Wait until BSY = 0 */
683 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
684 					      sr, !(sr & STM32F4_SPI_SR_BSY),
685 					      10, 100000) < 0) {
686 		dev_warn(spi->dev, "disabling condition timeout\n");
687 	}
688 
689 	if (spi->cur_usedma && spi->dma_tx)
690 		dmaengine_terminate_all(spi->dma_tx);
691 	if (spi->cur_usedma && spi->dma_rx)
692 		dmaengine_terminate_all(spi->dma_rx);
693 
694 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
695 
696 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
697 						 STM32F4_SPI_CR2_RXDMAEN);
698 
699 	/* Sequence to clear OVR flag */
700 	readl_relaxed(spi->base + STM32F4_SPI_DR);
701 	readl_relaxed(spi->base + STM32F4_SPI_SR);
702 
703 	spin_unlock_irqrestore(&spi->lock, flags);
704 }
705 
706 /**
707  * stm32h7_spi_disable - Disable SPI controller
708  * @spi: pointer to the spi controller data structure
709  *
710  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712  * RX-Fifo.
713  * Normally, if TSIZE has been configured, we should relax the hardware at the
714  * reception of the EOT interrupt. But in case of error, EOT will not be
715  * raised. So the subsystem unprepare_message call allows us to properly
716  * complete the transfer from an hardware point of view.
717  */
718 static void stm32h7_spi_disable(struct stm32_spi *spi)
719 {
720 	unsigned long flags;
721 	u32 cr1, sr;
722 
723 	dev_dbg(spi->dev, "disable controller\n");
724 
725 	spin_lock_irqsave(&spi->lock, flags);
726 
727 	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728 
729 	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730 		spin_unlock_irqrestore(&spi->lock, flags);
731 		return;
732 	}
733 
734 	/* Wait on EOT or suspend the flow */
735 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
736 					      sr, !(sr & STM32H7_SPI_SR_EOT),
737 					      10, 100000) < 0) {
738 		if (cr1 & STM32H7_SPI_CR1_CSTART) {
739 			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
740 				       spi->base + STM32H7_SPI_CR1);
741 			if (readl_relaxed_poll_timeout_atomic(
742 						spi->base + STM32H7_SPI_SR,
743 						sr, !(sr & STM32H7_SPI_SR_SUSP),
744 						10, 100000) < 0)
745 				dev_warn(spi->dev,
746 					 "Suspend request timeout\n");
747 		}
748 	}
749 
750 	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751 		stm32h7_spi_read_rxfifo(spi, true);
752 
753 	if (spi->cur_usedma && spi->dma_tx)
754 		dmaengine_terminate_all(spi->dma_tx);
755 	if (spi->cur_usedma && spi->dma_rx)
756 		dmaengine_terminate_all(spi->dma_rx);
757 
758 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759 
760 	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
761 						STM32H7_SPI_CFG1_RXDMAEN);
762 
763 	/* Disable interrupts and clear status flags */
764 	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
765 	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766 
767 	spin_unlock_irqrestore(&spi->lock, flags);
768 }
769 
770 /**
771  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772  * @master: controller master interface
773  * @spi_dev: pointer to the spi device
774  * @transfer: pointer to spi transfer
775  *
776  * If driver has fifo and the current transfer size is greater than fifo size,
777  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778  */
779 static bool stm32_spi_can_dma(struct spi_master *master,
780 			      struct spi_device *spi_dev,
781 			      struct spi_transfer *transfer)
782 {
783 	unsigned int dma_size;
784 	struct stm32_spi *spi = spi_master_get_devdata(master);
785 
786 	if (spi->cfg->has_fifo)
787 		dma_size = spi->fifo_size;
788 	else
789 		dma_size = SPI_DMA_MIN_BYTES;
790 
791 	dev_dbg(spi->dev, "%s: %s\n", __func__,
792 		(transfer->len > dma_size) ? "true" : "false");
793 
794 	return (transfer->len > dma_size);
795 }
796 
797 /**
798  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
799  * @irq: interrupt line
800  * @dev_id: SPI controller master interface
801  */
802 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
803 {
804 	struct spi_master *master = dev_id;
805 	struct stm32_spi *spi = spi_master_get_devdata(master);
806 	u32 sr, mask = 0;
807 	unsigned long flags;
808 	bool end = false;
809 
810 	spin_lock_irqsave(&spi->lock, flags);
811 
812 	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
813 	/*
814 	 * BSY flag is not handled in interrupt but it is normal behavior when
815 	 * this flag is set.
816 	 */
817 	sr &= ~STM32F4_SPI_SR_BSY;
818 
819 	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
820 				 spi->cur_comm == SPI_3WIRE_TX)) {
821 		/* OVR flag shouldn't be handled for TX only mode */
822 		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
823 		mask |= STM32F4_SPI_SR_TXE;
824 	}
825 
826 	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
827 				spi->cur_comm == SPI_SIMPLEX_RX ||
828 				spi->cur_comm == SPI_3WIRE_RX)) {
829 		/* TXE flag is set and is handled when RXNE flag occurs */
830 		sr &= ~STM32F4_SPI_SR_TXE;
831 		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
832 	}
833 
834 	if (!(sr & mask)) {
835 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
836 		spin_unlock_irqrestore(&spi->lock, flags);
837 		return IRQ_NONE;
838 	}
839 
840 	if (sr & STM32F4_SPI_SR_OVR) {
841 		dev_warn(spi->dev, "Overrun: received value discarded\n");
842 
843 		/* Sequence to clear OVR flag */
844 		readl_relaxed(spi->base + STM32F4_SPI_DR);
845 		readl_relaxed(spi->base + STM32F4_SPI_SR);
846 
847 		/*
848 		 * If overrun is detected, it means that something went wrong,
849 		 * so stop the current transfer. Transfer can wait for next
850 		 * RXNE but DR is already read and end never happens.
