1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // STMicroelectronics STM32 SPI Controller driver (master mode only) 4 // 5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved 6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. 7 8 #include <linux/debugfs.h> 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/dmaengine.h> 12 #include <linux/interrupt.h> 13 #include <linux/iopoll.h> 14 #include <linux/module.h> 15 #include <linux/of_platform.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/reset.h> 19 #include <linux/spi/spi.h> 20 21 #define DRIVER_NAME "spi_stm32" 22 23 /* STM32F4 SPI registers */ 24 #define STM32F4_SPI_CR1 0x00 25 #define STM32F4_SPI_CR2 0x04 26 #define STM32F4_SPI_SR 0x08 27 #define STM32F4_SPI_DR 0x0C 28 #define STM32F4_SPI_I2SCFGR 0x1C 29 30 /* STM32F4_SPI_CR1 bit fields */ 31 #define STM32F4_SPI_CR1_CPHA BIT(0) 32 #define STM32F4_SPI_CR1_CPOL BIT(1) 33 #define STM32F4_SPI_CR1_MSTR BIT(2) 34 #define STM32F4_SPI_CR1_BR_SHIFT 3 35 #define STM32F4_SPI_CR1_BR GENMASK(5, 3) 36 #define STM32F4_SPI_CR1_SPE BIT(6) 37 #define STM32F4_SPI_CR1_LSBFRST BIT(7) 38 #define STM32F4_SPI_CR1_SSI BIT(8) 39 #define STM32F4_SPI_CR1_SSM BIT(9) 40 #define STM32F4_SPI_CR1_RXONLY BIT(10) 41 #define STM32F4_SPI_CR1_DFF BIT(11) 42 #define STM32F4_SPI_CR1_CRCNEXT BIT(12) 43 #define STM32F4_SPI_CR1_CRCEN BIT(13) 44 #define STM32F4_SPI_CR1_BIDIOE BIT(14) 45 #define STM32F4_SPI_CR1_BIDIMODE BIT(15) 46 #define STM32F4_SPI_CR1_BR_MIN 0 47 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3) 48 49 /* STM32F4_SPI_CR2 bit fields */ 50 #define STM32F4_SPI_CR2_RXDMAEN BIT(0) 51 #define STM32F4_SPI_CR2_TXDMAEN BIT(1) 52 #define STM32F4_SPI_CR2_SSOE BIT(2) 53 #define STM32F4_SPI_CR2_FRF BIT(4) 54 #define STM32F4_SPI_CR2_ERRIE BIT(5) 55 #define STM32F4_SPI_CR2_RXNEIE BIT(6) 56 #define STM32F4_SPI_CR2_TXEIE BIT(7) 57 58 /* STM32F4_SPI_SR bit fields */ 59 #define STM32F4_SPI_SR_RXNE BIT(0) 60 #define STM32F4_SPI_SR_TXE BIT(1) 61 #define STM32F4_SPI_SR_CHSIDE BIT(2) 62 #define STM32F4_SPI_SR_UDR BIT(3) 63 #define STM32F4_SPI_SR_CRCERR BIT(4) 64 #define STM32F4_SPI_SR_MODF BIT(5) 65 #define STM32F4_SPI_SR_OVR BIT(6) 66 #define STM32F4_SPI_SR_BSY BIT(7) 67 #define STM32F4_SPI_SR_FRE BIT(8) 68 69 /* STM32F4_SPI_I2SCFGR bit fields */ 70 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11) 71 72 /* STM32F4 SPI Baud Rate min/max divisor */ 73 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN) 74 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX) 75 76 /* STM32H7 SPI registers */ 77 #define STM32H7_SPI_CR1 0x00 78 #define STM32H7_SPI_CR2 0x04 79 #define STM32H7_SPI_CFG1 0x08 80 #define STM32H7_SPI_CFG2 0x0C 81 #define STM32H7_SPI_IER 0x10 82 #define STM32H7_SPI_SR 0x14 83 #define STM32H7_SPI_IFCR 0x18 84 #define STM32H7_SPI_TXDR 0x20 85 #define STM32H7_SPI_RXDR 0x30 86 #define STM32H7_SPI_I2SCFGR 0x50 87 88 /* STM32H7_SPI_CR1 bit fields */ 89 #define STM32H7_SPI_CR1_SPE BIT(0) 90 #define STM32H7_SPI_CR1_MASRX BIT(8) 91 #define STM32H7_SPI_CR1_CSTART BIT(9) 92 #define STM32H7_SPI_CR1_CSUSP BIT(10) 93 #define STM32H7_SPI_CR1_HDDIR BIT(11) 94 #define STM32H7_SPI_CR1_SSI BIT(12) 95 96 /* STM32H7_SPI_CR2 bit fields */ 97 #define STM32H7_SPI_CR2_TSIZE_SHIFT 0 98 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) 99 100 /* STM32H7_SPI_CFG1 bit fields */ 101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT 0 102 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) 103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT 5 104 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) 105 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14) 106 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15) 107 #define STM32H7_SPI_CFG1_MBR_SHIFT 28 108 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) 109 #define STM32H7_SPI_CFG1_MBR_MIN 0 110 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) 111 112 /* STM32H7_SPI_CFG2 bit fields */ 113 #define STM32H7_SPI_CFG2_MIDI_SHIFT 4 114 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) 115 #define STM32H7_SPI_CFG2_COMM_SHIFT 17 116 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) 117 #define STM32H7_SPI_CFG2_SP_SHIFT 19 118 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19) 119 #define STM32H7_SPI_CFG2_MASTER BIT(22) 120 #define STM32H7_SPI_CFG2_LSBFRST BIT(23) 121 #define STM32H7_SPI_CFG2_CPHA BIT(24) 122 #define STM32H7_SPI_CFG2_CPOL BIT(25) 123 #define STM32H7_SPI_CFG2_SSM BIT(26) 124 #define STM32H7_SPI_CFG2_AFCNTR BIT(31) 125 126 /* STM32H7_SPI_IER bit fields */ 127 #define STM32H7_SPI_IER_RXPIE BIT(0) 128 #define STM32H7_SPI_IER_TXPIE BIT(1) 129 #define STM32H7_SPI_IER_DXPIE BIT(2) 130 #define STM32H7_SPI_IER_EOTIE BIT(3) 131 #define STM32H7_SPI_IER_TXTFIE BIT(4) 132 #define STM32H7_SPI_IER_OVRIE BIT(6) 133 #define STM32H7_SPI_IER_MODFIE BIT(9) 134 #define STM32H7_SPI_IER_ALL GENMASK(10, 0) 135 136 /* STM32H7_SPI_SR bit fields */ 137 #define STM32H7_SPI_SR_RXP BIT(0) 138 #define STM32H7_SPI_SR_TXP BIT(1) 139 #define STM32H7_SPI_SR_EOT BIT(3) 140 #define STM32H7_SPI_SR_OVR BIT(6) 141 #define STM32H7_SPI_SR_MODF BIT(9) 142 #define STM32H7_SPI_SR_SUSP BIT(11) 143 #define STM32H7_SPI_SR_RXPLVL_SHIFT 13 144 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) 145 #define STM32H7_SPI_SR_RXWNE BIT(15) 146 147 /* STM32H7_SPI_IFCR bit fields */ 148 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3) 149 150 /* STM32H7_SPI_I2SCFGR bit fields */ 151 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0) 152 153 /* STM32H7 SPI Master Baud Rate min/max divisor */ 154 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN) 155 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX) 156 157 /* STM32H7 SPI Communication mode */ 158 #define STM32H7_SPI_FULL_DUPLEX 0 159 #define STM32H7_SPI_SIMPLEX_TX 1 160 #define STM32H7_SPI_SIMPLEX_RX 2 161 #define STM32H7_SPI_HALF_DUPLEX 3 162 163 /* SPI Communication type */ 164 #define SPI_FULL_DUPLEX 0 165 #define SPI_SIMPLEX_TX 1 166 #define SPI_SIMPLEX_RX 2 167 #define SPI_3WIRE_TX 3 168 #define SPI_3WIRE_RX 4 169 170 #define SPI_1HZ_NS 1000000000 171 172 /* 173 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers 174 * without fifo buffers. 175 */ 176 #define SPI_DMA_MIN_BYTES 16 177 178 /** 179 * struct stm32_spi_reg - stm32 SPI register & bitfield desc 180 * @reg: register offset 181 * @mask: bitfield mask 182 * @shift: left shift 183 */ 184 struct stm32_spi_reg { 185 int reg; 186 int mask; 187 int shift; 188 }; 189 190 /** 191 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data 192 * @en: enable register and SPI enable bit 193 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit 194 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit 195 * @cpol: clock polarity register and polarity bit 196 * @cpha: clock phase register and phase bit 197 * @lsb_first: LSB transmitted first register and bit 198 * @br: baud rate register and bitfields 199 * @rx: SPI RX data register 200 * @tx: SPI TX data register 201 */ 202 struct stm32_spi_regspec { 203 const struct stm32_spi_reg en; 204 const struct stm32_spi_reg dma_rx_en; 205 const struct stm32_spi_reg dma_tx_en; 206 const struct stm32_spi_reg cpol; 207 const struct stm32_spi_reg cpha; 208 const struct stm32_spi_reg lsb_first; 209 const struct stm32_spi_reg br; 210 const struct stm32_spi_reg rx; 211 const struct stm32_spi_reg tx; 212 }; 213 214 struct stm32_spi; 215 216 /** 217 * struct stm32_spi_cfg - stm32 compatible configuration data 218 * @regs: registers descriptions 219 * @get_fifo_size: routine to get fifo size 220 * @get_bpw_mask: routine to get bits per word mask 221 * @disable: routine to disable controller 222 * @config: routine to configure controller as SPI Master 223 * @set_bpw: routine to configure registers to for bits per word 224 * @set_mode: routine to configure registers to desired mode 225 * @set_data_idleness: optional routine to configure registers to desired idle 226 * time between frames (if driver has this functionality) 227 * @set_number_of_data: optional routine to configure registers to desired 228 * number of data (if driver has this functionality) 229 * @can_dma: routine to determine if the transfer is eligible for DMA use 230 * @transfer_one_dma_start: routine to start transfer a single