xref: /openbmc/linux/drivers/spi/spi-stm32.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7 
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 #include <linux/spi/spi.h>
21 
22 #define DRIVER_NAME "spi_stm32"
23 
24 /* STM32F4 SPI registers */
25 #define STM32F4_SPI_CR1			0x00
26 #define STM32F4_SPI_CR2			0x04
27 #define STM32F4_SPI_SR			0x08
28 #define STM32F4_SPI_DR			0x0C
29 #define STM32F4_SPI_I2SCFGR		0x1C
30 
31 /* STM32F4_SPI_CR1 bit fields */
32 #define STM32F4_SPI_CR1_CPHA		BIT(0)
33 #define STM32F4_SPI_CR1_CPOL		BIT(1)
34 #define STM32F4_SPI_CR1_MSTR		BIT(2)
35 #define STM32F4_SPI_CR1_BR_SHIFT	3
36 #define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
37 #define STM32F4_SPI_CR1_SPE		BIT(6)
38 #define STM32F4_SPI_CR1_LSBFRST		BIT(7)
39 #define STM32F4_SPI_CR1_SSI		BIT(8)
40 #define STM32F4_SPI_CR1_SSM		BIT(9)
41 #define STM32F4_SPI_CR1_RXONLY		BIT(10)
42 #define STM32F4_SPI_CR1_DFF		BIT(11)
43 #define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
44 #define STM32F4_SPI_CR1_CRCEN		BIT(13)
45 #define STM32F4_SPI_CR1_BIDIOE		BIT(14)
46 #define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
47 #define STM32F4_SPI_CR1_BR_MIN		0
48 #define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
49 
50 /* STM32F4_SPI_CR2 bit fields */
51 #define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
52 #define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
53 #define STM32F4_SPI_CR2_SSOE		BIT(2)
54 #define STM32F4_SPI_CR2_FRF		BIT(4)
55 #define STM32F4_SPI_CR2_ERRIE		BIT(5)
56 #define STM32F4_SPI_CR2_RXNEIE		BIT(6)
57 #define STM32F4_SPI_CR2_TXEIE		BIT(7)
58 
59 /* STM32F4_SPI_SR bit fields */
60 #define STM32F4_SPI_SR_RXNE		BIT(0)
61 #define STM32F4_SPI_SR_TXE		BIT(1)
62 #define STM32F4_SPI_SR_CHSIDE		BIT(2)
63 #define STM32F4_SPI_SR_UDR		BIT(3)
64 #define STM32F4_SPI_SR_CRCERR		BIT(4)
65 #define STM32F4_SPI_SR_MODF		BIT(5)
66 #define STM32F4_SPI_SR_OVR		BIT(6)
67 #define STM32F4_SPI_SR_BSY		BIT(7)
68 #define STM32F4_SPI_SR_FRE		BIT(8)
69 
70 /* STM32F4_SPI_I2SCFGR bit fields */
71 #define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
72 
73 /* STM32F4 SPI Baud Rate min/max divisor */
74 #define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
75 #define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
76 
77 /* STM32H7 SPI registers */
78 #define STM32H7_SPI_CR1			0x00
79 #define STM32H7_SPI_CR2			0x04
80 #define STM32H7_SPI_CFG1		0x08
81 #define STM32H7_SPI_CFG2		0x0C
82 #define STM32H7_SPI_IER			0x10
83 #define STM32H7_SPI_SR			0x14
84 #define STM32H7_SPI_IFCR		0x18
85 #define STM32H7_SPI_TXDR		0x20
86 #define STM32H7_SPI_RXDR		0x30
87 #define STM32H7_SPI_I2SCFGR		0x50
88 
89 /* STM32H7_SPI_CR1 bit fields */
90 #define STM32H7_SPI_CR1_SPE		BIT(0)
91 #define STM32H7_SPI_CR1_MASRX		BIT(8)
92 #define STM32H7_SPI_CR1_CSTART		BIT(9)
93 #define STM32H7_SPI_CR1_CSUSP		BIT(10)
94 #define STM32H7_SPI_CR1_HDDIR		BIT(11)
95 #define STM32H7_SPI_CR1_SSI		BIT(12)
96 
97 /* STM32H7_SPI_CR2 bit fields */
98 #define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
99 #define STM32H7_SPI_TSIZE_MAX		GENMASK(15, 0)
100 
101 /* STM32H7_SPI_CFG1 bit fields */
102 #define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
106 #define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT	28
108 #define STM32H7_SPI_CFG1_MBR_MIN	0
109 #define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
110 
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
113 #define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
114 #define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
115 #define STM32H7_SPI_CFG2_MASTER		BIT(22)
116 #define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
117 #define STM32H7_SPI_CFG2_CPHA		BIT(24)
118 #define STM32H7_SPI_CFG2_CPOL		BIT(25)
119 #define STM32H7_SPI_CFG2_SSM		BIT(26)
120 #define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
121 
122 /* STM32H7_SPI_IER bit fields */
123 #define STM32H7_SPI_IER_RXPIE		BIT(0)
124 #define STM32H7_SPI_IER_TXPIE		BIT(1)
125 #define STM32H7_SPI_IER_DXPIE		BIT(2)
126 #define STM32H7_SPI_IER_EOTIE		BIT(3)
127 #define STM32H7_SPI_IER_TXTFIE		BIT(4)
128 #define STM32H7_SPI_IER_OVRIE		BIT(6)
129 #define STM32H7_SPI_IER_MODFIE		BIT(9)
130 #define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
131 
132 /* STM32H7_SPI_SR bit fields */
133 #define STM32H7_SPI_SR_RXP		BIT(0)
134 #define STM32H7_SPI_SR_TXP		BIT(1)
135 #define STM32H7_SPI_SR_EOT		BIT(3)
136 #define STM32H7_SPI_SR_OVR		BIT(6)
137 #define STM32H7_SPI_SR_MODF		BIT(9)
138 #define STM32H7_SPI_SR_SUSP		BIT(11)
139 #define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
140 #define STM32H7_SPI_SR_RXWNE		BIT(15)
141 
142 /* STM32H7_SPI_IFCR bit fields */
143 #define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
144 
145 /* STM32H7_SPI_I2SCFGR bit fields */
146 #define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
147 
148 /* STM32H7 SPI Master Baud Rate min/max divisor */
149 #define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
150 #define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
151 
152 /* STM32H7 SPI Communication mode */
153 #define STM32H7_SPI_FULL_DUPLEX		0
154 #define STM32H7_SPI_SIMPLEX_TX		1
155 #define STM32H7_SPI_SIMPLEX_RX		2
156 #define STM32H7_SPI_HALF_DUPLEX		3
157 
158 /* SPI Communication type */
159 #define SPI_FULL_DUPLEX		0
160 #define SPI_SIMPLEX_TX		1
161 #define SPI_SIMPLEX_RX		2
162 #define SPI_3WIRE_TX		3
163 #define SPI_3WIRE_RX		4
164 
165 #define STM32_SPI_AUTOSUSPEND_DELAY		1	/* 1 ms */
166 
167 /*
168  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
169  * without fifo buffers.