851 		 */
852 		end = true;
853 		goto end_irq;
854 	}
855 
856 	if (sr & STM32F4_SPI_SR_TXE) {
857 		if (spi->tx_buf)
858 			stm32f4_spi_write_tx(spi);
859 		if (spi->tx_len == 0)
860 			end = true;
861 	}
862 
863 	if (sr & STM32F4_SPI_SR_RXNE) {
864 		stm32f4_spi_read_rx(spi);
865 		if (spi->rx_len == 0)
866 			end = true;
867 		else if (spi->tx_buf)/* Load data for discontinuous mode */
868 			stm32f4_spi_write_tx(spi);
869 	}
870 
871 end_irq:
872 	if (end) {
873 		/* Immediately disable interrupts to do not generate new one */
874 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
875 					STM32F4_SPI_CR2_TXEIE |
876 					STM32F4_SPI_CR2_RXNEIE |
877 					STM32F4_SPI_CR2_ERRIE);
878 		spin_unlock_irqrestore(&spi->lock, flags);
879 		return IRQ_WAKE_THREAD;
880 	}
881 
882 	spin_unlock_irqrestore(&spi->lock, flags);
883 	return IRQ_HANDLED;
884 }
885 
886 /**
887  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
888  * @irq: interrupt line
889  * @dev_id: SPI controller master interface
890  */
891 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
892 {
893 	struct spi_master *master = dev_id;
894 	struct stm32_spi *spi = spi_master_get_devdata(master);
895 
896 	spi_finalize_current_transfer(master);
897 	stm32f4_spi_disable(spi);
898 
899 	return IRQ_HANDLED;
900 }
901 
902 /**
903  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
904  * @irq: interrupt line
905  * @dev_id: SPI controller master interface
906  */
907 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
908 {
909 	struct spi_master *master = dev_id;
910 	struct stm32_spi *spi = spi_master_get_devdata(master);
911 	u32 sr, ier, mask;
912 	unsigned long flags;
913 	bool end = false;
914 
915 	spin_lock_irqsave(&spi->lock, flags);
916 
917 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
918 	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
919 
920 	mask = ier;
921 	/* EOTIE is triggered on EOT, SUSP and TXC events. */
922 	mask |= STM32H7_SPI_SR_SUSP;
923 	/*
924 	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
925 	 * Full-Duplex, need to poll RXP event to know if there are remaining
926 	 * data, before disabling SPI.
927 	 */
928 	if (spi->rx_buf && !spi->cur_usedma)
929 		mask |= STM32H7_SPI_SR_RXP;
930 
931 	if (!(sr & mask)) {
932 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
933 			sr, ier);
934 		spin_unlock_irqrestore(&spi->lock, flags);
935 		return IRQ_NONE;
936 	}
937 
938 	if (sr & STM32H7_SPI_SR_SUSP) {
939 		static DEFINE_RATELIMIT_STATE(rs,
940 					      DEFAULT_RATELIMIT_INTERVAL * 10,
941 					      1);
942 		if (__ratelimit(&rs))
943 			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
944 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
945 			stm32h7_spi_read_rxfifo(spi, false);
946 		/*
947 		 * If communication is suspended while using DMA, it means
948 		 * that something went wrong, so stop the current transfer
949 		 */
950 		if (spi->cur_usedma)
951 			end = true;
952 	}
953 
954 	if (sr & STM32H7_SPI_SR_MODF) {
955 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
956 		end = true;
957 	}
958 
959 	if (sr & STM32H7_SPI_SR_OVR) {
960 		dev_warn(spi->dev, "Overrun: received value discarded\n");
961 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
962 			stm32h7_spi_read_rxfifo(spi, false);
963 		/*
964 		 * If overrun is detected while using DMA, it means that
965 		 * something went wrong, so stop the current transfer
966 		 */
967 		if (spi->cur_usedma)
968 			end = true;
969 	}
970 
971 	if (sr & STM32H7_SPI_SR_EOT) {
972 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
973 			stm32h7_spi_read_rxfifo(spi, true);
974 		end = true;
975 	}
976 
977 	if (sr & STM32H7_SPI_SR_TXP)
978 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
979 			stm32h7_spi_write_txfifo(spi);
980 
981 	if (sr & STM32H7_SPI_SR_RXP)
982 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
983 			stm32h7_spi_read_rxfifo(spi, false);
984 
985 	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
986 
987 	spin_unlock_irqrestore(&spi->lock, flags);
988 
989 	if (end) {
990 		stm32h7_spi_disable(spi);
991 		spi_finalize_current_transfer(master);
992 	}
993 
994 	return IRQ_HANDLED;
995 }
996 
997 /**
998  * stm32_spi_prepare_msg - set up the controller to transfer a single message
999  * @master: controller master interface
1000  * @msg: pointer to spi message
1001  */
1002 static int stm32_spi_prepare_msg(struct spi_master *master,
1003 				 struct spi_message *msg)
1004 {
1005 	struct stm32_spi *spi = spi_master_get_devdata(master);
1006 	struct spi_device *spi_dev = msg->spi;
1007 	struct device_node *np = spi_dev->dev.of_node;
1008 	unsigned long flags;
1009 	u32 clrb = 0, setb = 0;
1010 
1011 	/* SPI slave device may need time between data frames */
1012 	spi->cur_midi = 0;
1013 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1014 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1015 
1016 	if (spi_dev->mode & SPI_CPOL)
1017 		setb |= spi->cfg->regs->cpol.mask;
1018 	else
1019 		clrb |= spi->cfg->regs->cpol.mask;
1020 
1021 	if (spi_dev->mode & SPI_CPHA)
1022 		setb |= spi->cfg->regs->cpha.mask;
1023 	else
1024 		clrb |= spi->cfg->regs->cpha.mask;
1025 
1026 	if (spi_dev->mode & SPI_LSB_FIRST)
1027 		setb |= spi->cfg->regs->lsb_first.mask;
1028 	else
1029 		clrb |= spi->cfg->regs->lsb_first.mask;
1030 
1031 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1032 		spi_dev->mode & SPI_CPOL,
1033 		spi_dev->mode & SPI_CPHA,
1034 		spi_dev->mode & SPI_LSB_FIRST,
1035 		spi_dev->mode & SPI_CS_HIGH);
1036 
1037 	spin_lock_irqsave(&spi->lock, flags);
1038 
1039 	/* CPOL, CPHA and LSB FIRST bits have common register */
1040 	if (clrb || setb)
1041 		writel_relaxed(
1042 			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1043 			 ~clrb) | setb,
1044 			spi->base + spi->cfg->regs->cpol.reg);
1045 
1046 	spin_unlock_irqrestore(&spi->lock, flags);
1047 
1048 	return 0;
1049 }
1050 
1051 /**
1052  * stm32f4_spi_dma_tx_cb - dma callback
1053  * @data: pointer to the spi controller data structure
1054  *
1055  * DMA callback is called when the transfer is complete for DMA TX channel.