spi_transfer 231 * using DMA 232 * @dma_rx_cb: routine to call after DMA RX channel operation is complete 233 * @dma_tx_cb: routine to call after DMA TX channel operation is complete 234 * @transfer_one_irq: routine to configure interrupts for driver 235 * @irq_handler_event: Interrupt handler for SPI controller events 236 * @irq_handler_thread: thread of interrupt handler for SPI controller 237 * @baud_rate_div_min: minimum baud rate divisor 238 * @baud_rate_div_max: maximum baud rate divisor 239 * @has_fifo: boolean to know if fifo is used for driver 240 * @has_startbit: boolean to know if start bit is used to start transfer 241 */ 242 struct stm32_spi_cfg { 243 const struct stm32_spi_regspec *regs; 244 int (*get_fifo_size)(struct stm32_spi *spi); 245 int (*get_bpw_mask)(struct stm32_spi *spi); 246 void (*disable)(struct stm32_spi *spi); 247 int (*config)(struct stm32_spi *spi); 248 void (*set_bpw)(struct stm32_spi *spi); 249 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type); 250 void (*set_data_idleness)(struct stm32_spi *spi, u32 length); 251 int (*set_number_of_data)(struct stm32_spi *spi, u32 length); 252 void (*transfer_one_dma_start)(struct stm32_spi *spi); 253 void (*dma_rx_cb)(void *data); 254 void (*dma_tx_cb)(void *data); 255 int (*transfer_one_irq)(struct stm32_spi *spi); 256 irqreturn_t (*irq_handler_event)(int irq, void *dev_id); 257 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id); 258 unsigned int baud_rate_div_min; 259 unsigned int baud_rate_div_max; 260 bool has_fifo; 261 }; 262 263 /** 264 * struct stm32_spi - private data of the SPI controller 265 * @dev: driver model representation of the controller 266 * @master: controller master interface 267 * @cfg: compatible configuration data 268 * @base: virtual memory area 269 * @clk: hw kernel clock feeding the SPI clock generator 270 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator 271 * @rst: SPI controller reset line 272 * @lock: prevent I/O concurrent access 273 * @irq: SPI controller interrupt line 274 * @fifo_size: size of the embedded fifo in bytes 275 * @cur_midi: master inter-data idleness in ns 276 * @cur_speed: speed configured in Hz 277 * @cur_bpw: number of bits in a single SPI data frame 278 * @cur_fthlv: fifo threshold level (data frames in a single data packet) 279 * @cur_comm: SPI communication mode 280 * @cur_xferlen: current transfer length in bytes 281 * @cur_usedma: boolean to know if dma is used in current transfer 282 * @tx_buf: data to be written, or NULL 283 * @rx_buf: data to be read, or NULL 284 * @tx_len: number of data to be written in bytes 285 * @rx_len: number of data to be read in bytes 286 * @dma_tx: dma channel for TX transfer 287 * @dma_rx: dma channel for RX transfer 288 * @phys_addr: SPI registers physical base address 289 */ 290 struct stm32_spi { 291 struct device *dev; 292 struct spi_master *master; 293 const struct stm32_spi_cfg *cfg; 294 void __iomem *base; 295 struct clk *clk; 296 u32 clk_rate; 297 struct reset_control *rst; 298 spinlock_t lock; /* prevent I/O concurrent access */ 299 int irq; 300 unsigned int fifo_size; 301 302 unsigned int cur_midi; 303 unsigned int cur_speed; 304 unsigned int cur_bpw; 305 unsigned int cur_fthlv; 306 unsigned int cur_comm; 307 unsigned int cur_xferlen; 308 bool cur_usedma; 309 310 const void *tx_buf; 311 void *rx_buf; 312 int tx_len; 313 int rx_len; 314 struct dma_chan *dma_tx; 315 struct dma_chan *dma_rx; 316 dma_addr_t phys_addr; 317 }; 318 319 static const struct stm32_spi_regspec stm32f4_spi_regspec = { 320 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE }, 321 322 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN }, 323 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN }, 324 325 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL }, 326 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA }, 327 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST }, 328 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT }, 329 330 .rx = { STM32F4_SPI_DR }, 331 .tx = { STM32F4_SPI_DR }, 332 }; 333 334 static const struct stm32_spi_regspec stm32h7_spi_regspec = { 335 /* SPI data transfer is enabled but spi_ker_ck is idle. 336 * CFG1 and CFG2 registers are write protected when SPE is enabled. 337 */ 338 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE }, 339 340 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN }, 341 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN }, 342 343 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL }, 344 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA }, 345 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST }, 346 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR, 347 STM32H7_SPI_CFG1_MBR_SHIFT }, 348 349 .rx = { STM32H7_SPI_RXDR }, 350 .tx = { STM32H7_SPI_TXDR }, 351 }; 352 353 static inline void stm32_spi_set_bits(struct stm32_spi *spi, 354 u32 offset, u32 bits) 355 { 356 writel_relaxed(readl_relaxed(spi->base + offset) | bits, 357 spi->base + offset); 358 } 359 360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi, 361 u32 offset, u32 bits) 362 { 363 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits, 364 spi->base + offset); 365 } 366 367 /** 368 * stm32h7_spi_get_fifo_size - Return fifo size 369 * @spi: pointer to the spi controller data structure 370 */ 371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi) 372 { 373 unsigned long flags; 374 u32 count = 0; 375 376 spin_lock_irqsave(&spi->lock, flags); 377 378 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 379 380 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP) 381 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR); 382 383 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 384 385 spin_unlock_irqrestore(&spi->lock, flags); 386 387 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count); 388 389 return count; 390 } 391 392 /** 393 * stm32f4_spi_get_bpw_mask - Return bits per word mask 394 * @spi: pointer to the spi controller data structure 395 */ 396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi) 397 { 398 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n"); 399 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 400 } 401 402 /** 403 * stm32h7_spi_get_bpw_mask - Return bits per word mask 404 * @spi: pointer to the spi controller data structure 405 */ 406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi) 407 { 408 unsigned long flags; 409 u32 cfg1, max_bpw; 410 411 spin_lock_irqsave(&spi->lock, flags); 412 413 /* 414 * The most significant bit at DSIZE bit field is reserved when the 415 * maximum data size of periperal instances is limited to 16-bit 416 */ 417 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); 418 419 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); 420 max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >> 421 STM32H7_SPI_CFG1_DSIZE_SHIFT; 422 max_bpw += 1; 423 424 spin_unlock_irqrestore(&spi->lock, flags); 425 426 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); 427 428 return SPI_BPW_RANGE_MASK(4, max_bpw); 429 } 430 431 /** 432 * stm32_spi_prepare_mbr - Determine baud rate divisor value 433 * @spi: pointer to the spi controller data structure 434 * @speed_hz: requested speed 435 * @min_div: minimum baud rate divisor 436 * @max_div: maximum baud rate divisor 437 * 438 * Return baud rate divisor value in case of success or -EINVAL 439 */ 440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz, 441 u32 min_div, u32 max_div) 442 { 443 u32 div, mbrdiv; 444 445 /* Ensure spi->clk_rate is even */ 446 div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz); 447 448 /* 449 * SPI framework set xfer->speed_hz to master->max_speed_hz if 450 * xfer->speed_hz is greater than master->max_speed_hz, and it returns 451 * an error when xfer->speed_hz is lower than master->min_speed_hz, so 452 * no need to check it there. 453 * However, we need to ensure the following calculations. 