170  */
171 #define SPI_DMA_MIN_BYTES	16
172 
173 /**
174  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
175  * @reg:		register offset
176  * @mask:		bitfield mask
177  * @shift:		left shift
178  */
179 struct stm32_spi_reg {
180 	int reg;
181 	int mask;
182 	int shift;
183 };
184 
185 /**
186  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
187  * @en: enable register and SPI enable bit
188  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
189  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
190  * @cpol: clock polarity register and polarity bit
191  * @cpha: clock phase register and phase bit
192  * @lsb_first: LSB transmitted first register and bit
193  * @br: baud rate register and bitfields
194  * @rx: SPI RX data register
195  * @tx: SPI TX data register
196  */
197 struct stm32_spi_regspec {
198 	const struct stm32_spi_reg en;
199 	const struct stm32_spi_reg dma_rx_en;
200 	const struct stm32_spi_reg dma_tx_en;
201 	const struct stm32_spi_reg cpol;
202 	const struct stm32_spi_reg cpha;
203 	const struct stm32_spi_reg lsb_first;
204 	const struct stm32_spi_reg br;
205 	const struct stm32_spi_reg rx;
206 	const struct stm32_spi_reg tx;
207 };
208 
209 struct stm32_spi;
210 
211 /**
212  * struct stm32_spi_cfg - stm32 compatible configuration data
213  * @regs: registers descriptions
214  * @get_fifo_size: routine to get fifo size
215  * @get_bpw_mask: routine to get bits per word mask
216  * @disable: routine to disable controller
217  * @config: routine to configure controller as SPI Master
218  * @set_bpw: routine to configure registers to for bits per word
219  * @set_mode: routine to configure registers to desired mode
220  * @set_data_idleness: optional routine to configure registers to desired idle
221  * time between frames (if driver has this functionality)
222  * @set_number_of_data: optional routine to configure registers to desired
223  * number of data (if driver has this functionality)
224  * @can_dma: routine to determine if the transfer is eligible for DMA use
225  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
226  * using DMA
227  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
228  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
229  * @transfer_one_irq: routine to configure interrupts for driver
230  * @irq_handler_event: Interrupt handler for SPI controller events
231  * @irq_handler_thread: thread of interrupt handler for SPI controller
232  * @baud_rate_div_min: minimum baud rate divisor
233  * @baud_rate_div_max: maximum baud rate divisor
234  * @has_fifo: boolean to know if fifo is used for driver
235  * @has_startbit: boolean to know if start bit is used to start transfer
236  */
237 struct stm32_spi_cfg {
238 	const struct stm32_spi_regspec *regs;
239 	int (*get_fifo_size)(struct stm32_spi *spi);
240 	int (*get_bpw_mask)(struct stm32_spi *spi);
241 	void (*disable)(struct stm32_spi *spi);
242 	int (*config)(struct stm32_spi *spi);
243 	void (*set_bpw)(struct stm32_spi *spi);
244 	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
245 	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
246 	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
247 	void (*transfer_one_dma_start)(struct stm32_spi *spi);
248 	void (*dma_rx_cb)(void *data);
249 	void (*dma_tx_cb)(void *data);
250 	int (*transfer_one_irq)(struct stm32_spi *spi);
251 	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
252 	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
253 	unsigned int baud_rate_div_min;
254 	unsigned int baud_rate_div_max;
255 	bool has_fifo;
256 };
257 
258 /**
259  * struct stm32_spi - private data of the SPI controller
260  * @dev: driver model representation of the controller
261  * @master: controller master interface
262  * @cfg: compatible configuration data
263  * @base: virtual memory area
264  * @clk: hw kernel clock feeding the SPI clock generator
265  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
266  * @lock: prevent I/O concurrent access
267  * @irq: SPI controller interrupt line
268  * @fifo_size: size of the embedded fifo in bytes
269  * @cur_midi: master inter-data idleness in ns
270  * @cur_speed: speed configured in Hz
271  * @cur_bpw: number of bits in a single SPI data frame
272  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
273  * @cur_comm: SPI communication mode
274  * @cur_xferlen: current transfer length in bytes
275  * @cur_usedma: boolean to know if dma is used in current transfer
276  * @tx_buf: data to be written, or NULL
277  * @rx_buf: data to be read, or NULL
278  * @tx_len: number of data to be written in bytes
279  * @rx_len: number of data to be read in bytes
280  * @dma_tx: dma channel for TX transfer
281  * @dma_rx: dma channel for RX transfer
282  * @phys_addr: SPI registers physical base address
283  */
284 struct stm32_spi {
285 	struct device *dev;
286 	struct spi_master *master;
287 	const struct stm32_spi_cfg *cfg;
288 	void __iomem *base;
289 	struct clk *clk;
290 	u32 clk_rate;
291 	spinlock_t lock; /* prevent I/O concurrent access */
292 	int irq;
293 	unsigned int fifo_size;
294 
295 	unsigned int cur_midi;
296 	unsigned int cur_speed;
297 	unsigned int cur_bpw;
298 	unsigned int cur_fthlv;
299 	unsigned int cur_comm;
300 	unsigned int cur_xferlen;
301 	bool cur_usedma;
302 
303 	const void *tx_buf;
304 	void *rx_buf;
305 	int tx_len;
306 	int rx_len;
307 	struct dma_chan *dma_tx;
308 	struct dma_chan *dma_rx;
309 	dma_addr_t phys_addr;
310 };
311 
312 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
313 	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
314 
315 	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
316 	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
317 
318 	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
319 	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
320 	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
321 	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
322 
323 	.rx = { STM32F4_SPI_DR },
324 	.tx = { STM32F4_SPI_DR },
325 };
326 
327 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
328 	/* SPI data transfer is enabled but spi_ker_ck is idle.
329 	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
330 	 */
331 	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
332 
333 	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
334 	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
335 
336 	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
337 	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
338 	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
339 	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
340 		STM32H7_SPI_CFG1_MBR_SHIFT },
341 
342 	.rx = { STM32H7_SPI_RXDR },
343 	.tx = { STM32H7_SPI_TXDR },
344 };
345 
346 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
347 				      u32 offset, u32 bits)
348 {
349 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
350 		       spi->base + offset);
351 }
352 
353 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
354 				      u32 offset, u32 bits)
355 {
356 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
357 		       spi->base + offset);
358 }
359 
360 /**
361  * stm32h7_spi_get_fifo_size - Return fifo size
362  * @spi: pointer to the spi controller data structure
363  */
364 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
365 {
366 	unsigned long flags;
367 	u32 count = 0;
368 
369 	spin_lock_irqsave(&spi->lock, flags);
370 
371 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
372 
373 	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
374 		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
375 
376 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
377 
378 	spin_unlock_irqrestore(&spi->lock, flags);
379 
380 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
381 
382 	return count;
383 }
384 
385 /**
386  * stm32f4_spi_get_bpw_mask - Return bits per word mask
387  * @spi: pointer to the spi controller data structure
388  */
389 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
390 {
391 	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
392 	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
393 }
394 
395 /**
396  * stm32h7_spi_get_bpw_mask - Return bits per word mask
397  * @spi: pointer to the spi controller data structure
398  */
399 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
400 {
401 	unsigned long flags;
402 	u32 cfg1, max_bpw;
403 
404 	spin_lock_irqsave(&spi->lock, flags);
405 
406 	/*
407 	 * The most significant bit at DSIZE bit field is reserved when the
408 	 * maximum data size of periperal instances is limited to 16-bit
409 	 */
410 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
411 
412 	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
413 	max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
414 
415 	spin_unlock_irqrestore(&spi->lock, flags);
416 
417 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
418 
419 	return SPI_BPW_RANGE_MASK(4, max_bpw);
420 }
421 
422 /**
423  * stm32_spi_prepare_mbr - Determine baud rate divisor value
424  * @spi: pointer to the spi controller data structure
425  * @speed_hz: requested speed
426  * @min_div: minimum baud rate divisor
427  * @max_div: maximum baud rate divisor
428  *
429  * Return baud rate divisor value in case of success or -EINVAL
430  */
431 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
432 				 u32 min_div, u32 max_div)
433 {
434 	u32 div, mbrdiv;
435 
436 	/* Ensure spi->clk_rate is even */
437 	div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
438 
439 	/*
440 	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
441 	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
442 	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
443 	 * no need to check it there.