1056  */
1057 static void stm32f4_spi_dma_tx_cb(void *data)
1058 {
1059 	struct stm32_spi *spi = data;
1060 
1061 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1062 		spi_finalize_current_transfer(spi->master);
1063 		stm32f4_spi_disable(spi);
1064 	}
1065 }
1066 
1067 /**
1068  * stm32f4_spi_dma_rx_cb - dma callback
1069  * @data: pointer to the spi controller data structure
1070  *
1071  * DMA callback is called when the transfer is complete for DMA RX channel.
1072  */
1073 static void stm32f4_spi_dma_rx_cb(void *data)
1074 {
1075 	struct stm32_spi *spi = data;
1076 
1077 	spi_finalize_current_transfer(spi->master);
1078 	stm32f4_spi_disable(spi);
1079 }
1080 
1081 /**
1082  * stm32h7_spi_dma_cb - dma callback
1083  * @data: pointer to the spi controller data structure
1084  *
1085  * DMA callback is called when the transfer is complete or when an error
1086  * occurs. If the transfer is complete, EOT flag is raised.
1087  */
1088 static void stm32h7_spi_dma_cb(void *data)
1089 {
1090 	struct stm32_spi *spi = data;
1091 	unsigned long flags;
1092 	u32 sr;
1093 
1094 	spin_lock_irqsave(&spi->lock, flags);
1095 
1096 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1097 
1098 	spin_unlock_irqrestore(&spi->lock, flags);
1099 
1100 	if (!(sr & STM32H7_SPI_SR_EOT))
1101 		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1102 
1103 	/* Now wait for EOT, or SUSP or OVR in case of error */
1104 }
1105 
1106 /**
1107  * stm32_spi_dma_config - configure dma slave channel depending on current
1108  *			  transfer bits_per_word.
1109  * @spi: pointer to the spi controller data structure
1110  * @dma_conf: pointer to the dma_slave_config structure
1111  * @dir: direction of the dma transfer
1112  */
1113 static void stm32_spi_dma_config(struct stm32_spi *spi,
1114 				 struct dma_slave_config *dma_conf,
1115 				 enum dma_transfer_direction dir)
1116 {
1117 	enum dma_slave_buswidth buswidth;
1118 	u32 maxburst;
1119 
1120 	if (spi->cur_bpw <= 8)
1121 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1122 	else if (spi->cur_bpw <= 16)
1123 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1124 	else
1125 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1126 
1127 	if (spi->cfg->has_fifo) {
1128 		/* Valid for DMA Half or Full Fifo threshold */
1129 		if (spi->cur_fthlv == 2)
1130 			maxburst = 1;
1131 		else
1132 			maxburst = spi->cur_fthlv;
1133 	} else {
1134 		maxburst = 1;
1135 	}
1136 
1137 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1138 	dma_conf->direction = dir;
1139 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1140 		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1141 		dma_conf->src_addr_width = buswidth;
1142 		dma_conf->src_maxburst = maxburst;
1143 
1144 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1145 			buswidth, maxburst);
1146 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1147 		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1148 		dma_conf->dst_addr_width = buswidth;
1149 		dma_conf->dst_maxburst = maxburst;
1150 
1151 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1152 			buswidth, maxburst);
1153 	}
1154 }
1155 
1156 /**
1157  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1158  *				  interrupts
1159  * @spi: pointer to the spi controller data structure
1160  *
1161  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1162  * in progress.
1163  */
1164 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1165 {
1166 	unsigned long flags;
1167 	u32 cr2 = 0;
1168 
1169 	/* Enable the interrupts relative to the current communication mode */
1170 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1171 		cr2 |= STM32F4_SPI_CR2_TXEIE;
1172 	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1173 				spi->cur_comm == SPI_SIMPLEX_RX ||
1174 				spi->cur_comm == SPI_3WIRE_RX) {
1175 		/* In transmit-only mode, the OVR flag is set in the SR register
1176 		 * since the received data are never read. Therefore set OVR
1177 		 * interrupt only when rx buffer is available.
1178 		 */
1179 		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1180 	} else {
1181 		return -EINVAL;
1182 	}
1183 
1184 	spin_lock_irqsave(&spi->lock, flags);
1185 
1186 	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1187 
1188 	stm32_spi_enable(spi);
1189 
1190 	/* starting data transfer when buffer is loaded */
1191 	if (spi->tx_buf)
1192 		stm32f4_spi_write_tx(spi);
1193 
1194 	spin_unlock_irqrestore(&spi->lock, flags);
1195 
1196 	return 1;
1197 }
1198 
1199 /**
1200  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1201  *				  interrupts
1202  * @spi: pointer to the spi controller data structure
1203  *
1204  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1205  * in progress.