454 */ 455 if ((div < min_div) || (div > max_div)) 456 return -EINVAL; 457 458 /* Determine the first power of 2 greater than or equal to div */ 459 if (div & (div - 1)) 460 mbrdiv = fls(div); 461 else 462 mbrdiv = fls(div) - 1; 463 464 spi->cur_speed = spi->clk_rate / (1 << mbrdiv); 465 466 return mbrdiv - 1; 467 } 468 469 /** 470 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level 471 * @spi: pointer to the spi controller data structure 472 * @xfer_len: length of the message to be transferred 473 */ 474 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len) 475 { 476 u32 fthlv, half_fifo, packet; 477 478 /* data packet should not exceed 1/2 of fifo space */ 479 half_fifo = (spi->fifo_size / 2); 480 481 /* data_packet should not exceed transfer length */ 482 if (half_fifo > xfer_len) 483 packet = xfer_len; 484 else 485 packet = half_fifo; 486 487 if (spi->cur_bpw <= 8) 488 fthlv = packet; 489 else if (spi->cur_bpw <= 16) 490 fthlv = packet / 2; 491 else 492 fthlv = packet / 4; 493 494 /* align packet size with data registers access */ 495 if (spi->cur_bpw > 8) 496 fthlv -= (fthlv % 2); /* multiple of 2 */ 497 else 498 fthlv -= (fthlv % 4); /* multiple of 4 */ 499 500 if (!fthlv) 501 fthlv = 1; 502 503 return fthlv; 504 } 505 506 /** 507 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register 508 * @spi: pointer to the spi controller data structure 509 * 510 * Read from tx_buf depends on remaining bytes to avoid to read beyond 511 * tx_buf end. 512 */ 513 static void stm32f4_spi_write_tx(struct stm32_spi *spi) 514 { 515 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 516 STM32F4_SPI_SR_TXE)) { 517 u32 offs = spi->cur_xferlen - spi->tx_len; 518 519 if (spi->cur_bpw == 16) { 520 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 521 522 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR); 523 spi->tx_len -= sizeof(u16); 524 } else { 525 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 526 527 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR); 528 spi->tx_len -= sizeof(u8); 529 } 530 } 531 532 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 533 } 534 535 /** 536 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register 537 * @spi: pointer to the spi controller data structure 538 * 539 * Read from tx_buf depends on remaining bytes to avoid to read beyond 540 * tx_buf end. 541 */ 542 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi) 543 { 544 while ((spi->tx_len > 0) && 545 (readl_relaxed(spi->base + STM32H7_SPI_SR) & 546 STM32H7_SPI_SR_TXP)) { 547 u32 offs = spi->cur_xferlen - spi->tx_len; 548 549 if (spi->tx_len >= sizeof(u32)) { 550 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs); 551 552 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR); 553 spi->tx_len -= sizeof(u32); 554 } else if (spi->tx_len >= sizeof(u16)) { 555 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 556 557 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR); 558 spi->tx_len -= sizeof(u16); 559 } else { 560 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 561 562 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR); 563 spi->tx_len -= sizeof(u8); 564 } 565 } 566 567 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 568 } 569 570 /** 571 * stm32f4_spi_read_rx - Read bytes from Receive Data Register 572 * @spi: pointer to the spi controller data structure 573 * 574 * Write in rx_buf depends on remaining bytes to avoid to write beyond 575 * rx_buf end. 576 */ 577 static void stm32f4_spi_read_rx(struct stm32_spi *spi) 578 { 579 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 580 STM32F4_SPI_SR_RXNE)) { 581 u32 offs = spi->cur_xferlen - spi->rx_len; 582 583 if (spi->cur_bpw == 16) { 584 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 585 586 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR); 587 spi->rx_len -= sizeof(u16); 588 } else { 589 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 590 591 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR); 592 spi->rx_len -= sizeof(u8); 593 } 594 } 595 596 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len); 597 } 598 599 /** 600 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register 601 * @spi: pointer to the spi controller data structure 602 * @flush: boolean indicating that FIFO should be flushed 603 * 604 * Write in rx_buf depends on remaining bytes to avoid to write beyond 605 * rx_buf end. 606 */ 607 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush) 608 { 609 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 610 u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >> 611 STM32H7_SPI_SR_RXPLVL_SHIFT; 612 613 while ((spi->rx_len > 0) && 614 ((sr & STM32H7_SPI_SR_RXP) || 615 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) { 616 u32 offs = spi->cur_xferlen - spi->rx_len; 617 618 if ((spi->rx_len >= sizeof(u32)) || 619 (flush && (sr & STM32H7_SPI_SR_RXWNE))) { 620 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs); 621 622 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR); 623 spi->rx_len -= sizeof(u32); 624 } else if ((spi->rx_len >= sizeof(u16)) || 625 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) { 626 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 627 628 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR); 629 spi->rx_len -= sizeof(u16); 630 } else { 631 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 632 633 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR); 634 spi->rx_len -= sizeof(u8); 635 } 636 637 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 638 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >> 639 STM32H7_SPI_SR_RXPLVL_SHIFT; 640 } 641 642 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__, 643 flush ? "(flush)" : "", spi->rx_len); 644 } 645 646 /** 647 * stm32_spi_enable - Enable SPI controller 648 * @spi: pointer to the spi controller data structure 649 */ 650 static void stm32_spi_enable(struct stm32_spi *spi) 651 { 652 dev_dbg(spi->dev, "enable controller\n"); 653 654 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg, 655 spi->cfg->regs->en.mask); 656 } 657 658 /** 659 * stm32f4_spi_disable - Disable SPI controller 660 * @spi: pointer to the spi controller data structure 661 */ 662 static void stm32f4_spi_disable(struct stm32_spi *spi) 663 { 664 unsigned long flags; 665 u32 sr; 666 667 dev_dbg(spi->dev, "disable controller\n"); 668 669 spin_lock_irqsave(&spi->lock, flags); 670 671 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) & 672 STM32F4_SPI_CR1_SPE)) { 673 spin_unlock_irqrestore(&spi->lock, flags); 674 return; 675 } 676 677 /* Disable interrupts */ 678 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE | 679 STM32F4_SPI_CR2_RXNEIE | 680 STM32F4_SPI_CR2_ERRIE); 681 682 /* Wait until BSY = 0 */ 683 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR, 684 sr, !(sr & STM32F4_SPI_SR_BSY), 685 10, 100000) < 0) { 686 dev_warn(spi->dev, "disabling condition timeout\n"); 687 } 688 689 if (spi->cur_usedma && spi->dma_tx) 690 dmaengine_terminate_all(spi->dma_tx); 691 if (spi->cur_usedma && spi->dma_rx) 692 dmaengine_terminate_all(spi->dma_rx); 693 694 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE); 695 696 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN | 697 STM32F4_SPI_CR2_RXDMAEN); 698 699 /* Sequence to clear OVR flag */ 700 readl_relaxed(spi->base + STM32F4_SPI_DR); 701 readl_relaxed(spi->base + STM32F4_SPI_SR); 702 703 spin_unlock_irqrestore(&spi->lock, flags); 704 } 705 706 /** 707 * stm32h7_spi_disable - Disable SPI controller 708 * @spi: pointer to the spi controller data structure 709 * 710 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data 711 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in 712 * RX-Fifo. 713 * Normally, if TSIZE has been configured, we should relax the hardware at the 714 * reception of the EOT interrupt. But in case of error, EOT will not be 715 * raised. So the subsystem unprepare_message call allows us to properly 716 * complete the transfer from an hardware point of view. 717 */ 718 static void stm32h7_spi_disable(struct stm32_spi *spi) 719 { 720 unsigned long flags; 721 u32 cr1, sr; 722 723 dev_dbg(spi->dev, "disable controller\n"); 724 725 spin_lock_irqsave(&spi->lock, flags); 726 727 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1); 728 729 if (!(cr1 & STM32H7_SPI_CR1_SPE)) { 730 spin_unlock_irqrestore(&spi->lock, flags); 731 return; 732 } 733 734 /* Wait on EOT or suspend the flow */ 735 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR, 736 sr, !