444 	 * However, we need to ensure the following calculations.
445 	 */
446 	if ((div < min_div) || (div > max_div))
447 		return -EINVAL;
448 
449 	/* Determine the first power of 2 greater than or equal to div */
450 	if (div & (div - 1))
451 		mbrdiv = fls(div);
452 	else
453 		mbrdiv = fls(div) - 1;
454 
455 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
456 
457 	return mbrdiv - 1;
458 }
459 
460 /**
461  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
462  * @spi: pointer to the spi controller data structure
463  * @xfer_len: length of the message to be transferred
464  */
465 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
466 {
467 	u32 packet, bpw;
468 
469 	/* data packet should not exceed 1/2 of fifo space */
470 	packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
471 
472 	/* align packet size with data registers access */
473 	bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
474 	return DIV_ROUND_UP(packet, bpw);
475 }
476 
477 /**
478  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
479  * @spi: pointer to the spi controller data structure
480  *
481  * Read from tx_buf depends on remaining bytes to avoid to read beyond
482  * tx_buf end.
483  */
484 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
485 {
486 	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
487 				  STM32F4_SPI_SR_TXE)) {
488 		u32 offs = spi->cur_xferlen - spi->tx_len;
489 
490 		if (spi->cur_bpw == 16) {
491 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
492 
493 			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
494 			spi->tx_len -= sizeof(u16);
495 		} else {
496 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
497 
498 			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
499 			spi->tx_len -= sizeof(u8);
500 		}
501 	}
502 
503 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
504 }
505 
506 /**
507  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
508  * @spi: pointer to the spi controller data structure
509  *
510  * Read from tx_buf depends on remaining bytes to avoid to read beyond
511  * tx_buf end.
512  */
513 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
514 {
515 	while ((spi->tx_len > 0) &&
516 		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
517 			STM32H7_SPI_SR_TXP)) {
518 		u32 offs = spi->cur_xferlen - spi->tx_len;
519 
520 		if (spi->tx_len >= sizeof(u32)) {
521 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
522 
523 			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
524 			spi->tx_len -= sizeof(u32);
525 		} else if (spi->tx_len >= sizeof(u16)) {
526 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
527 
528 			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
529 			spi->tx_len -= sizeof(u16);
530 		} else {
531 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
532 
533 			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
534 			spi->tx_len -= sizeof(u8);
535 		}
536 	}
537 
538 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
539 }
540 
541 /**
542  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
543  * @spi: pointer to the spi controller data structure
544  *
545  * Write in rx_buf depends on remaining bytes to avoid to write beyond
546  * rx_buf end.
547  */
548 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
549 {
550 	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
551 				  STM32F4_SPI_SR_RXNE)) {
552 		u32 offs = spi->cur_xferlen - spi->rx_len;
553 
554 		if (spi->cur_bpw == 16) {
555 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
556 
557 			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
558 			spi->rx_len -= sizeof(u16);
559 		} else {
560 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
561 
562 			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
563 			spi->rx_len -= sizeof(u8);
564 		}
565 	}
566 
567 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
568 }
569 
570 /**
571  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
572  * @spi: pointer to the spi controller data structure
573  *
574  * Write in rx_buf depends on remaining bytes to avoid to write beyond
575  * rx_buf end.
576  */
577 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
578 {
579 	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
580 	u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
581 
582 	while ((spi->rx_len > 0) &&
583 	       ((sr & STM32H7_SPI_SR_RXP) ||
584 		((sr & STM32H7_SPI_SR_EOT) &&
585 		 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
586 		u32 offs = spi->cur_xferlen - spi->rx_len;
587 
588 		if ((spi->rx_len >= sizeof(u32)) ||
589 		    (sr & STM32H7_SPI_SR_RXWNE)) {
590 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
591 
592 			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
593 			spi->rx_len -= sizeof(u32);
594 		} else if ((spi->rx_len >= sizeof(u16)) ||
595 			   (!(sr & STM32H7_SPI_SR_RXWNE) &&
596 			    (rxplvl >= 2 || spi->cur_bpw > 8))) {
597 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
598 
599 			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
600 			spi->rx_len -= sizeof(u16);
601 		} else {
602 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
603 
604 			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
605 			spi->rx_len -= sizeof(u8);
606 		}
607 
608 		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
609 		rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
610 	}
611 
612 	dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
613 		__func__, spi->rx_len, sr);
614 }
615 
616 /**
617  * stm32_spi_enable - Enable SPI controller
618  * @spi: pointer to the spi controller data structure
619  */
620 static void stm32_spi_enable(struct stm32_spi *spi)
621 {
622 	dev_dbg(spi->dev, "enable controller\n");
623 
624 	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
625 			   spi->cfg->regs->en.mask);
626 }
627 
628 /**
629  * stm32f4_spi_disable - Disable SPI controller
630  * @spi: pointer to the spi controller data structure
631  */
632 static void stm32f4_spi_disable(struct stm32_spi *spi)
633 {
634 	unsigned long flags;
635 	u32 sr;
636 
637 	dev_dbg(spi->dev, "disable controller\n");
638 
639 	spin_lock_irqsave(&spi->lock, flags);
640 
641 	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
642 	      STM32F4_SPI_CR1_SPE)) {
643 		spin_unlock_irqrestore(&spi->lock, flags);
644 		return;
645 	}
646 
647 	/* Disable interrupts */
648 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
649 						 STM32F4_SPI_CR2_RXNEIE |
650 						 STM32F4_SPI_CR2_ERRIE);
651 
652 	/* Wait until BSY = 0 */
653 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
654 					      sr, !(sr & STM32F4_SPI_SR_BSY),
655 					      10, 100000) < 0) {
656 		dev_warn(spi->dev, "disabling condition timeout\n");
657 	}
658 
659 	if (spi->cur_usedma && spi->dma_tx)
660 		dmaengine_terminate_all(spi->dma_tx);
661 	if (spi->cur_usedma && spi->dma_rx)
662 		dmaengine_terminate_all(spi->dma_rx);
663 
664 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
665 
666 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
667 						 STM32F4_SPI_CR2_RXDMAEN);
668 
669 	/* Sequence to clear OVR flag */
670 	readl_relaxed(spi->base + STM32F4_SPI_DR);
671 	readl_relaxed(spi->base + STM32F4_SPI_SR);
672 
673 	spin_unlock_irqrestore(&spi->lock, flags);
674 }
675 
676 /**
677  * stm32h7_spi_disable - Disable SPI controller
678  * @spi: pointer to the spi controller data structure
679  *
680  * RX-Fifo is flushed when SPI controller is disabled.