1206  */
1207 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1208 {
1209 	unsigned long flags;
1210 	u32 ier = 0;
1211 
1212 	/* Enable the interrupts relative to the current communication mode */
1213 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1214 		ier |= STM32H7_SPI_IER_DXPIE;
1215 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1216 		ier |= STM32H7_SPI_IER_TXPIE;
1217 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1218 		ier |= STM32H7_SPI_IER_RXPIE;
1219 
1220 	/* Enable the interrupts relative to the end of transfer */
1221 	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1222 	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1223 
1224 	spin_lock_irqsave(&spi->lock, flags);
1225 
1226 	stm32_spi_enable(spi);
1227 
1228 	/* Be sure to have data in fifo before starting data transfer */
1229 	if (spi->tx_buf)
1230 		stm32h7_spi_write_txfifo(spi);
1231 
1232 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1233 
1234 	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1235 
1236 	spin_unlock_irqrestore(&spi->lock, flags);
1237 
1238 	return 1;
1239 }
1240 
1241 /**
1242  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1243  *					transfer using DMA
1244  * @spi: pointer to the spi controller data structure
1245  */
1246 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1247 {
1248 	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1249 	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1250 	    spi->cur_comm == SPI_FULL_DUPLEX) {
1251 		/*
1252 		 * In transmit-only mode, the OVR flag is set in the SR register
1253 		 * since the received data are never read. Therefore set OVR
1254 		 * interrupt only when rx buffer is available.
1255 		 */
1256 		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1257 	}
1258 
1259 	stm32_spi_enable(spi);
1260 }
1261 
1262 /**
1263  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1264  *					transfer using DMA
1265  * @spi: pointer to the spi controller data structure
1266  */
1267 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1268 {
1269 	/* Enable the interrupts relative to the end of transfer */
1270 	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1271 						 STM32H7_SPI_IER_TXTFIE |
1272 						 STM32H7_SPI_IER_OVRIE |
1273 						 STM32H7_SPI_IER_MODFIE);
1274 
1275 	stm32_spi_enable(spi);
1276 
1277 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1278 }
1279 
1280 /**
1281  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1282  * @spi: pointer to the spi controller data structure
1283  * @xfer: pointer to the spi_transfer structure
1284  *
1285  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1286  * in progress.
1287  */
1288 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1289 				      struct spi_transfer *xfer)
1290 {
1291 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1292 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1293 	unsigned long flags;
1294 
1295 	spin_lock_irqsave(&spi->lock, flags);
1296 
1297 	rx_dma_desc = NULL;
1298 	if (spi->rx_buf && spi->dma_rx) {
1299 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1300 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1301 
1302 		/* Enable Rx DMA request */
1303 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1304 				   spi->cfg->regs->dma_rx_en.mask);
1305 
1306 		rx_dma_desc = dmaengine_prep_slave_sg(
1307 					spi->dma_rx, xfer->rx_sg.sgl,
1308 					xfer->rx_sg.nents,
1309 					rx_dma_conf.direction,
1310 					DMA_PREP_INTERRUPT);
1311 	}
1312 
1313 	tx_dma_desc = NULL;
1314 	if (spi->tx_buf && spi->dma_tx) {
1315 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1316 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1317 
1318 		tx_dma_desc = dmaengine_prep_slave_sg(
1319 					spi->dma_tx, xfer->tx_sg.sgl,
1320 					xfer->tx_sg.nents,
1321 					tx_dma_conf.direction,
1322 					DMA_PREP_INTERRUPT);
1323 	}
1324 
1325 	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1326 	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1327 		goto dma_desc_error;
1328 
1329 	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1330 		goto dma_desc_error;
1331 
1332 	if (rx_dma_desc) {
1333 		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1334 		rx_dma_desc->callback_param = spi;
1335 
1336 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1337 			dev_err(spi->dev, "Rx DMA submit failed\n");
1338 			goto dma_desc_error;
1339 		}
1340 		/* Enable Rx DMA channel */
1341 		dma_async_issue_pending(spi->dma_rx);
1342 	}
1343 
1344 	if (tx_dma_desc) {
1345 		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1346 		    spi->cur_comm == SPI_3WIRE_TX) {
1347 			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1348 			tx_dma_desc->callback_param = spi;
1349 		}
1350 
1351 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1352 			dev_err(spi->dev, "Tx DMA submit failed\n");
1353 			goto dma_submit_error;
1354 		}
1355 		/* Enable Tx DMA channel */
1356 		dma_async_issue_pending(spi->dma_tx);
1357 
1358 		/* Enable Tx DMA request */
1359 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1360 				   spi->cfg->regs->dma_tx_en.mask);
1361 	}
1362 
1363 	spi->cfg->transfer_one_dma_start(spi);
1364 
1365 	spin_unlock_irqrestore(&spi->lock, flags);
1366 
1367 	return 1;
1368 
1369 dma_submit_error:
1370 	if (spi->dma_rx)
1371 		dmaengine_terminate_all(spi->dma_rx);
1372 
1373 dma_desc_error:
1374 	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1375 			   spi->cfg->regs->dma_rx_en.mask);
1376 
1377 	spin_unlock_irqrestore(&spi->lock, flags);
1378 
1379 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1380 
1381 	spi->cur_usedma = false;
1382 	return spi->cfg->transfer_one_irq(spi);
1383 }
1384 
1385 /**
1386  * stm32f4_spi_set_bpw - Configure bits per word
1387  * @spi: pointer to the spi controller data structure
1388  */
1389 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1390 {
1391 	if (spi->cur_bpw == 16)
1392 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1393 	else
1394 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1395 }
1396 
1397 /**
1398  * stm32h7_spi_set_bpw - configure bits per word
1399  * @spi: pointer to the spi controller data structure
1400  */
1401 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1402 {
1403 	u32 bpw, fthlv;
1404 	u32 cfg1_clrb = 0, cfg1_setb = 0;
1405 
1406 	bpw = spi->cur_bpw - 1;
1407 
1408 	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1409 	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1410 		     STM32H7_SPI_CFG1_DSIZE;
1411 
1412 	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1413 	fthlv = spi->cur_fthlv - 1;
1414 
1415 	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1416 	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1417 		     STM32H7_SPI_CFG1_FTHLV;
1418 
1419 	writel_relaxed(
1420 		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1421 		 ~cfg1_clrb) | cfg1_setb,
1422 		spi->base + STM32H7_SPI_CFG1);
1423 }
1424 
1425 /**
1426  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1427  * @spi: pointer to the spi controller data structure
1428  * @mbrdiv: baud rate divisor value
1429  */
1430 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1431 {
1432 	u32 clrb = 0, setb = 0;
1433 
1434 	clrb |= spi->cfg->regs->br.mask;
1435 	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1436 		spi->cfg->regs->br.mask;
1437 
1438 	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1439 			~clrb) | setb,
1440 		       spi->base + spi->cfg->regs->br.reg);
1441 }
1442 
1443 /**
1444  * stm32_spi_communication_type - return transfer communication type
1445  * @spi_dev: pointer to the spi device
1446  * @transfer: pointer to spi transfer
1447  */
1448 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1449 						 struct spi_transfer *transfer)
1450 {
1451 	unsigned int type = SPI_FULL_DUPLEX;
1452 
1453 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1454 		/*
1455 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1456 		 * is forbidden and unvalidated by SPI subsystem so depending
1457 		 * on the valid buffer, we can determine the direction of the
1458 		 * transfer.