(sr & STM32H7_SPI_SR_EOT), 737 10, 100000) < 0) { 738 if (cr1 & STM32H7_SPI_CR1_CSTART) { 739 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP, 740 spi->base + STM32H7_SPI_CR1); 741 if (readl_relaxed_poll_timeout_atomic( 742 spi->base + STM32H7_SPI_SR, 743 sr, !(sr & STM32H7_SPI_SR_SUSP), 744 10, 100000) < 0) 745 dev_warn(spi->dev, 746 "Suspend request timeout\n"); 747 } 748 } 749 750 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0)) 751 stm32h7_spi_read_rxfifo(spi, true); 752 753 if (spi->cur_usedma && spi->dma_tx) 754 dmaengine_terminate_all(spi->dma_tx); 755 if (spi->cur_usedma && spi->dma_rx) 756 dmaengine_terminate_all(spi->dma_rx); 757 758 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 759 760 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN | 761 STM32H7_SPI_CFG1_RXDMAEN); 762 763 /* Disable interrupts and clear status flags */ 764 writel_relaxed(0, spi->base + STM32H7_SPI_IER); 765 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR); 766 767 spin_unlock_irqrestore(&spi->lock, flags); 768 } 769 770 /** 771 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use 772 * @master: controller master interface 773 * @spi_dev: pointer to the spi device 774 * @transfer: pointer to spi transfer 775 * 776 * If driver has fifo and the current transfer size is greater than fifo size, 777 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes. 778 */ 779 static bool stm32_spi_can_dma(struct spi_master *master, 780 struct spi_device *spi_dev, 781 struct spi_transfer *transfer) 782 { 783 unsigned int dma_size; 784 struct stm32_spi *spi = spi_master_get_devdata(master); 785 786 if (spi->cfg->has_fifo) 787 dma_size = spi->fifo_size; 788 else 789 dma_size = SPI_DMA_MIN_BYTES; 790 791 dev_dbg(spi->dev, "%s: %s\n", __func__, 792 (transfer->len > dma_size) ? "true" : "false"); 793 794 return (transfer->len > dma_size); 795 } 796 797 /** 798 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events 799 * @irq: interrupt line 800 * @dev_id: SPI controller master interface 801 */ 802 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id) 803 { 804 struct spi_master *master = dev_id; 805 struct stm32_spi *spi = spi_master_get_devdata(master); 806 u32 sr, mask = 0; 807 unsigned long flags; 808 bool end = false; 809 810 spin_lock_irqsave(&spi->lock, flags); 811 812 sr = readl_relaxed(spi->base + STM32F4_SPI_SR); 813 /* 814 * BSY flag is not handled in interrupt but it is normal behavior when 815 * this flag is set. 816 */ 817 sr &= ~STM32F4_SPI_SR_BSY; 818 819 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX || 820 spi->cur_comm == SPI_3WIRE_TX)) { 821 /* OVR flag shouldn't be handled for TX only mode */ 822 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE; 823 mask |= STM32F4_SPI_SR_TXE; 824 } 825 826 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX || 827 spi->cur_comm == SPI_SIMPLEX_RX || 828 spi->cur_comm == SPI_3WIRE_RX)) { 829 /* TXE flag is set and is handled when RXNE flag occurs */ 830 sr &= ~STM32F4_SPI_SR_TXE; 831 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR; 832 } 833 834 if (!(sr & mask)) { 835 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr); 836 spin_unlock_irqrestore(&spi->lock, flags); 837 return IRQ_NONE; 838 } 839 840 if (sr & STM32F4_SPI_SR_OVR) { 841 dev_warn(spi->dev, "Overrun: received value discarded\n"); 842 843 /* Sequence to clear OVR flag */ 844 readl_relaxed(spi->base + STM32F4_SPI_DR); 845 readl_relaxed(spi->base + STM32F4_SPI_SR); 846 847 /* 848 * If overrun is detected, it means that something went wrong, 849 * so stop the current transfer. Transfer can wait for next 850 * RXNE but DR is already read and end never happens. 851 */ 852 end = true; 853 goto end_irq; 854 } 855 856 if (sr & STM32F4_SPI_SR_TXE) { 857 if (spi->tx_buf) 858 stm32f4_spi_write_tx(spi); 859 if (spi->tx_len == 0) 860 end = true; 861 } 862 863 if (sr & STM32F4_SPI_SR_RXNE) { 864 stm32f4_spi_read_rx(spi); 865 if (spi->rx_len == 0) 866 end = true; 867 else if (spi->tx_buf)/* Load data for discontinuous mode */ 868 stm32f4_spi_write_tx(spi); 869 } 870 871 end_irq: 872 if (end) { 873 /* Immediately disable interrupts to do not generate new one */ 874 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, 875 STM32F4_SPI_CR2_TXEIE | 876 STM32F4_SPI_CR2_RXNEIE | 877 STM32F4_SPI_CR2_ERRIE); 878 spin_unlock_irqrestore(&spi->lock, flags); 879 return IRQ_WAKE_THREAD; 880 } 881 882 spin_unlock_irqrestore(&spi->lock, flags); 883 return IRQ_HANDLED; 884 } 885 886 /** 887 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller 888 * @irq: interrupt line 889 * @dev_id: SPI controller master interface 890 */ 891 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id) 892 { 893 struct spi_master *master = dev_id; 894 struct stm32_spi *spi = spi_master_get_devdata(master); 895 896 spi_finalize_current_transfer(master); 897 stm32f4_spi_disable(spi); 898 899 return IRQ_HANDLED; 900 } 901 902 /** 903 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller 904 * @irq: interrupt line 905 * @dev_id: SPI controller master interface 906 */ 907 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) 908 { 909 struct spi_master *master = dev_id; 910 struct stm32_spi *spi = spi_master_get_devdata(master); 911 u32 sr, ier, mask; 912 unsigned long flags; 913 bool end = false; 914 915 spin_lock_irqsave(&spi->lock, flags); 916 917 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 918 ier = readl_relaxed(spi->base + STM32H7_SPI_IER); 919 920 mask = ier; 921 /* EOTIE is triggered on EOT, SUSP and TXC events. */ 922 mask |= STM32H7_SPI_SR_SUSP; 923 /* 924 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of 925 * Full-Duplex, need to poll RXP event to know if there are remaining 926 * data, before disabling SPI. 927 */ 928 if (spi->rx_buf && !spi->cur_usedma) 929 mask |= STM32H7_SPI_SR_RXP; 930 931 if (!(sr & mask)) { 932 dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", 933 sr, ier); 934 spin_unlock_irqrestore(&spi->lock, flags); 935 return IRQ_NONE; 936 } 937 938 if (sr & STM32H7_SPI_SR_SUSP) { 939 static DEFINE_RATELIMIT_STATE(rs, 940 DEFAULT_RATELIMIT_INTERVAL * 10, 941 1); 942 if (__ratelimit(&rs)) 943 dev_dbg_ratelimited(spi->dev, "Communication suspended\n"); 944 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 945 stm32h7_spi_read_rxfifo(spi, false); 946 /* 947 * If communication is suspended while using DMA, it means 948 * that something went wrong, so stop the current transfer 949 */ 950 if (spi->cur_usedma) 951 end = true; 952 } 953 954 if (sr & STM32H7_SPI_SR_MODF) { 955 dev_warn(spi->dev, "Mode fault: transfer aborted\n"); 956 end = true; 957 } 958 959 if (sr & STM32H7_SPI_SR_OVR) { 960 dev_warn(spi->dev, "Overrun: received value discarded\n"); 961 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 962 stm32h7_spi_read_rxfifo(spi, false); 963 /* 964 * If overrun is detected while using DMA, it means that 965 * something went wrong, so stop the current transfer 966 */ 967 if (spi->cur_usedma) 968 end = true; 969 } 970 971 if (sr & STM32H7_SPI_SR_EOT) { 972 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 973 stm32h7_spi_read_rxfifo(spi, true); 974 end = true; 975 } 976 977 if (sr & STM32H7_SPI_SR_TXP) 978 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0))) 979 stm32h7_spi_write_txfifo(spi); 980 981 if (sr & STM32H7_SPI_SR_RXP) 982 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 983 stm32h7_spi_read_rxfifo(spi, false); 984 985 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR); 986 987 spin_unlock_irqrestore(&spi->lock, flags); 988 989 if (end) { 990 stm32h7_spi_disable(spi); 991 spi_finalize_current_transfer(master); 992 } 993 994 return IRQ_HANDLED; 995 } 996 997 /** 998 * stm32_spi_prepare_msg - set up the controller to transfer a single message 999 * @master: controller master interface 1000 * @msg: pointer to spi message 1001 */ 1002 static int stm32_spi_prepare_msg(struct spi_master *master, 1003 struct spi_message *msg) 1004 { 1005 struct stm32_spi *spi = spi_master_get_devdata(master); 1006 struct spi_device *spi_dev = msg->spi; 1007 struct device_node *np = spi_dev->dev.of_node; 1008 unsigned long flags; 1009 u32 clrb = 0, setb = 0; 1010 1011 /* SPI slave device may need time between data frames */ 1012 spi->cur_midi = 0; 1013 