681  */
682 static void stm32h7_spi_disable(struct stm32_spi *spi)
683 {
684 	unsigned long flags;
685 	u32 cr1;
686 
687 	dev_dbg(spi->dev, "disable controller\n");
688 
689 	spin_lock_irqsave(&spi->lock, flags);
690 
691 	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
692 
693 	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
694 		spin_unlock_irqrestore(&spi->lock, flags);
695 		return;
696 	}
697 
698 	if (spi->cur_usedma && spi->dma_tx)
699 		dmaengine_terminate_all(spi->dma_tx);
700 	if (spi->cur_usedma && spi->dma_rx)
701 		dmaengine_terminate_all(spi->dma_rx);
702 
703 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
704 
705 	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
706 						STM32H7_SPI_CFG1_RXDMAEN);
707 
708 	/* Disable interrupts and clear status flags */
709 	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
710 	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
711 
712 	spin_unlock_irqrestore(&spi->lock, flags);
713 }
714 
715 /**
716  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
717  * @master: controller master interface
718  * @spi_dev: pointer to the spi device
719  * @transfer: pointer to spi transfer
720  *
721  * If driver has fifo and the current transfer size is greater than fifo size,
722  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
723  */
724 static bool stm32_spi_can_dma(struct spi_master *master,
725 			      struct spi_device *spi_dev,
726 			      struct spi_transfer *transfer)
727 {
728 	unsigned int dma_size;
729 	struct stm32_spi *spi = spi_master_get_devdata(master);
730 
731 	if (spi->cfg->has_fifo)
732 		dma_size = spi->fifo_size;
733 	else
734 		dma_size = SPI_DMA_MIN_BYTES;
735 
736 	dev_dbg(spi->dev, "%s: %s\n", __func__,
737 		(transfer->len > dma_size) ? "true" : "false");
738 
739 	return (transfer->len > dma_size);
740 }
741 
742 /**
743  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
744  * @irq: interrupt line
745  * @dev_id: SPI controller master interface
746  */
747 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
748 {
749 	struct spi_master *master = dev_id;
750 	struct stm32_spi *spi = spi_master_get_devdata(master);
751 	u32 sr, mask = 0;
752 	bool end = false;
753 
754 	spin_lock(&spi->lock);
755 
756 	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
757 	/*
758 	 * BSY flag is not handled in interrupt but it is normal behavior when
759 	 * this flag is set.
760 	 */
761 	sr &= ~STM32F4_SPI_SR_BSY;
762 
763 	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
764 				 spi->cur_comm == SPI_3WIRE_TX)) {
765 		/* OVR flag shouldn't be handled for TX only mode */
766 		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
767 		mask |= STM32F4_SPI_SR_TXE;
768 	}
769 
770 	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
771 				spi->cur_comm == SPI_SIMPLEX_RX ||
772 				spi->cur_comm == SPI_3WIRE_RX)) {
773 		/* TXE flag is set and is handled when RXNE flag occurs */
774 		sr &= ~STM32F4_SPI_SR_TXE;
775 		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
776 	}
777 
778 	if (!(sr & mask)) {
779 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
780 		spin_unlock(&spi->lock);
781 		return IRQ_NONE;
782 	}
783 
784 	if (sr & STM32F4_SPI_SR_OVR) {
785 		dev_warn(spi->dev, "Overrun: received value discarded\n");
786 
787 		/* Sequence to clear OVR flag */
788 		readl_relaxed(spi->base + STM32F4_SPI_DR);
789 		readl_relaxed(spi->base + STM32F4_SPI_SR);
790 
791 		/*
792 		 * If overrun is detected, it means that something went wrong,
793 		 * so stop the current transfer. Transfer can wait for next
794 		 * RXNE but DR is already read and end never happens.
795 		 */
796 		end = true;
797 		goto end_irq;
798 	}
799 
800 	if (sr & STM32F4_SPI_SR_TXE) {
801 		if (spi->tx_buf)
802 			stm32f4_spi_write_tx(spi);
803 		if (spi->tx_len == 0)
804 			end = true;
805 	}
806 
807 	if (sr & STM32F4_SPI_SR_RXNE) {
808 		stm32f4_spi_read_rx(spi);
809 		if (spi->rx_len == 0)
810 			end = true;
811 		else if (spi->tx_buf)/* Load data for discontinuous mode */
812 			stm32f4_spi_write_tx(spi);
813 	}
814 
815 end_irq:
816 	if (end) {
817 		/* Immediately disable interrupts to do not generate new one */
818 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
819 					STM32F4_SPI_CR2_TXEIE |
820 					STM32F4_SPI_CR2_RXNEIE |
821 					STM32F4_SPI_CR2_ERRIE);
822 		spin_unlock(&spi->lock);
823 		return IRQ_WAKE_THREAD;
824 	}
825 
826 	spin_unlock(&spi->lock);
827 	return IRQ_HANDLED;
828 }
829 
830 /**
831  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
832  * @irq: interrupt line
833  * @dev_id: SPI controller master interface
834  */
835 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
836 {
837 	struct spi_master *master = dev_id;
838 	struct stm32_spi *spi = spi_master_get_devdata(master);
839 
840 	spi_finalize_current_transfer(master);
841 	stm32f4_spi_disable(spi);
842 
843 	return IRQ_HANDLED;
844 }
845 
846 /**
847  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
848  * @irq: interrupt line
849  * @dev_id: SPI controller master interface
850  */
851 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
852 {
853 	struct spi_master *master = dev_id;
854 	struct stm32_spi *spi = spi_master_get_devdata(master);
855 	u32 sr, ier, mask;
856 	unsigned long flags;
857 	bool end = false;
858 
859 	spin_lock_irqsave(&spi->lock, flags);
860 
861 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
862 	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
863 
864 	mask = ier;
865 	/*
866 	 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
867 	 * SUSP to acknowledge it later. TXC is automatically cleared
868 	 */
869 
870 	mask |= STM32H7_SPI_SR_SUSP;
871 	/*
872 	 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
873 	 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
874 	 */
875 	if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
876 		mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
877 
878 	if (!(sr & mask)) {
879 		dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
880 			 sr, ier);
881 		spin_unlock_irqrestore(&spi->lock, flags);
882 		return IRQ_NONE;
883 	}
884 
885 	if (sr & STM32H7_SPI_SR_SUSP) {
886 		static DEFINE_RATELIMIT_STATE(rs,
887 					      DEFAULT_RATELIMIT_INTERVAL * 10,
888 					      1);
889 		if (__ratelimit(&rs))
890 			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
891 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
892 			stm32h7_spi_read_rxfifo(spi);
893 		/*
894 		 * If communication is suspended while using DMA, it means
895 		 * that something went wrong, so stop the current transfer
896 		 */
897 		if (spi->cur_usedma)
898 			end = true;
899 	}
900 
901 	if (sr & STM32H7_SPI_SR_MODF) {
902 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
903 		end = true;
904 	}
905 
906 	if (sr & STM32H7_SPI_SR_OVR) {
907 		dev_err(spi->dev, "Overrun: RX data lost\n");
908 		end = true;
909 	}
910 
911 	if (sr & STM32H7_SPI_SR_EOT) {
912 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
913 			stm32h7_spi_read_rxfifo(spi);
914 		if (!spi->cur_usedma ||
915 		    (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
916 			end = true;
917 	}
918 
919 	if (sr & STM32H7_SPI_SR_TXP)
920 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
921 			stm32h7_spi_write_txfifo(spi);
922 
923 	if (sr & STM32H7_SPI_SR_RXP)
924 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
925 			stm32h7_spi_read_rxfifo(spi);
926 
927 	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
928 
929 	spin_unlock_irqrestore(&spi->lock, flags);
930 
931 	if (end) {
932 		stm32h7_spi_disable(spi);
933 		spi_finalize_current_transfer(master);
934 	}
935 
936 	return IRQ_HANDLED;
937 }
938 
939 /**
940  * stm32_spi_prepare_msg - set up the controller to transfer a single message
941  * @master: controller master interface
942  * @msg: pointer to spi message