1459 		 */
1460 		if (!transfer->tx_buf)
1461 			type = SPI_3WIRE_RX;
1462 		else
1463 			type = SPI_3WIRE_TX;
1464 	} else {
1465 		if (!transfer->tx_buf)
1466 			type = SPI_SIMPLEX_RX;
1467 		else if (!transfer->rx_buf)
1468 			type = SPI_SIMPLEX_TX;
1469 	}
1470 
1471 	return type;
1472 }
1473 
1474 /**
1475  * stm32f4_spi_set_mode - configure communication mode
1476  * @spi: pointer to the spi controller data structure
1477  * @comm_type: type of communication to configure
1478  */
1479 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1480 {
1481 	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1482 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1483 					STM32F4_SPI_CR1_BIDIMODE |
1484 					STM32F4_SPI_CR1_BIDIOE);
1485 	} else if (comm_type == SPI_FULL_DUPLEX ||
1486 				comm_type == SPI_SIMPLEX_RX) {
1487 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1488 					STM32F4_SPI_CR1_BIDIMODE |
1489 					STM32F4_SPI_CR1_BIDIOE);
1490 	} else if (comm_type == SPI_3WIRE_RX) {
1491 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1492 					STM32F4_SPI_CR1_BIDIMODE);
1493 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1494 					STM32F4_SPI_CR1_BIDIOE);
1495 	} else {
1496 		return -EINVAL;
1497 	}
1498 
1499 	return 0;
1500 }
1501 
1502 /**
1503  * stm32h7_spi_set_mode - configure communication mode
1504  * @spi: pointer to the spi controller data structure
1505  * @comm_type: type of communication to configure
1506  */
1507 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1508 {
1509 	u32 mode;
1510 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1511 
1512 	if (comm_type == SPI_3WIRE_RX) {
1513 		mode = STM32H7_SPI_HALF_DUPLEX;
1514 		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1515 	} else if (comm_type == SPI_3WIRE_TX) {
1516 		mode = STM32H7_SPI_HALF_DUPLEX;
1517 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1518 	} else if (comm_type == SPI_SIMPLEX_RX) {
1519 		mode = STM32H7_SPI_SIMPLEX_RX;
1520 	} else if (comm_type == SPI_SIMPLEX_TX) {
1521 		mode = STM32H7_SPI_SIMPLEX_TX;
1522 	} else {
1523 		mode = STM32H7_SPI_FULL_DUPLEX;
1524 	}
1525 
1526 	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1527 	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1528 		     STM32H7_SPI_CFG2_COMM;
1529 
1530 	writel_relaxed(
1531 		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1532 		 ~cfg2_clrb) | cfg2_setb,
1533 		spi->base + STM32H7_SPI_CFG2);
1534 
1535 	return 0;
1536 }
1537 
1538 /**
1539  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1540  *			       consecutive data frames in master mode
1541  * @spi: pointer to the spi controller data structure
1542  * @len: transfer len
1543  */
1544 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1545 {
1546 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1547 
1548 	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1549 	if ((len > 1) && (spi->cur_midi > 0)) {
1550 		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1551 		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1552 			       (u32)STM32H7_SPI_CFG2_MIDI >>
1553 			       STM32H7_SPI_CFG2_MIDI_SHIFT);
1554 
1555 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1556 			sck_period_ns, midi, midi * sck_period_ns);
1557 		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1558 			     STM32H7_SPI_CFG2_MIDI;
1559 	}
1560 
1561 	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1562 			~cfg2_clrb) | cfg2_setb,
1563 		       spi->base + STM32H7_SPI_CFG2);
1564 }
1565 
1566 /**
1567  * stm32h7_spi_number_of_data - configure number of data at current transfer
1568  * @spi: pointer to the spi controller data structure
1569  * @nb_words: transfer length (in words)
1570  */
1571 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1572 {
1573 	u32 cr2_clrb = 0, cr2_setb = 0;
1574 
1575 	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1576 			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1577 		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1578 		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1579 		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1580 				~cr2_clrb) | cr2_setb,
1581 			       spi->base + STM32H7_SPI_CR2);
1582 	} else {
1583 		return -EMSGSIZE;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 /**
1590  * stm32_spi_transfer_one_setup - common setup to transfer a single
1591  *				  spi_transfer either using DMA or
1592  *				  interrupts.