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi)) 1014 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi); 1015 1016 if (spi_dev->mode & SPI_CPOL) 1017 setb |= spi->cfg->regs->cpol.mask; 1018 else 1019 clrb |= spi->cfg->regs->cpol.mask; 1020 1021 if (spi_dev->mode & SPI_CPHA) 1022 setb |= spi->cfg->regs->cpha.mask; 1023 else 1024 clrb |= spi->cfg->regs->cpha.mask; 1025 1026 if (spi_dev->mode & SPI_LSB_FIRST) 1027 setb |= spi->cfg->regs->lsb_first.mask; 1028 else 1029 clrb |= spi->cfg->regs->lsb_first.mask; 1030 1031 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", 1032 spi_dev->mode & SPI_CPOL, 1033 spi_dev->mode & SPI_CPHA, 1034 spi_dev->mode & SPI_LSB_FIRST, 1035 spi_dev->mode & SPI_CS_HIGH); 1036 1037 spin_lock_irqsave(&spi->lock, flags); 1038 1039 /* CPOL, CPHA and LSB FIRST bits have common register */ 1040 if (clrb || setb) 1041 writel_relaxed( 1042 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) & 1043 ~clrb) | setb, 1044 spi->base + spi->cfg->regs->cpol.reg); 1045 1046 spin_unlock_irqrestore(&spi->lock, flags); 1047 1048 return 0; 1049 } 1050 1051 /** 1052 * stm32f4_spi_dma_tx_cb - dma callback 1053 * @data: pointer to the spi controller data structure 1054 * 1055 * DMA callback is called when the transfer is complete for DMA TX channel. 1056 */ 1057 static void stm32f4_spi_dma_tx_cb(void *data) 1058 { 1059 struct stm32_spi *spi = data; 1060 1061 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1062 spi_finalize_current_transfer(spi->master); 1063 stm32f4_spi_disable(spi); 1064 } 1065 } 1066 1067 /** 1068 * stm32f4_spi_dma_rx_cb - dma callback 1069 * @data: pointer to the spi controller data structure 1070 * 1071 * DMA callback is called when the transfer is complete for DMA RX channel. 1072 */ 1073 static void stm32f4_spi_dma_rx_cb(void *data) 1074 { 1075 struct stm32_spi *spi = data; 1076 1077 spi_finalize_current_transfer(spi->master); 1078 stm32f4_spi_disable(spi); 1079 } 1080 1081 /** 1082 * stm32h7_spi_dma_cb - dma callback 1083 * @data: pointer to the spi controller data structure 1084 * 1085 * DMA callback is called when the transfer is complete or when an error 1086 * occurs. If the transfer is complete, EOT flag is raised. 1087 */ 1088 static void stm32h7_spi_dma_cb(void *data) 1089 { 1090 struct stm32_spi *spi = data; 1091 unsigned long flags; 1092 u32 sr; 1093 1094 spin_lock_irqsave(&spi->lock, flags); 1095 1096 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 1097 1098 spin_unlock_irqrestore(&spi->lock, flags); 1099 1100 if (!(sr & STM32H7_SPI_SR_EOT)) 1101 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr); 1102 1103 /* Now wait for EOT, or SUSP or OVR in case of error */ 1104 } 1105 1106 /** 1107 * stm32_spi_dma_config - configure dma slave channel depending on current 1108 * transfer bits_per_word. 1109 * @spi: pointer to the spi controller data structure 1110 * @dma_conf: pointer to the dma_slave_config structure 1111 * @dir: direction of the dma transfer 1112 */ 1113 static void stm32_spi_dma_config(struct stm32_spi *spi, 1114 struct dma_slave_config *dma_conf, 1115 enum dma_transfer_direction dir) 1116 { 1117 enum dma_slave_buswidth buswidth; 1118 u32 maxburst; 1119 1120 if (spi->cur_bpw <= 8) 1121 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1122 else if (spi->cur_bpw <= 16) 1123 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1124 else 1125 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1126 1127 if (spi->cfg->has_fifo) { 1128 /* Valid for DMA Half or Full Fifo threshold */ 1129 if (spi->cur_fthlv == 2) 1130 maxburst = 1; 1131 else 1132 maxburst = spi->cur_fthlv; 1133 } else { 1134 maxburst = 1; 1135 } 1136 1137 memset(dma_conf, 0, sizeof(struct dma_slave_config)); 1138 dma_conf->direction = dir; 1139 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */ 1140 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg; 1141 dma_conf->src_addr_width = buswidth; 1142 dma_conf->src_maxburst = maxburst; 1143 1144 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n", 1145 buswidth, maxburst); 1146 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */ 1147 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg; 1148 dma_conf->dst_addr_width = buswidth; 1149 dma_conf->dst_maxburst = maxburst; 1150 1151 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n", 1152 buswidth, maxburst); 1153 } 1154 } 1155 1156 /** 1157 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using 1158 * interrupts 1159 * @spi: pointer to the spi controller data structure 1160 * 1161 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1162 * in progress. 1163 */ 1164 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi) 1165 { 1166 unsigned long flags; 1167 u32 cr2 = 0; 1168 1169 /* Enable the interrupts relative to the current communication mode */ 1170 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1171 cr2 |= STM32F4_SPI_CR2_TXEIE; 1172 } else if (spi->cur_comm == SPI_FULL_DUPLEX || 1173 spi->cur_comm == SPI_SIMPLEX_RX || 1174 spi->cur_comm == SPI_3WIRE_RX) { 1175 /* In transmit-only mode, the OVR flag is set in the SR register 1176 * since the received data are never read. Therefore set OVR 1177 * interrupt only when rx buffer is available. 1178 */ 1179 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE; 1180 } else { 1181 return -EINVAL; 1182 } 1183 1184 spin_lock_irqsave(&spi->lock, flags); 1185 1186 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2); 1187 1188 stm32_spi_enable(spi); 1189 1190 /* starting data transfer when buffer is loaded */ 1191 if (spi->tx_buf) 1192 stm32f4_spi_write_tx(spi); 1193 1194 spin_unlock_irqrestore(&spi->lock, flags); 1195 1196 return 1; 1197 } 1198 1199 /** 1200 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using 1201 * interrupts 1202 * @spi: pointer to the spi controller data structure 1203 * 1204 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1205 * in progress. 1206 */ 1207 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi) 1208 { 1209 unsigned long flags; 1210 u32 ier = 0; 1211 1212 /* Enable the interrupts relative to the current communication mode */ 1213 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */ 1214 ier |= STM32H7_SPI_IER_DXPIE; 1215 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */ 1216 ier |= STM32H7_SPI_IER_TXPIE; 1217 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */ 1218 ier |= STM32H7_SPI_IER_RXPIE; 1219 1220 /* Enable the interrupts relative to the end of transfer */ 1221 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE | 1222 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1223 1224 spin_lock_irqsave(&spi->lock, flags); 1225 1226 stm32_spi_enable(spi); 1227 1228 /* Be sure to have data in fifo before starting data transfer */ 1229 if (spi->tx_buf) 1230 stm32h7_spi_write_txfifo(spi); 1231 1232 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1233 1234 writel_relaxed(ier, spi->base + STM32H7_SPI_IER); 1235 1236 spin_unlock_irqrestore(&spi->lock, flags); 1237 1238 return 1; 1239 } 1240 1241 /** 1242 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start 1243 * transfer using DMA 1244 * @spi: pointer to the spi controller data structure 1245 */ 1246 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi) 1247 { 1248 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */ 1249 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX || 1250 spi->cur_comm == SPI_FULL_DUPLEX) { 1251 /* 1252 * In transmit-only mode, the OVR flag is set in the SR register 1253 * since the received data are never read. Therefore set OVR 1254 * interrupt only when rx buffer is available. 1255 */ 1256 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE); 1257 } 1258 1259 stm32_spi_enable(spi); 1260 } 1261 1262 /** 1263 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start 1264 * transfer using DMA 1265 * @spi: pointer to the spi controller data structure 1266 */ 1267 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi) 1268 { 1269 /* Enable the interrupts relative to the end of transfer */ 1270 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE | 1271 STM32H7_SPI_IER_TXTFIE | 1272 STM32H7_SPI_IER_OVRIE | 1273 STM32H7_SPI_IER_MODFIE); 1274 1275 stm32_spi_enable(spi); 1276 1277 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1278 } 1279 1280 /** 1281 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA 1282 * @spi: pointer to the spi controller data structure 1283 * @xfer: pointer to the spi_transfer structure 1284 * 1285 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1286 * in progress. 