943  */
944 static int stm32_spi_prepare_msg(struct spi_master *master,
945 				 struct spi_message *msg)
946 {
947 	struct stm32_spi *spi = spi_master_get_devdata(master);
948 	struct spi_device *spi_dev = msg->spi;
949 	struct device_node *np = spi_dev->dev.of_node;
950 	unsigned long flags;
951 	u32 clrb = 0, setb = 0;
952 
953 	/* SPI slave device may need time between data frames */
954 	spi->cur_midi = 0;
955 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
956 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
957 
958 	if (spi_dev->mode & SPI_CPOL)
959 		setb |= spi->cfg->regs->cpol.mask;
960 	else
961 		clrb |= spi->cfg->regs->cpol.mask;
962 
963 	if (spi_dev->mode & SPI_CPHA)
964 		setb |= spi->cfg->regs->cpha.mask;
965 	else
966 		clrb |= spi->cfg->regs->cpha.mask;
967 
968 	if (spi_dev->mode & SPI_LSB_FIRST)
969 		setb |= spi->cfg->regs->lsb_first.mask;
970 	else
971 		clrb |= spi->cfg->regs->lsb_first.mask;
972 
973 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
974 		!!(spi_dev->mode & SPI_CPOL),
975 		!!(spi_dev->mode & SPI_CPHA),
976 		!!(spi_dev->mode & SPI_LSB_FIRST),
977 		!!(spi_dev->mode & SPI_CS_HIGH));
978 
979 	/* On STM32H7, messages should not exceed a maximum size setted
980 	 * afterward via the set_number_of_data function. In order to
981 	 * ensure that, split large messages into several messages
982 	 */
983 	if (spi->cfg->set_number_of_data) {
984 		int ret;
985 
986 		ret = spi_split_transfers_maxsize(master, msg,
987 						  STM32H7_SPI_TSIZE_MAX,
988 						  GFP_KERNEL | GFP_DMA);
989 		if (ret)
990 			return ret;
991 	}
992 
993 	spin_lock_irqsave(&spi->lock, flags);
994 
995 	/* CPOL, CPHA and LSB FIRST bits have common register */
996 	if (clrb || setb)
997 		writel_relaxed(
998 			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
999 			 ~clrb) | setb,
1000 			spi->base + spi->cfg->regs->cpol.reg);
1001 
1002 	spin_unlock_irqrestore(&spi->lock, flags);
1003 
1004 	return 0;
1005 }
1006 
1007 /**
1008  * stm32f4_spi_dma_tx_cb - dma callback
1009  * @data: pointer to the spi controller data structure
1010  *
1011  * DMA callback is called when the transfer is complete for DMA TX channel.
1012  */
1013 static void stm32f4_spi_dma_tx_cb(void *data)
1014 {
1015 	struct stm32_spi *spi = data;
1016 
1017 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1018 		spi_finalize_current_transfer(spi->master);
1019 		stm32f4_spi_disable(spi);
1020 	}
1021 }
1022 
1023 /**
1024  * stm32_spi_dma_rx_cb - dma callback
1025  * @data: pointer to the spi controller data structure
1026  *
1027  * DMA callback is called when the transfer is complete for DMA RX channel.
1028  */
1029 static void stm32_spi_dma_rx_cb(void *data)
1030 {
1031 	struct stm32_spi *spi = data;
1032 
1033 	spi_finalize_current_transfer(spi->master);
1034 	spi->cfg->disable(spi);
1035 }
1036 
1037 /**
1038  * stm32_spi_dma_config - configure dma slave channel depending on current
1039  *			  transfer bits_per_word.
1040  * @spi: pointer to the spi controller data structure
1041  * @dma_conf: pointer to the dma_slave_config structure
1042  * @dir: direction of the dma transfer
1043  */
1044 static void stm32_spi_dma_config(struct stm32_spi *spi,
1045 				 struct dma_slave_config *dma_conf,
1046 				 enum dma_transfer_direction dir)
1047 {
1048 	enum dma_slave_buswidth buswidth;
1049 	u32 maxburst;
1050 
1051 	if (spi->cur_bpw <= 8)
1052 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1053 	else if (spi->cur_bpw <= 16)
1054 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1055 	else
1056 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1057 
1058 	if (spi->cfg->has_fifo) {
1059 		/* Valid for DMA Half or Full Fifo threshold */
1060 		if (spi->cur_fthlv == 2)
1061 			maxburst = 1;
1062 		else
1063 			maxburst = spi->cur_fthlv;
1064 	} else {
1065 		maxburst = 1;
1066 	}
1067 
1068 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1069 	dma_conf->direction = dir;
1070 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1071 		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1072 		dma_conf->src_addr_width = buswidth;
1073 		dma_conf->src_maxburst = maxburst;
1074 
1075 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1076 			buswidth, maxburst);
1077 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1078 		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1079 		dma_conf->dst_addr_width = buswidth;
1080 		dma_conf->dst_maxburst = maxburst;
1081 
1082 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1083 			buswidth, maxburst);
1084 	}
1085 }
1086 
1087 /**
1088  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1089  *				  interrupts
1090  * @spi: pointer to the spi controller data structure
1091  *
1092  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1093  * in progress.
1094  */
1095 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1096 {
1097 	unsigned long flags;
1098 	u32 cr2 = 0;
1099 
1100 	/* Enable the interrupts relative to the current communication mode */
1101 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1102 		cr2 |= STM32F4_SPI_CR2_TXEIE;
1103 	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1104 				spi->cur_comm == SPI_SIMPLEX_RX ||
1105 				spi->cur_comm == SPI_3WIRE_RX) {
1106 		/* In transmit-only mode, the OVR flag is set in the SR register
1107 		 * since the received data are never read. Therefore set OVR
1108 		 * interrupt only when rx buffer is available.
1109 		 */
1110 		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1111 	} else {
1112 		return -EINVAL;
1113 	}
1114 
1115 	spin_lock_irqsave(&spi->lock, flags);
1116 
1117 	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1118 
1119 	stm32_spi_enable(spi);
1120 
1121 	/* starting data transfer when buffer is loaded */
1122 	if (spi->tx_buf)
1123 		stm32f4_spi_write_tx(spi);
1124 
1125 	spin_unlock_irqrestore(&spi->lock, flags);
1126 
1127 	return 1;
1128 }
1129 
1130 /**
1131  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1132  *				  interrupts
1133  * @spi: pointer to the spi controller data structure
1134  *
1135  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1136  * in progress.
1137  */
1138 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1139 {
1140 	unsigned long flags;
1141 	u32 ier = 0;
1142 
1143 	/* Enable the interrupts relative to the current communication mode */
1144 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1145 		ier |= STM32H7_SPI_IER_DXPIE;
1146 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1147 		ier |= STM32H7_SPI_IER_TXPIE;
1148 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1149 		ier |= STM32H7_SPI_IER_RXPIE;
1150 
1151 	/* Enable the interrupts relative to the end of transfer */
1152 	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1153 	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1154 
1155 	spin_lock_irqsave(&spi->lock, flags);
1156 
1157 	stm32_spi_enable(spi);
1158 
1159 	/* Be sure to have data in fifo before starting data transfer */
1160 	if (spi->tx_buf)
1161 		stm32h7_spi_write_txfifo(spi);
1162 
1163 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1164 
1165 	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1166 
1167 	spin_unlock_irqrestore(&spi->lock, flags);
1168 
1169 	return 1;
1170 }
1171 
1172 /**
1173  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1174  *					transfer using DMA
1175  * @spi: pointer to the spi controller data structure
1176  */
1177 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1178 {
1179 	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1180 	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1181 	    spi->cur_comm == SPI_FULL_DUPLEX) {
1182 		/*
1183 		 * In transmit-only mode, the OVR flag is set in the SR register
1184 		 * since the received data are never read. Therefore set OVR
1185 		 * interrupt only when rx buffer is available.