1593  * @spi: pointer to the spi controller data structure
1594  * @spi_dev: pointer to the spi device
1595  * @transfer: pointer to spi transfer
1596  */
1597 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1598 					struct spi_device *spi_dev,
1599 					struct spi_transfer *transfer)
1600 {
1601 	unsigned long flags;
1602 	unsigned int comm_type;
1603 	int nb_words, ret = 0;
1604 	int mbr;
1605 
1606 	spin_lock_irqsave(&spi->lock, flags);
1607 
1608 	spi->cur_xferlen = transfer->len;
1609 
1610 	spi->cur_bpw = transfer->bits_per_word;
1611 	spi->cfg->set_bpw(spi);
1612 
1613 	/* Update spi->cur_speed with real clock speed */
1614 	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1615 				    spi->cfg->baud_rate_div_min,
1616 				    spi->cfg->baud_rate_div_max);
1617 	if (mbr < 0) {
1618 		ret = mbr;
1619 		goto out;
1620 	}
1621 
1622 	transfer->speed_hz = spi->cur_speed;
1623 	stm32_spi_set_mbr(spi, mbr);
1624 
1625 	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1626 	ret = spi->cfg->set_mode(spi, comm_type);
1627 	if (ret < 0)
1628 		goto out;
1629 
1630 	spi->cur_comm = comm_type;
1631 
1632 	if (spi->cfg->set_data_idleness)
1633 		spi->cfg->set_data_idleness(spi, transfer->len);
1634 
1635 	if (spi->cur_bpw <= 8)
1636 		nb_words = transfer->len;
1637 	else if (spi->cur_bpw <= 16)
1638 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1639 	else
1640 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1641 
1642 	if (spi->cfg->set_number_of_data) {
1643 		ret = spi->cfg->set_number_of_data(spi, nb_words);
1644 		if (ret < 0)
1645 			goto out;
1646 	}
1647 
1648 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1649 		spi->cur_comm);
1650 	dev_dbg(spi->dev,
1651 		"data frame of %d-bit, data packet of %d data frames\n",
1652 		spi->cur_bpw, spi->cur_fthlv);
1653 	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1654 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1655 		spi->cur_xferlen, nb_words);
1656 	dev_dbg(spi->dev, "dma %s\n",
1657 		(spi->cur_usedma) ? "enabled" : "disabled");
1658 
1659 out:
1660 	spin_unlock_irqrestore(&spi->lock, flags);
1661 
1662 	return ret;
1663 }
1664 
1665 /**
1666  * stm32_spi_transfer_one - transfer a single spi_transfer
1667  * @master: controller master interface
1668  * @spi_dev: pointer to the spi device
1669  * @transfer: pointer to spi transfer
1670  *
1671  * It must return 0 if the transfer is finished or 1 if the transfer is still
1672  * in progress.
1673  */
1674 static int stm32_spi_transfer_one(struct spi_master *master,
1675 				  struct spi_device *spi_dev,
1676 				  struct spi_transfer *transfer)
1677 {
1678 	struct stm32_spi *spi = spi_master_get_devdata(master);
1679 	int ret;
1680 
1681 	spi->tx_buf = transfer->tx_buf;
1682 	spi->rx_buf = transfer->rx_buf;
1683 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1684 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1685 
1686 	spi->cur_usedma = (master->can_dma &&
1687 			   master->can_dma(master, spi_dev, transfer));
1688 
1689 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1690 	if (ret) {
1691 		dev_err(spi->dev, "SPI transfer setup failed\n");
1692 		return ret;
1693 	}
1694 
1695 	if (spi->cur_usedma)
1696 		return stm32_spi_transfer_one_dma(spi, transfer);
1697 	else
1698 		return spi->cfg->transfer_one_irq(spi);
1699 }
1700 
1701 /**
1702  * stm32_spi_unprepare_msg - relax the hardware
1703  * @master: controller master interface
1704  * @msg: pointer to the spi message
1705  */
1706 static int stm32_spi_unprepare_msg(struct spi_master *master,
1707 				   struct spi_message *msg)
1708 {
1709 	struct stm32_spi *spi = spi_master_get_devdata(master);
1710 
1711 	spi->cfg->disable(spi);
1712 
1713 	return 0;
1714 }
1715 
1716 /**
1717  * stm32f4_spi_config - Configure SPI controller as SPI master
1718  * @spi: pointer to the spi controller data structure
1719  */
1720 static int stm32f4_spi_config(struct stm32_spi *spi)
1721 {
1722 	unsigned long flags;
1723 
1724 	spin_lock_irqsave(&spi->lock, flags);
1725 
1726 	/* Ensure I2SMOD bit is kept cleared */
1727 	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1728 			   STM32F4_SPI_I2SCFGR_I2SMOD);
1729 
1730 	/*
1731 	 * - SS input value high
1732 	 * - transmitter half duplex direction
1733 	 * - Set the master mode (default Motorola mode)
1734 	 * - Consider 1 master/n slaves configuration and
1735 	 *   SS input value is determined by the SSI bit
1736 	 */
1737 	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1738 						 STM32F4_SPI_CR1_BIDIOE |
1739 						 STM32F4_SPI_CR1_MSTR |
1740 						 STM32F4_SPI_CR1_SSM);
1741 
1742 	spin_unlock_irqrestore(&spi->lock, flags);
1743 
1744 	return 0;
1745 }
1746 
1747 /**
1748  * stm32h7_spi_config - Configure SPI controller as SPI master
1749  * @spi: pointer to the spi controller data structure
1750  */
1751 static int stm32h7_spi_config(struct stm32_spi *spi)
1752 {
1753 	unsigned long flags;
1754 
1755 	spin_lock_irqsave(&spi->lock, flags);
1756 
1757 	/* Ensure I2SMOD bit is kept cleared */
1758 	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1759 			   STM32H7_SPI_I2SCFGR_I2SMOD);
1760 
1761 	/*
1762 	 * - SS input value high