1287 */ 1288 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi, 1289 struct spi_transfer *xfer) 1290 { 1291 struct dma_slave_config tx_dma_conf, rx_dma_conf; 1292 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc; 1293 unsigned long flags; 1294 1295 spin_lock_irqsave(&spi->lock, flags); 1296 1297 rx_dma_desc = NULL; 1298 if (spi->rx_buf && spi->dma_rx) { 1299 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM); 1300 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); 1301 1302 /* Enable Rx DMA request */ 1303 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1304 spi->cfg->regs->dma_rx_en.mask); 1305 1306 rx_dma_desc = dmaengine_prep_slave_sg( 1307 spi->dma_rx, xfer->rx_sg.sgl, 1308 xfer->rx_sg.nents, 1309 rx_dma_conf.direction, 1310 DMA_PREP_INTERRUPT); 1311 } 1312 1313 tx_dma_desc = NULL; 1314 if (spi->tx_buf && spi->dma_tx) { 1315 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV); 1316 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf); 1317 1318 tx_dma_desc = dmaengine_prep_slave_sg( 1319 spi->dma_tx, xfer->tx_sg.sgl, 1320 xfer->tx_sg.nents, 1321 tx_dma_conf.direction, 1322 DMA_PREP_INTERRUPT); 1323 } 1324 1325 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) || 1326 (spi->rx_buf && spi->dma_rx && !rx_dma_desc)) 1327 goto dma_desc_error; 1328 1329 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc)) 1330 goto dma_desc_error; 1331 1332 if (rx_dma_desc) { 1333 rx_dma_desc->callback = spi->cfg->dma_rx_cb; 1334 rx_dma_desc->callback_param = spi; 1335 1336 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) { 1337 dev_err(spi->dev, "Rx DMA submit failed\n"); 1338 goto dma_desc_error; 1339 } 1340 /* Enable Rx DMA channel */ 1341 dma_async_issue_pending(spi->dma_rx); 1342 } 1343 1344 if (tx_dma_desc) { 1345 if (spi->cur_comm == SPI_SIMPLEX_TX || 1346 spi->cur_comm == SPI_3WIRE_TX) { 1347 tx_dma_desc->callback = spi->cfg->dma_tx_cb; 1348 tx_dma_desc->callback_param = spi; 1349 } 1350 1351 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) { 1352 dev_err(spi->dev, "Tx DMA submit failed\n"); 1353 goto dma_submit_error; 1354 } 1355 /* Enable Tx DMA channel */ 1356 dma_async_issue_pending(spi->dma_tx); 1357 1358 /* Enable Tx DMA request */ 1359 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg, 1360 spi->cfg->regs->dma_tx_en.mask); 1361 } 1362 1363 spi->cfg->transfer_one_dma_start(spi); 1364 1365 spin_unlock_irqrestore(&spi->lock, flags); 1366 1367 return 1; 1368 1369 dma_submit_error: 1370 if (spi->dma_rx) 1371 dmaengine_terminate_all(spi->dma_rx); 1372 1373 dma_desc_error: 1374 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1375 spi->cfg->regs->dma_rx_en.mask); 1376 1377 spin_unlock_irqrestore(&spi->lock, flags); 1378 1379 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n"); 1380 1381 spi->cur_usedma = false; 1382 return spi->cfg->transfer_one_irq(spi); 1383 } 1384 1385 /** 1386 * stm32f4_spi_set_bpw - Configure bits per word 1387 * @spi: pointer to the spi controller data structure 1388 */ 1389 static void stm32f4_spi_set_bpw(struct stm32_spi *spi) 1390 { 1391 if (spi->cur_bpw == 16) 1392 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1393 else 1394 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1395 } 1396 1397 /** 1398 * stm32h7_spi_set_bpw - configure bits per word 1399 * @spi: pointer to the spi controller data structure 1400 */ 1401 static void stm32h7_spi_set_bpw(struct stm32_spi *spi) 1402 { 1403 u32 bpw, fthlv; 1404 u32 cfg1_clrb = 0, cfg1_setb = 0; 1405 1406 bpw = spi->cur_bpw - 1; 1407 1408 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; 1409 cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) & 1410 STM32H7_SPI_CFG1_DSIZE; 1411 1412 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen); 1413 fthlv = spi->cur_fthlv - 1; 1414 1415 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; 1416 cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) & 1417 STM32H7_SPI_CFG1_FTHLV; 1418 1419 writel_relaxed( 1420 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) & 1421 ~cfg1_clrb) | cfg1_setb, 1422 spi->base + STM32H7_SPI_CFG1); 1423 } 1424 1425 /** 1426 * stm32_spi_set_mbr - Configure baud rate divisor in master mode 1427 * @spi: pointer to the spi controller data structure 1428 * @mbrdiv: baud rate divisor value 1429 */ 1430 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv) 1431 { 1432 u32 clrb = 0, setb = 0; 1433 1434 clrb |= spi->cfg->regs->br.mask; 1435 setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) & 1436 spi->cfg->regs->br.mask; 1437 1438 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & 1439 ~clrb) | setb, 1440 spi->base + spi->cfg->regs->br.reg); 1441 } 1442 1443 /** 1444 * stm32_spi_communication_type - return transfer communication type 1445 * @spi_dev: pointer to the spi device 1446 * @transfer: pointer to spi transfer 1447 */ 1448 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev, 1449 struct spi_transfer *transfer) 1450 { 1451 unsigned int type = SPI_FULL_DUPLEX; 1452 1453 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */ 1454 /* 1455 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL 1456 * is forbidden and unvalidated by SPI subsystem so depending 1457 * on the valid buffer, we can determine the direction of the 1458 * transfer. 1459 */ 1460 if (!transfer->tx_buf) 1461 type = SPI_3WIRE_RX; 1462 else 1463 type = SPI_3WIRE_TX; 1464 } else { 1465 if (!transfer->tx_buf) 1466 type = SPI_SIMPLEX_RX; 1467 else if (!transfer->rx_buf) 1468 type = SPI_SIMPLEX_TX; 1469 } 1470 1471 return type; 1472 } 1473 1474 /** 1475 * stm32f4_spi_set_mode - configure communication mode 1476 * @spi: pointer to the spi controller data structure 1477 * @comm_type: type of communication to configure 1478 */ 1479 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1480 { 1481 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) { 1482 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1483 STM32F4_SPI_CR1_BIDIMODE | 1484 STM32F4_SPI_CR1_BIDIOE); 1485 } else if (comm_type == SPI_FULL_DUPLEX || 1486 comm_type == SPI_SIMPLEX_RX) { 1487 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1488 STM32F4_SPI_CR1_BIDIMODE | 1489 STM32F4_SPI_CR1_BIDIOE); 1490 } else if (comm_type == SPI_3WIRE_RX) { 1491 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1492 STM32F4_SPI_CR1_BIDIMODE); 1493 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1494 STM32F4_SPI_CR1_BIDIOE); 1495 } else { 1496 return -EINVAL; 1497 } 1498 1499 return 0; 1500 } 1501 1502 /** 1503 * stm32h7_spi_set_mode - configure communication mode 1504 * @spi: pointer to the spi controller data structure 1505 * @comm_type: type of communication to configure 1506 */ 1507 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1508 { 1509 u32 mode; 1510 u32 cfg2_clrb = 0, cfg2_setb = 0; 1511 1512 if (comm_type == SPI_3WIRE_RX) { 1513 mode = STM32H7_SPI_HALF_DUPLEX; 1514 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1515 } else if (comm_type == SPI_3WIRE_TX) { 1516 mode = STM32H7_SPI_HALF_DUPLEX; 1517 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1518 } else if (comm_type == SPI_SIMPLEX_RX) { 1519 mode = STM32H7_SPI_SIMPLEX_RX; 1520 } else if (comm_type == SPI_SIMPLEX_TX) { 1521 mode = STM32H7_SPI_SIMPLEX_TX; 1522 } else { 1523 mode = STM32H7_SPI_FULL_DUPLEX; 1524 } 1525 1526 cfg2_clrb |= STM32H7_SPI_CFG2_COMM; 1527 cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) & 1528 STM32H7_SPI_CFG2_COMM; 1529 1530 writel_relaxed( 1531 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1532 ~cfg2_clrb) | cfg2_setb, 1533 spi->base + STM32H7_SPI_CFG2); 1534 1535 return 0; 1536 } 1537 1538 /** 1539 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two 1540 * consecutive data frames in master mode 1541 * @spi: pointer to the spi controller data structure 1542 * @len: transfer len 1543 */ 1544 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len) 1545 { 1546 u32 cfg2_clrb = 0, cfg2_setb = 0; 1547 1548 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; 