1186 		 */
1187 		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1188 	}
1189 
1190 	stm32_spi_enable(spi);
1191 }
1192 
1193 /**
1194  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1195  *					transfer using DMA
1196  * @spi: pointer to the spi controller data structure
1197  */
1198 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1199 {
1200 	uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1201 
1202 	/* Enable the interrupts */
1203 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1204 		ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1205 
1206 	stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1207 
1208 	stm32_spi_enable(spi);
1209 
1210 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1211 }
1212 
1213 /**
1214  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1215  * @spi: pointer to the spi controller data structure
1216  * @xfer: pointer to the spi_transfer structure
1217  *
1218  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1219  * in progress.
1220  */
1221 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1222 				      struct spi_transfer *xfer)
1223 {
1224 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1225 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1226 	unsigned long flags;
1227 
1228 	spin_lock_irqsave(&spi->lock, flags);
1229 
1230 	rx_dma_desc = NULL;
1231 	if (spi->rx_buf && spi->dma_rx) {
1232 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1233 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1234 
1235 		/* Enable Rx DMA request */
1236 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1237 				   spi->cfg->regs->dma_rx_en.mask);
1238 
1239 		rx_dma_desc = dmaengine_prep_slave_sg(
1240 					spi->dma_rx, xfer->rx_sg.sgl,
1241 					xfer->rx_sg.nents,
1242 					rx_dma_conf.direction,
1243 					DMA_PREP_INTERRUPT);
1244 	}
1245 
1246 	tx_dma_desc = NULL;
1247 	if (spi->tx_buf && spi->dma_tx) {
1248 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1249 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1250 
1251 		tx_dma_desc = dmaengine_prep_slave_sg(
1252 					spi->dma_tx, xfer->tx_sg.sgl,
1253 					xfer->tx_sg.nents,
1254 					tx_dma_conf.direction,
1255 					DMA_PREP_INTERRUPT);
1256 	}
1257 
1258 	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1259 	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1260 		goto dma_desc_error;
1261 
1262 	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1263 		goto dma_desc_error;
1264 
1265 	if (rx_dma_desc) {
1266 		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1267 		rx_dma_desc->callback_param = spi;
1268 
1269 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1270 			dev_err(spi->dev, "Rx DMA submit failed\n");
1271 			goto dma_desc_error;
1272 		}
1273 		/* Enable Rx DMA channel */
1274 		dma_async_issue_pending(spi->dma_rx);
1275 	}
1276 
1277 	if (tx_dma_desc) {
1278 		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1279 		    spi->cur_comm == SPI_3WIRE_TX) {
1280 			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1281 			tx_dma_desc->callback_param = spi;
1282 		}
1283 
1284 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1285 			dev_err(spi->dev, "Tx DMA submit failed\n");
1286 			goto dma_submit_error;
1287 		}
1288 		/* Enable Tx DMA channel */
1289 		dma_async_issue_pending(spi->dma_tx);
1290 
1291 		/* Enable Tx DMA request */
1292 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1293 				   spi->cfg->regs->dma_tx_en.mask);
1294 	}
1295 
1296 	spi->cfg->transfer_one_dma_start(spi);
1297 
1298 	spin_unlock_irqrestore(&spi->lock, flags);
1299 
1300 	return 1;
1301 
1302 dma_submit_error:
1303 	if (spi->dma_rx)
1304 		dmaengine_terminate_all(spi->dma_rx);
1305 
1306 dma_desc_error:
1307 	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1308 			   spi->cfg->regs->dma_rx_en.mask);
1309 
1310 	spin_unlock_irqrestore(&spi->lock, flags);
1311 
1312 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1313 
1314 	spi->cur_usedma = false;
1315 	return spi->cfg->transfer_one_irq(spi);
1316 }
1317 
1318 /**
1319  * stm32f4_spi_set_bpw - Configure bits per word
1320  * @spi: pointer to the spi controller data structure
1321  */
1322 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1323 {
1324 	if (spi->cur_bpw == 16)
1325 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1326 	else
1327 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1328 }
1329 
1330 /**
1331  * stm32h7_spi_set_bpw - configure bits per word
1332  * @spi: pointer to the spi controller data structure
1333  */
1334 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1335 {
1336 	u32 bpw, fthlv;
1337 	u32 cfg1_clrb = 0, cfg1_setb = 0;
1338 
1339 	bpw = spi->cur_bpw - 1;
1340 
1341 	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1342 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1343 
1344 	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1345 	fthlv = spi->cur_fthlv - 1;
1346 
1347 	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1348 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1349 
1350 	writel_relaxed(
1351 		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1352 		 ~cfg1_clrb) | cfg1_setb,
1353 		spi->base + STM32H7_SPI_CFG1);
1354 }
1355 
1356 /**
1357  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1358  * @spi: pointer to the spi controller data structure
1359  * @mbrdiv: baud rate divisor value
1360  */
1361 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1362 {
1363 	u32 clrb = 0, setb = 0;
1364 
1365 	clrb |= spi->cfg->regs->br.mask;
1366 	setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1367 
1368 	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1369 			~clrb) | setb,
1370 		       spi->base + spi->cfg->regs->br.reg);
1371 }
1372 
1373 /**
1374  * stm32_spi_communication_type - return transfer communication type
1375  * @spi_dev: pointer to the spi device
1376  * @transfer: pointer to spi transfer
1377  */
1378 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1379 						 struct spi_transfer *transfer)
1380 {
1381 	unsigned int type = SPI_FULL_DUPLEX;
1382 
1383 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1384 		/*
1385 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1386 		 * is forbidden and unvalidated by SPI subsystem so depending
1387 		 * on the valid buffer, we can determine the direction of the
1388 		 * transfer.