1763 	 * - transmitter half duplex direction
1764 	 * - automatic communication suspend when RX-Fifo is full
1765 	 */
1766 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1767 						 STM32H7_SPI_CR1_HDDIR |
1768 						 STM32H7_SPI_CR1_MASRX);
1769 
1770 	/*
1771 	 * - Set the master mode (default Motorola mode)
1772 	 * - Consider 1 master/n slaves configuration and
1773 	 *   SS input value is determined by the SSI bit
1774 	 * - keep control of all associated GPIOs
1775 	 */
1776 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1777 						  STM32H7_SPI_CFG2_SSM |
1778 						  STM32H7_SPI_CFG2_AFCNTR);
1779 
1780 	spin_unlock_irqrestore(&spi->lock, flags);
1781 
1782 	return 0;
1783 }
1784 
1785 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1786 	.regs = &stm32f4_spi_regspec,
1787 	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1788 	.disable = stm32f4_spi_disable,
1789 	.config = stm32f4_spi_config,
1790 	.set_bpw = stm32f4_spi_set_bpw,
1791 	.set_mode = stm32f4_spi_set_mode,
1792 	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1793 	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1794 	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
1795 	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1796 	.irq_handler_event = stm32f4_spi_irq_event,
1797 	.irq_handler_thread = stm32f4_spi_irq_thread,
1798 	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1799 	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1800 	.has_fifo = false,
1801 };
1802 
1803 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1804 	.regs = &stm32h7_spi_regspec,
1805 	.get_fifo_size = stm32h7_spi_get_fifo_size,
1806 	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1807 	.disable = stm32h7_spi_disable,
1808 	.config = stm32h7_spi_config,
1809 	.set_bpw = stm32h7_spi_set_bpw,
1810 	.set_mode = stm32h7_spi_set_mode,
1811 	.set_data_idleness = stm32h7_spi_data_idleness,
1812 	.set_number_of_data = stm32h7_spi_number_of_data,
1813 	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1814 	.dma_rx_cb = stm32h7_spi_dma_cb,
1815 	.dma_tx_cb = stm32h7_spi_dma_cb,
1816 	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1817 	.irq_handler_thread = stm32h7_spi_irq_thread,
1818 	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1819 	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1820 	.has_fifo = true,
1821 };
1822 
1823 static const struct of_device_id stm32_spi_of_match[] = {
1824 	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1825 	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1826 	{},
1827 };
1828 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1829 
1830 static int stm32_spi_probe(struct platform_device *pdev)
1831 {
1832 	struct spi_master *master;
1833 	struct stm32_spi *spi;
1834 	struct resource *res;
1835 	int ret;
1836 
1837 	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1838 	if (!master) {
1839 		dev_err(&pdev->dev, "spi master allocation failed\n");
1840 		return -ENOMEM;
1841 	}
1842 	platform_set_drvdata(pdev, master);
1843 
1844 	spi = spi_master_get_devdata(master);
1845 	spi->dev = &pdev->dev;
1846 	spi->master = master;
1847 	spin_lock_init(&spi->lock);
1848 
1849 	spi->cfg = (const struct stm32_spi_cfg *)
1850 		of_match_device(pdev->dev.driver->of_match_table,
1851 				&pdev->dev)->data;
1852 
1853 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1854 	spi->base = devm_ioremap_resource(&pdev->dev, res);
1855 	if (IS_ERR(spi->base)) {
1856 		ret = PTR_ERR(spi->base);
1857 		goto err_master_put;
1858 	}
1859 
1860 	spi->phys_addr = (dma_addr_t)res->start;
1861 
1862 	spi->irq = platform_get_irq(pdev, 0);
1863 	if (spi->irq <= 0) {
1864 		ret = spi->irq;
1865 		if (ret != -EPROBE_DEFER)
1866 			dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1867 		goto err_master_put;
1868 	}
1869 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1870 					spi->cfg->irq_handler_event,
1871 					spi->cfg->irq_handler_thread,
1872 					IRQF_ONESHOT, pdev->name, master);
1873 	if (ret) {
1874 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1875 			ret);
1876 		goto err_master_put;
1877 	}
1878 
1879 	spi->clk = devm_clk_get(&pdev->dev, NULL);
1880 	if (IS_ERR(spi->clk)) {
1881 		ret = PTR_ERR(spi->clk);
1882 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1883 		goto err_master_put;
1884 	}
1885 
1886 	ret = clk_prepare_enable(spi->clk);
1887 	if (ret) {
1888 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1889 		goto err_master_put;
1890 	}
1891 	spi->clk_rate = clk_get_rate(spi->clk);
1892 	if (!spi->clk_rate) {
1893 		dev_err(&pdev->dev, "clk rate = 0\n");
1894 		ret = -EINVAL;
1895 		goto err_clk_disable;
1896 	}
1897 
1898 	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1899 	if (!IS_ERR(spi->rst)) {
1900 		reset_control_assert(spi->rst);
1901 		udelay(2);
1902 		reset_control_deassert(spi->rst);
1903 	}
1904 
1905 	if (spi->cfg->has_fifo)
1906 		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1907 
1908 	ret = spi->cfg->config(spi);
1909 	if (ret) {
1910 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1911 			ret);
1912 		goto err_clk_disable;
1913 	}
1914 
1915 	master->dev.of_node = pdev->dev.of_node;
1916 	master->auto_runtime_pm = true;