1549 if ((len > 1) && (spi->cur_midi > 0)) { 1550 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed); 1551 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns), 1552 (u32)STM32H7_SPI_CFG2_MIDI >> 1553 STM32H7_SPI_CFG2_MIDI_SHIFT); 1554 1555 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", 1556 sck_period_ns, midi, midi * sck_period_ns); 1557 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) & 1558 STM32H7_SPI_CFG2_MIDI; 1559 } 1560 1561 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1562 ~cfg2_clrb) | cfg2_setb, 1563 spi->base + STM32H7_SPI_CFG2); 1564 } 1565 1566 /** 1567 * stm32h7_spi_number_of_data - configure number of data at current transfer 1568 * @spi: pointer to the spi controller data structure 1569 * @nb_words: transfer length (in words) 1570 */ 1571 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) 1572 { 1573 u32 cr2_clrb = 0, cr2_setb = 0; 1574 1575 if (nb_words <= (STM32H7_SPI_CR2_TSIZE >> 1576 STM32H7_SPI_CR2_TSIZE_SHIFT)) { 1577 cr2_clrb |= STM32H7_SPI_CR2_TSIZE; 1578 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT; 1579 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) & 1580 ~cr2_clrb) | cr2_setb, 1581 spi->base + STM32H7_SPI_CR2); 1582 } else { 1583 return -EMSGSIZE; 1584 } 1585 1586 return 0; 1587 } 1588 1589 /** 1590 * stm32_spi_transfer_one_setup - common setup to transfer a single 1591 * spi_transfer either using DMA or 1592 * interrupts. 1593 * @spi: pointer to the spi controller data structure 1594 * @spi_dev: pointer to the spi device 1595 * @transfer: pointer to spi transfer 1596 */ 1597 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi, 1598 struct spi_device *spi_dev, 1599 struct spi_transfer *transfer) 1600 { 1601 unsigned long flags; 1602 unsigned int comm_type; 1603 int nb_words, ret = 0; 1604 int mbr; 1605 1606 spin_lock_irqsave(&spi->lock, flags); 1607 1608 spi->cur_xferlen = transfer->len; 1609 1610 spi->cur_bpw = transfer->bits_per_word; 1611 spi->cfg->set_bpw(spi); 1612 1613 /* Update spi->cur_speed with real clock speed */ 1614 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz, 1615 spi->cfg->baud_rate_div_min, 1616 spi->cfg->baud_rate_div_max); 1617 if (mbr < 0) { 1618 ret = mbr; 1619 goto out; 1620 } 1621 1622 transfer->speed_hz = spi->cur_speed; 1623 stm32_spi_set_mbr(spi, mbr); 1624 1625 comm_type = stm32_spi_communication_type(spi_dev, transfer); 1626 ret = spi->cfg->set_mode(spi, comm_type); 1627 if (ret < 0) 1628 goto out; 1629 1630 spi->cur_comm = comm_type; 1631 1632 if (spi->cfg->set_data_idleness) 1633 spi->cfg->set_data_idleness(spi, transfer->len); 1634 1635 if (spi->cur_bpw <= 8) 1636 nb_words = transfer->len; 1637 else if (spi->cur_bpw <= 16) 1638 nb_words = DIV_ROUND_UP(transfer->len * 8, 16); 1639 else 1640 nb_words = DIV_ROUND_UP(transfer->len * 8, 32); 1641 1642 if (spi->cfg->set_number_of_data) { 1643 ret = spi->cfg->set_number_of_data(spi, nb_words); 1644 if (ret < 0) 1645 goto out; 1646 } 1647 1648 dev_dbg(spi->dev, "transfer communication mode set to %d\n", 1649 spi->cur_comm); 1650 dev_dbg(spi->dev, 1651 "data frame of %d-bit, data packet of %d data frames\n", 1652 spi->cur_bpw, spi->cur_fthlv); 1653 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed); 1654 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n", 1655 spi->cur_xferlen, nb_words); 1656 dev_dbg(spi->dev, "dma %s\n", 1657 (spi->cur_usedma) ? "enabled" : "disabled"); 1658 1659 out: 1660 spin_unlock_irqrestore(&spi->lock, flags); 1661 1662 return ret; 1663 } 1664 1665 /** 1666 * stm32_spi_transfer_one - transfer a single spi_transfer 1667 * @master: controller master interface 1668 * @spi_dev: pointer to the spi device 1669 * @transfer: pointer to spi transfer 1670 * 1671 * It must return 0 if the transfer is finished or 1 if the transfer is still 1672 * in progress. 1673 */ 1674 static int stm32_spi_transfer_one(struct spi_master *master, 1675 struct spi_device *spi_dev, 1676 struct spi_transfer *transfer) 1677 { 1678 struct stm32_spi *spi = spi_master_get_devdata(master); 1679 int ret; 1680 1681 spi->tx_buf = transfer->tx_buf; 1682 spi->rx_buf = transfer->rx_buf; 1683 spi->tx_len = spi->tx_buf ? transfer->len : 0; 1684 spi->rx_len = spi->rx_buf ? transfer->len : 0; 1685 1686 spi->cur_usedma = (master->can_dma && 1687 master->can_dma(master, spi_dev, transfer)); 1688 1689 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer); 1690 if (ret) { 1691 dev_err(spi->dev, "SPI transfer setup failed\n"); 1692 return ret; 1693 } 1694 1695 if (spi->cur_usedma) 1696 return stm32_spi_transfer_one_dma(spi, transfer); 1697 else 1698 return spi->cfg->transfer_one_irq(spi); 1699 } 1700 1701 /** 1702 * stm32_spi_unprepare_msg - relax the hardware 1703 * @master: controller master interface 1704 * @msg: pointer to the spi message 1705 */ 1706 static int stm32_spi_unprepare_msg(struct spi_master *master, 1707 struct spi_message *msg) 1708 { 1709 struct stm32_spi *spi = spi_master_get_devdata(master); 1710 1711 spi->cfg->disable(spi); 1712 1713 return 0; 1714 } 1715 1716 /** 1717 * stm32f4_spi_config - Configure SPI controller as SPI master 1718 * @spi: pointer to the spi controller data structure 1719 */ 1720 static int stm32f4_spi_config(struct stm32_spi *spi) 1721 { 1722 unsigned long flags; 1723 1724 spin_lock_irqsave(&spi->lock, flags); 1725 1726 /* Ensure I2SMOD bit is kept cleared */ 1727 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR, 1728 STM32F4_SPI_I2SCFGR_I2SMOD); 1729 1730 /* 1731 * - SS input value high 1732 * - transmitter half duplex direction 1733 * - Set the master mode (default Motorola mode) 1734 * - Consider 1 master/n slaves configuration and 1735 * SS input value is determined by the SSI bit 1736 */ 1737 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI | 1738 STM32F4_SPI_CR1_BIDIOE | 1739 STM32F4_SPI_CR1_MSTR | 1740 STM32F4_SPI_CR1_SSM); 1741 1742 spin_unlock_irqrestore(&spi->lock, flags); 1743 1744 return 0; 1745 } 1746 1747 /** 1748 * stm32h7_spi_config - Configure SPI controller as SPI master 1749 * @spi: pointer to the spi controller data structure 1750 */ 1751 static int stm32h7_spi_config(struct stm32_spi *spi) 1752 { 1753 unsigned long flags; 1754 1755 spin_lock_irqsave(&spi->lock, flags); 1756 1757 /* Ensure I2SMOD bit is kept cleared */ 1758 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR, 1759 STM32H7_SPI_I2SCFGR_I2SMOD); 1760 1761 /* 1762 * - SS input value high 1763 * - transmitter half duplex direction 1764 * - automatic communication suspend when RX-Fifo is full 1765 */ 1766 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI | 1767 STM32H7_SPI_CR1_HDDIR | 1768 STM32H7_SPI_CR1_MASRX); 1769 1770 /* 1771 * - Set the master mode (default Motorola mode) 1772 * - Consider 1 master/n slaves configuration and 1773 * SS input value is determined by the SSI bit 1774 * - keep control of all associated GPIOs 1775 */ 1776 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER | 1777 STM32H7_SPI_CFG2_SSM | 1778 STM32H7_SPI_CFG2_AFCNTR); 1779 1780 spin_unlock_irqrestore(&spi->lock, flags); 1781 1782 return 0; 1783 } 1784 1785 static const struct stm32_spi_cfg stm32f4_spi_cfg = { 1786 .regs = &stm32f4_spi_regspec, 1787 .get_bpw_mask = stm32f4_spi_get_bpw_mask, 1788 .disable = stm32f4_spi_disable, 1789 .config = stm32f4_spi_config, 1790 .set_bpw = stm32f4_spi_set_bpw, 1791 .set_mode = stm32f4_spi_set_mode, 1792 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start, 1793 .dma_tx_cb = stm32f4_spi_dma_tx_cb, 1794 .dma_rx_cb = stm32f4_spi_dma_rx_cb, 1795 .transfer_one_irq = stm32f4_spi_transfer_one_irq, 1796 .irq_handler_event = stm32f4_spi_irq_event, 1797 .irq_handler_thread = stm32f4_spi_irq_thread, 1798 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN, 1799 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX, 1800 .has_fifo = false, 1801 }; 1802 1803 static const struct stm32_spi_cfg stm32h7_spi_cfg = { 1804 .regs = &stm32h7_spi_regspec, 1805 .get_fifo_size = stm32h7_spi_get_fifo_size, 1806 .get_bpw_mask = stm32h7_spi_get_bpw_mask, 1807 .disable = stm32h7_spi_disable, 1808 .config = stm32h7_spi_config, 1809 .set_bpw = stm32h7_spi_set_bpw, 1810 .set_mode = stm32h7_spi_set_mode, 1811 .set_data_idleness = stm32h7_spi_data_idleness, 1812 .set_number_of_data = stm32h7_spi_number_of_data, 1813 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start, 1814 .dma_rx_cb = stm32h7_spi_dma_cb, 1815 .dma_tx_cb = stm32h7_spi_dma_cb, 1816 .transfer_one_irq = stm32h7_spi_transfer_one_irq, 1817 .irq_handler_thread = stm32h7_spi_irq_thread, 1818 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN, 1819 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX, 1820 .has_fifo = true, 1821 }; 1822 1823 static const struct of_device_id stm32_spi_of_match[] = { 1824 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg }, 1825 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg }, 1826 {}, 1827 }; 1828 MODULE_DEVICE_TABLE(of, stm32_spi_of_match); 1829 1830 static int stm32_spi_probe(struct platform_device *pdev) 1831 { 1832 struct spi_master *master; 1833 struct stm32_spi *spi; 1834 struct resource *res; 1835 int ret; 1836 1837 master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); 1838 if (!master) { 1839 dev_err(&pdev->dev, "spi master allocation failed\n"); 1840 return -ENOMEM; 1841 } 1842 platform_set_drvdata(pdev, master); 1843 1844 spi = spi_master_get_devdata(master); 1845 spi->dev = &pdev->dev; 1846 spi->master = master; 1847 spin_lock_init(&spi->lock); 1848 1849 spi->cfg = (const struct stm32_spi_cfg *) 1850 of_match_device(pdev->dev.driver->of_match_table, 1851 &pdev->dev)->data; 1852 1853 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1854 spi->base = devm_ioremap_resource(&pdev->dev, res); 1855 if (IS_ERR(spi->base)) { 1856 ret = PTR_ERR(spi->base); 1857 goto err_master_put; 1858 } 1859 1860 spi->phys_addr = (dma_addr_t)res->start; 1861 1862 spi->irq = platform_get_irq(pdev, 0); 1863 if (spi->irq <= 0) { 1864 ret = spi->irq; 1865 if (ret != -EPROBE_DEFER) 1866 dev_err(&pdev->dev, "failed to get irq: %d\n", ret); 1867 goto err_master_put; 1868 } 1869 ret = devm_request_threaded_irq(&pdev->dev, spi->irq, 1870 spi->cfg->irq_handler_event, 1871 spi->cfg->irq_handler_thread, 1872 IRQF_ONESHOT, pdev->name, master); 1873 if (ret) { 1874 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq, 1875 ret); 1876 goto err_master_put; 1877 } 1878 1879 spi->clk = devm_clk_get(&pdev->dev, NULL); 1880 if (IS_ERR(spi->clk)) { 1881 ret = PTR_ERR(spi->clk); 1882 dev_err(&pdev->dev, "clk get failed: %d\n", ret); 1883 goto err_master_put; 1884 } 1885 1886 ret = clk_prepare_enable(spi->clk); 1887 if (ret) { 1888 dev_err(&pdev->dev, "clk enable failed: %d\n", ret); 1889 goto err_master_put; 1890 } 1891 spi->clk_rate = clk_get_rate(spi->clk); 1892 if (!spi->clk_rate) { 1893 dev_err(&pdev->dev, "clk rate = 0\n"); 1894 ret = -EINVAL; 1895 goto err_clk_disable; 1896 } 1897 1898 spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL); 1899 if (!IS_ERR(spi->rst)) { 1900 reset_control_assert(spi->rst); 1901 udelay(2); 1902 reset_control_deassert(spi->rst); 1903 } 1904 1905 if (spi->cfg->has_fifo) 1906 spi->fifo_size = spi->cfg->get_fifo_size(spi); 1907 1908 ret = spi->cfg->config(spi); 1909 if (ret) { 1910 dev_err(&pdev->dev, "controller configuration failed: %d\n", 1911 ret); 1912 goto err_clk_disable; 1913 } 1914 1915 master->dev.of_node = pdev->dev.of_node; 1916 master->auto_runtime_pm = true; 1917 master->bus_num = pdev->id; 1918 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | 1919 SPI_3WIRE; 1920 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi); 1921 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min; 1922 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max; 1923 master->use_gpio_descriptors = true; 1924 master->prepare_message = stm32_spi_prepare_msg; 1925 master->transfer_one = stm32_spi_transfer_one; 1926 master->unprepare_message = stm32_spi_unprepare_msg; 1927 master->flags = SPI_MASTER_MUST_TX; 1928 1929 spi->dma_tx = dma_request_chan(spi->dev, "tx"); 1930 if (IS_ERR(spi->dma_tx)) { 1931 ret = PTR_ERR(spi->dma_tx); 1932 spi->dma_tx = NULL; 1933 if (ret == -EPROBE_DEFER) 1934 goto err_clk_disable; 1935 1936 dev_warn(&pdev->dev, "failed to request tx dma channel\n"); 1937 } else { 1938 master->dma_tx = spi->dma_tx; 1939 } 1940 1941 spi->dma_rx = dma_request_chan(spi->dev, "rx"); 1942 if (IS_ERR(spi->dma_rx)) { 1943 ret = PTR_ERR(spi->dma_rx); 1944 spi->dma_rx = NULL; 1945 if (ret == -EPROBE_DEFER) 1946 goto err_dma_release; 1947 1948 dev_warn(&pdev->dev, "failed to request rx dma channel\n"); 1949 } else { 1950 master->dma_rx = spi->dma_rx; 1951 } 1952 1953 if (spi->dma_tx || spi->dma_rx) 1954 master->can_dma = stm32_spi_can_dma; 1955 1956 pm_runtime_set_active(&pdev->dev); 1957 pm_runtime_enable(&pdev->dev); 1958 1959 ret = devm_spi_register_master(&pdev->dev, master); 1960 if (ret) { 1961 dev_err(&pdev->dev, "spi master registration failed: %d\n", 1962 ret); 1963 goto err_pm_disable; 1964 } 1965 1966 if (!master->cs_gpiods) { 1967 dev_err(&pdev->dev, "no CS gpios available\n"); 1968 ret = -EINVAL; 1969 goto err_pm_disable; 1970 } 1971 1972 dev_info(&pdev->dev, "driver initialized\n"); 1973 1974 return 0; 1975 1976 err_pm_disable: 1977 pm_runtime_disable(&pdev->dev); 1978 err_dma_release: 1979 if (spi->dma_tx) 1980 dma_release_channel(spi->dma_tx); 1981 if (spi->dma_rx) 1982 dma_release_channel(spi->dma_rx); 1983 err_clk_disable: 1984 clk_disable_unprepare(spi->clk); 1985 err_master_put: 1986 spi_master_put(master); 1987 1988 return ret; 1989 } 1990 1991 static int stm32_spi_remove(struct platform_device *pdev) 1992 { 1993 struct spi_master *master = platform_get_drvdata(pdev); 1994 struct stm32_spi *spi = spi_master_get_devdata(master); 1995 1996 spi->cfg->disable(spi); 1997 1998 if (master->dma_tx) 1999 dma_release_channel(master->dma_tx); 2000 if (master->dma_rx) 2001 dma_release_channel(master->dma_rx); 2002 2003 clk_disable_unprepare(spi->clk); 2004 2005 pm_runtime_disable(&pdev->dev); 2006 2007 pinctrl_pm_select_sleep_state(&pdev->dev); 2008 2009 return 0; 2010 } 2011 2012 #ifdef CONFIG_PM 2013 static int stm32_spi_runtime_suspend(struct device *dev) 2014 { 2015 struct spi_master *master = dev_get_drvdata(dev); 2016 struct stm32_spi *spi = spi_master_get_devdata(master); 2017 2018 clk_disable_unprepare(spi->clk); 2019 2020 return pinctrl_pm_select_sleep_state(dev); 2021 } 2022 2023 static int stm32_spi_runtime_resume(struct device *dev) 2024 { 2025 struct spi_master *master = dev_get_drvdata(dev); 2026 struct stm32_spi *spi = spi_master_get_devdata(master); 2027 int ret; 2028 2029 ret = pinctrl_pm_select_default_state(dev); 2030 if (ret) 2031 return ret; 2032 2033 return clk_prepare_enable(spi->clk); 2034 } 2035 #endif 2036 2037 #ifdef CONFIG_PM_SLEEP 2038 static int stm32_spi_suspend(struct device *dev) 2039 { 2040 struct spi_master *master = dev_get_drvdata(dev); 2041 int ret; 2042 2043 ret = spi_master_suspend(master); 2044 if (ret) 2045 return ret; 2046 2047 return pm_runtime_force_suspend(dev); 2048 } 2049 2050 static int stm32_spi_resume(struct device *dev) 2051 { 2052 struct spi_master *master = dev_get_drvdata(dev); 2053 struct stm32_spi *spi = spi_master_get_devdata(master); 2054 int ret; 2055 2056 ret = pm_runtime_force_resume(dev); 2057 if (ret) 2058 return ret; 2059 2060 ret = spi_master_resume(master); 2061 if (ret) { 2062 clk_disable_unprepare(spi->clk); 2063 return ret; 2064 } 2065 2066 ret = pm_runtime_get_sync(dev); 2067 if (ret < 0) { 2068 dev_err(dev, "Unable to power device:%d\n", ret); 2069 return ret; 2070 } 2071 2072 spi->cfg->config(spi); 2073 2074 pm_runtime_mark_last_busy(dev); 2075 pm_runtime_put_autosuspend(dev); 2076 2077 return 0; 2078 } 2079 #endif 2080 2081 static const struct dev_pm_ops stm32_spi_pm_ops = { 2082 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume) 2083 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend, 2084 stm32_spi_runtime_resume, NULL) 2085 }; 2086 2087 static struct platform_driver stm32_spi_driver = { 2088 .probe = stm32_spi_probe, 2089 .remove = stm32_spi_remove, 2090 .driver = { 2091 .name = DRIVER_NAME, 2092 .pm = &stm32_spi_pm_ops, 2093 .of_match_table = stm32_spi_of_match, 2094 }, 2095 }; 2096 2097 module_platform_driver(stm32_spi_driver); 2098 2099 MODULE_ALIAS("platform:" DRIVER_NAME); 2100 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver"); 2101 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); 2102 MODULE_LICENSE("GPL v2"); 2103