1389 		 */
1390 		if (!transfer->tx_buf)
1391 			type = SPI_3WIRE_RX;
1392 		else
1393 			type = SPI_3WIRE_TX;
1394 	} else {
1395 		if (!transfer->tx_buf)
1396 			type = SPI_SIMPLEX_RX;
1397 		else if (!transfer->rx_buf)
1398 			type = SPI_SIMPLEX_TX;
1399 	}
1400 
1401 	return type;
1402 }
1403 
1404 /**
1405  * stm32f4_spi_set_mode - configure communication mode
1406  * @spi: pointer to the spi controller data structure
1407  * @comm_type: type of communication to configure
1408  */
1409 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1410 {
1411 	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1412 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1413 					STM32F4_SPI_CR1_BIDIMODE |
1414 					STM32F4_SPI_CR1_BIDIOE);
1415 	} else if (comm_type == SPI_FULL_DUPLEX ||
1416 				comm_type == SPI_SIMPLEX_RX) {
1417 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1418 					STM32F4_SPI_CR1_BIDIMODE |
1419 					STM32F4_SPI_CR1_BIDIOE);
1420 	} else if (comm_type == SPI_3WIRE_RX) {
1421 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1422 					STM32F4_SPI_CR1_BIDIMODE);
1423 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1424 					STM32F4_SPI_CR1_BIDIOE);
1425 	} else {
1426 		return -EINVAL;
1427 	}
1428 
1429 	return 0;
1430 }
1431 
1432 /**
1433  * stm32h7_spi_set_mode - configure communication mode
1434  * @spi: pointer to the spi controller data structure
1435  * @comm_type: type of communication to configure
1436  */
1437 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1438 {
1439 	u32 mode;
1440 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1441 
1442 	if (comm_type == SPI_3WIRE_RX) {
1443 		mode = STM32H7_SPI_HALF_DUPLEX;
1444 		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1445 	} else if (comm_type == SPI_3WIRE_TX) {
1446 		mode = STM32H7_SPI_HALF_DUPLEX;
1447 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1448 	} else if (comm_type == SPI_SIMPLEX_RX) {
1449 		mode = STM32H7_SPI_SIMPLEX_RX;
1450 	} else if (comm_type == SPI_SIMPLEX_TX) {
1451 		mode = STM32H7_SPI_SIMPLEX_TX;
1452 	} else {
1453 		mode = STM32H7_SPI_FULL_DUPLEX;
1454 	}
1455 
1456 	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1457 	cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1458 
1459 	writel_relaxed(
1460 		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1461 		 ~cfg2_clrb) | cfg2_setb,
1462 		spi->base + STM32H7_SPI_CFG2);
1463 
1464 	return 0;
1465 }
1466 
1467 /**
1468  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1469  *			       consecutive data frames in master mode
1470  * @spi: pointer to the spi controller data structure
1471  * @len: transfer len
1472  */
1473 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1474 {
1475 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1476 
1477 	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1478 	if ((len > 1) && (spi->cur_midi > 0)) {
1479 		u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1480 		u32 midi = min_t(u32,
1481 				 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1482 				 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1483 				 STM32H7_SPI_CFG2_MIDI));
1484 
1485 
1486 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1487 			sck_period_ns, midi, midi * sck_period_ns);
1488 		cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1489 	}
1490 
1491 	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1492 			~cfg2_clrb) | cfg2_setb,
1493 		       spi->base + STM32H7_SPI_CFG2);
1494 }
1495 
1496 /**
1497  * stm32h7_spi_number_of_data - configure number of data at current transfer
1498  * @spi: pointer to the spi controller data structure
1499  * @nb_words: transfer length (in words)
1500  */
1501 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1502 {
1503 	if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1504 		writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1505 			       spi->base + STM32H7_SPI_CR2);
1506 	} else {
1507 		return -EMSGSIZE;
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 /**
1514  * stm32_spi_transfer_one_setup - common setup to transfer a single
1515  *				  spi_transfer either using DMA or
1516  *				  interrupts.
1517  * @spi: pointer to the spi controller data structure
1518  * @spi_dev: pointer to the spi device
1519  * @transfer: pointer to spi transfer
1520  */
1521 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1522 					struct spi_device *spi_dev,
1523 					struct spi_transfer *transfer)
1524 {
1525 	unsigned long flags;
1526 	unsigned int comm_type;
1527 	int nb_words, ret = 0;
1528 	int mbr;
1529 
1530 	spin_lock_irqsave(&spi->lock, flags);
1531 
1532 	spi->cur_xferlen = transfer->len;
1533 
1534 	spi->cur_bpw = transfer->bits_per_word;
1535 	spi->cfg->set_bpw(spi);
1536 
1537 	/* Update spi->cur_speed with real clock speed */
1538 	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1539 				    spi->cfg->baud_rate_div_min,
1540 				    spi->cfg->baud_rate_div_max);
1541 	if (mbr < 0) {
1542 		ret = mbr;
1543 		goto out;
1544 	}
1545 
1546 	transfer->speed_hz = spi->cur_speed;
1547 	stm32_spi_set_mbr(spi, mbr);
1548 
1549 	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1550 	ret = spi->cfg->set_mode(spi, comm_type);
1551 	if (ret < 0)
1552 		goto out;
1553 
1554 	spi->cur_comm = comm_type;
1555 
1556 	if (spi->cfg->set_data_idleness)
1557 		spi->cfg->set_data_idleness(spi, transfer->len);
1558 
1559 	if (spi->cur_bpw <= 8)
1560 		nb_words = transfer->len;
1561 	else if (spi->cur_bpw <= 16)
1562 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1563 	else
1564 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1565 
1566 	if (spi->cfg->set_number_of_data) {
1567 		ret = spi->cfg->set_number_of_data(spi, nb_words);
1568 		if (ret < 0)
1569 			goto out;
1570 	}
1571 
1572 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1573 		spi->cur_comm);
1574 	dev_dbg(spi->dev,
1575 		"data frame of %d-bit, data packet of %d data frames\n",
1576 		spi->cur_bpw, spi->cur_fthlv);
1577 	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1578 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1579 		spi->cur_xferlen, nb_words);
1580 	dev_dbg(spi->dev, "dma %s\n",
1581 		(spi->cur_usedma) ? "enabled" : "disabled");
1582 
1583 out:
1584 	spin_unlock_irqrestore(&spi->lock, flags);
1585 
1586 	return ret;
1587 }
1588 
1589 /**
1590  * stm32_spi_transfer_one - transfer a single spi_transfer
1591  * @master: controller master interface
1592  * @spi_dev: pointer to the spi device
1593  * @transfer: pointer to spi transfer
1594  *
1595  * It must return 0 if the transfer is finished or 1 if the transfer is still
1596  * in progress.
1597  */
1598 static int stm32_spi_transfer_one(struct spi_master *master,
1599 				  struct spi_device *spi_dev,
1600 				  struct spi_transfer *transfer)
1601 {
1602 	struct stm32_spi *spi = spi_master_get_devdata(master);
1603 	int ret;
1604 
1605 	spi->tx_buf = transfer->tx_buf;
1606 	spi->rx_buf = transfer->rx_buf;
1607 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1608 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1609 
1610 	spi->cur_usedma = (master->can_dma &&
1611 			   master->can_dma(master, spi_dev, transfer));
1612 
1613 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1614 	if (ret) {
1615 		dev_err(spi->dev, "SPI transfer setup failed\n");
1616 		return ret;
1617 	}
1618 
1619 	if (spi->cur_usedma)
1620 		return stm32_spi_transfer_one_dma(spi, transfer);
1621 	else
1622 		return spi->cfg->transfer_one_irq(spi);
1623 }
1624 
1625 /**
1626  * stm32_spi_unprepare_msg - relax the hardware
1627  * @master: controller master interface
1628  * @msg: pointer to the spi message
1629  */
1630 static int stm32_spi_unprepare_msg(struct spi_master *master,
1631 				   struct spi_message *msg)
1632 {
1633 	struct stm32_spi *spi = spi_master_get_devdata(master);
1634 
1635 	spi->cfg->disable(spi);
1636 
1637 	return 0;
1638 }
1639 
1640 /**