1917 	master->bus_num = pdev->id;
1918 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1919 			    SPI_3WIRE;
1920 	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1921 	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1922 	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1923 	master->use_gpio_descriptors = true;
1924 	master->prepare_message = stm32_spi_prepare_msg;
1925 	master->transfer_one = stm32_spi_transfer_one;
1926 	master->unprepare_message = stm32_spi_unprepare_msg;
1927 	master->flags = SPI_MASTER_MUST_TX;
1928 
1929 	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1930 	if (IS_ERR(spi->dma_tx)) {
1931 		ret = PTR_ERR(spi->dma_tx);
1932 		spi->dma_tx = NULL;
1933 		if (ret == -EPROBE_DEFER)
1934 			goto err_clk_disable;
1935 
1936 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1937 	} else {
1938 		master->dma_tx = spi->dma_tx;
1939 	}
1940 
1941 	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1942 	if (IS_ERR(spi->dma_rx)) {
1943 		ret = PTR_ERR(spi->dma_rx);
1944 		spi->dma_rx = NULL;
1945 		if (ret == -EPROBE_DEFER)
1946 			goto err_dma_release;
1947 
1948 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1949 	} else {
1950 		master->dma_rx = spi->dma_rx;
1951 	}
1952 
1953 	if (spi->dma_tx || spi->dma_rx)
1954 		master->can_dma = stm32_spi_can_dma;
1955 
1956 	pm_runtime_set_active(&pdev->dev);
1957 	pm_runtime_enable(&pdev->dev);
1958 
1959 	ret = devm_spi_register_master(&pdev->dev, master);
1960 	if (ret) {
1961 		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1962 			ret);
1963 		goto err_pm_disable;
1964 	}
1965 
1966 	if (!master->cs_gpiods) {
1967 		dev_err(&pdev->dev, "no CS gpios available\n");
1968 		ret = -EINVAL;
1969 		goto err_pm_disable;
1970 	}
1971 
1972 	dev_info(&pdev->dev, "driver initialized\n");
1973 
1974 	return 0;
1975 
1976 err_pm_disable:
1977 	pm_runtime_disable(&pdev->dev);
1978 err_dma_release:
1979 	if (spi->dma_tx)
1980 		dma_release_channel(spi->dma_tx);
1981 	if (spi->dma_rx)
1982 		dma_release_channel(spi->dma_rx);
1983 err_clk_disable:
1984 	clk_disable_unprepare(spi->clk);
1985 err_master_put:
1986 	spi_master_put(master);
1987 
1988 	return ret;
1989 }
1990 
1991 static int stm32_spi_remove(struct platform_device *pdev)
1992 {
1993 	struct spi_master *master = platform_get_drvdata(pdev);
1994 	struct stm32_spi *spi = spi_master_get_devdata(master);
1995 
1996 	spi->cfg->disable(spi);
1997 
1998 	if (master->dma_tx)
1999 		dma_release_channel(master->dma_tx);
2000 	if (master->dma_rx)
2001 		dma_release_channel(master->dma_rx);
2002 
2003 	clk_disable_unprepare(spi->clk);
2004 
2005 	pm_runtime_disable(&pdev->dev);
2006 
2007 	pinctrl_pm_select_sleep_state(&pdev->dev);
2008 
2009 	return 0;
2010 }
2011 
2012 #ifdef CONFIG_PM
2013 static int stm32_spi_runtime_suspend(struct device *dev)
2014 {
2015 	struct spi_master *master = dev_get_drvdata(dev);
2016 	struct stm32_spi *spi = spi_master_get_devdata(master);
2017 
2018 	clk_disable_unprepare(spi->clk);
2019 
2020 	return pinctrl_pm_select_sleep_state(dev);
2021 }
2022 
2023 static int stm32_spi_runtime_resume(struct device *dev)
2024 {
2025 	struct spi_master *master = dev_get_drvdata(dev);
2026 	struct stm32_spi *spi = spi_master_get_devdata(master);
2027 	int ret;
2028 
2029 	ret = pinctrl_pm_select_default_state(dev);
2030 	if (ret)
2031 		return ret;
2032 
2033 	return clk_prepare_enable(spi->clk);
2034 }
2035 #endif
2036 
2037 #ifdef CONFIG_PM_SLEEP
2038 static int stm32_spi_suspend(struct device *dev)
2039 {
2040 	struct spi_master *master = dev_get_drvdata(dev);
2041 	int ret;
2042 
2043 	ret = spi_master_suspend(master);
2044 	if (ret)
2045 		return ret;
2046 
2047 	return pm_runtime_force_suspend(dev);
2048 }
2049 
2050 static int stm32_spi_resume(struct device *dev)
2051 {
2052 	struct spi_master *master = dev_get_drvdata(dev);
2053 	struct stm32_spi *spi = spi_master_get_devdata(master);
2054 	int ret;
2055 
2056 	ret = pm_runtime_force_resume(dev);
2057 	if (ret)
2058 		return ret;
2059 
2060 	ret = spi_master_resume(master);
2061 	if (ret) {
2062 		clk_disable_unprepare(spi->clk);
2063 		return ret;
2064 	}
2065 
2066 	ret = pm_runtime_get_sync(dev);
2067 	if (ret < 0) {
2068 		dev_err(dev, "Unable to power device:%d\n", ret);
2069 		return ret;
2070 	}
2071 
2072 	spi->cfg->config(spi);
2073 
2074 	pm_runtime_mark_last_busy(dev);
2075 	pm_runtime_put_autosuspend(dev);
2076 
2077 	return 0;
2078 }
2079 #endif
2080 
2081 static const struct dev_pm_ops stm32_spi_pm_ops = {
2082 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2083 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2084 			   stm32_spi_runtime_resume, NULL)
2085 };
2086 
2087 static struct platform_driver stm32_spi_driver = {
2088 	.probe = stm32_spi_probe,
2089 	.remove = stm32_spi_remove,
2090 	.driver = {
2091 		.name = DRIVER_NAME,
2092 		.pm = &stm32_spi_pm_ops,
2093 		.of_match_table = stm32_spi_of_match,
2094 	},
2095 };
2096 
2097 module_platform_driver(stm32_spi_driver);
2098 
2099 MODULE_ALIAS("platform:" DRIVER_NAME);
2100 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2101 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2102 MODULE_LICENSE("GPL v2");
2103