1641  * stm32f4_spi_config - Configure SPI controller as SPI master
1642  * @spi: pointer to the spi controller data structure
1643  */
1644 static int stm32f4_spi_config(struct stm32_spi *spi)
1645 {
1646 	unsigned long flags;
1647 
1648 	spin_lock_irqsave(&spi->lock, flags);
1649 
1650 	/* Ensure I2SMOD bit is kept cleared */
1651 	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1652 			   STM32F4_SPI_I2SCFGR_I2SMOD);
1653 
1654 	/*
1655 	 * - SS input value high
1656 	 * - transmitter half duplex direction
1657 	 * - Set the master mode (default Motorola mode)
1658 	 * - Consider 1 master/n slaves configuration and
1659 	 *   SS input value is determined by the SSI bit
1660 	 */
1661 	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1662 						 STM32F4_SPI_CR1_BIDIOE |
1663 						 STM32F4_SPI_CR1_MSTR |
1664 						 STM32F4_SPI_CR1_SSM);
1665 
1666 	spin_unlock_irqrestore(&spi->lock, flags);
1667 
1668 	return 0;
1669 }
1670 
1671 /**
1672  * stm32h7_spi_config - Configure SPI controller as SPI master
1673  * @spi: pointer to the spi controller data structure
1674  */
1675 static int stm32h7_spi_config(struct stm32_spi *spi)
1676 {
1677 	unsigned long flags;
1678 
1679 	spin_lock_irqsave(&spi->lock, flags);
1680 
1681 	/* Ensure I2SMOD bit is kept cleared */
1682 	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1683 			   STM32H7_SPI_I2SCFGR_I2SMOD);
1684 
1685 	/*
1686 	 * - SS input value high
1687 	 * - transmitter half duplex direction
1688 	 * - automatic communication suspend when RX-Fifo is full
1689 	 */
1690 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1691 						 STM32H7_SPI_CR1_HDDIR |
1692 						 STM32H7_SPI_CR1_MASRX);
1693 
1694 	/*
1695 	 * - Set the master mode (default Motorola mode)
1696 	 * - Consider 1 master/n slaves configuration and
1697 	 *   SS input value is determined by the SSI bit
1698 	 * - keep control of all associated GPIOs
1699 	 */
1700 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1701 						  STM32H7_SPI_CFG2_SSM |
1702 						  STM32H7_SPI_CFG2_AFCNTR);
1703 
1704 	spin_unlock_irqrestore(&spi->lock, flags);
1705 
1706 	return 0;
1707 }
1708 
1709 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1710 	.regs = &stm32f4_spi_regspec,
1711 	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1712 	.disable = stm32f4_spi_disable,
1713 	.config = stm32f4_spi_config,
1714 	.set_bpw = stm32f4_spi_set_bpw,
1715 	.set_mode = stm32f4_spi_set_mode,
1716 	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1717 	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1718 	.dma_rx_cb = stm32_spi_dma_rx_cb,
1719 	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1720 	.irq_handler_event = stm32f4_spi_irq_event,
1721 	.irq_handler_thread = stm32f4_spi_irq_thread,
1722 	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1723 	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1724 	.has_fifo = false,
1725 };
1726 
1727 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1728 	.regs = &stm32h7_spi_regspec,
1729 	.get_fifo_size = stm32h7_spi_get_fifo_size,
1730 	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1731 	.disable = stm32h7_spi_disable,
1732 	.config = stm32h7_spi_config,
1733 	.set_bpw = stm32h7_spi_set_bpw,
1734 	.set_mode = stm32h7_spi_set_mode,
1735 	.set_data_idleness = stm32h7_spi_data_idleness,
1736 	.set_number_of_data = stm32h7_spi_number_of_data,
1737 	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1738 	.dma_rx_cb = stm32_spi_dma_rx_cb,
1739 	/*
1740 	 * dma_tx_cb is not necessary since in case of TX, dma is followed by
1741 	 * SPI access hence handling is performed within the SPI interrupt
1742 	 */
1743 	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1744 	.irq_handler_thread = stm32h7_spi_irq_thread,
1745 	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1746 	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1747 	.has_fifo = true,
1748 };
1749 
1750 static const struct of_device_id stm32_spi_of_match[] = {
1751 	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1752 	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1753 	{},
1754 };
1755 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1756 
1757 static int stm32_spi_probe(struct platform_device *pdev)
1758 {
1759 	struct spi_master *master;
1760 	struct stm32_spi *spi;
1761 	struct resource *res;
1762 	struct reset_control *rst;
1763 	int ret;
1764 
1765 	master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1766 	if (!master) {
1767 		dev_err(&pdev->dev, "spi master allocation failed\n");
1768 		return -ENOMEM;
1769 	}
1770 	platform_set_drvdata(pdev, master);
1771 
1772 	spi = spi_master_get_devdata(master);
1773 	spi->dev = &pdev->dev;
1774 	spi->master = master;
1775 	spin_lock_init(&spi->lock);
1776 
1777 	spi->cfg = (const struct stm32_spi_cfg *)
1778 		of_match_device(pdev->dev.driver->of_match_table,
1779 				&pdev->dev)->data;
1780 
1781 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1782 	spi->base = devm_ioremap_resource(&pdev->dev, res);
1783 	if (IS_ERR(spi->base))
1784 		return PTR_ERR(spi->base);
1785 
1786 	spi->phys_addr = (dma_addr_t)res->start;
1787 
1788 	spi->irq = platform_get_irq(pdev, 0);
1789 	if (spi->irq <= 0)
1790 		return dev_err_probe(&pdev->dev, spi->irq,
1791 				     "failed to get irq\n");
1792 
1793 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1794 					spi->cfg->irq_handler_event,
1795 					spi->cfg->irq_handler_thread,
1796 					IRQF_ONESHOT, pdev->name, master);
1797 	if (ret) {
1798 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1799 			ret);
1800 		return ret;
1801 	}
1802 
1803 	spi->clk = devm_clk_get(&pdev->dev, NULL);
1804 	if (IS_ERR(spi->clk)) {
1805 		ret = PTR_ERR(spi->clk);
1806 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1807 		return ret;
1808 	}
1809 
1810 	ret = clk_prepare_enable(spi->clk);
1811 	if (ret) {
1812 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1813 		return ret;
1814 	}
1815 	spi->clk_rate = clk_get_rate(spi->clk);
1816 	if (!spi->clk_rate) {
1817 		dev_err(&pdev->dev, "clk rate = 0\n");
1818 		ret = -EINVAL;
1819 		goto err_clk_disable;
1820 	}
1821 
1822 	rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1823 	if (rst) {
1824 		if (IS_ERR(rst)) {
1825 			ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1826 					    "failed to get reset\n");
1827 			goto err_clk_disable;
1828 		}
1829 
1830 		reset_control_assert(rst);
1831 		udelay(2);
1832 		reset_control_deassert(rst);
1833 	}
1834 
1835 	if (spi->cfg->has_fifo)
1836 		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1837 
1838 	ret = spi->cfg->config(spi);
1839 	if (ret) {
1840 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1841 			ret);
1842 		goto err_clk_disable;
1843 	}
1844 
1845 	master->dev.of_node = pdev->dev.of_node;
1846 	master->auto_runtime_pm = true;
1847 	master->bus_num = pdev->id;
1848 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1849 			    SPI_3WIRE;
1850 	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1851 	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1852 	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1853 	master->use_gpio_descriptors = true;
1854 	master->prepare_message = stm32_spi_prepare_msg;
1855 	master->transfer_one = stm32_spi_transfer_one;
1856 	master->unprepare_message = stm32_spi_unprepare_msg;
1857 	master->flags = SPI_MASTER_MUST_TX;
1858 
1859 	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1860 	if (IS_ERR(spi->dma_tx)) {
1861 		ret = PTR_ERR(spi->dma_tx);
1862 		spi->dma_tx = NULL;
1863 		if (ret == -EPROBE_DEFER)
1864 			goto err_clk_disable;
1865 
1866 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1867 	} else {
1868 		master->dma_tx = spi->dma_tx;
1869 	}
1870 
1871 	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1872 	if (IS_ERR(spi->dma_rx)) {
1873 		ret = PTR_ERR(spi->dma_rx);
1874 		spi->dma_rx = NULL;
1875 		if (ret == -EPROBE_DEFER)
1876 			goto err_dma_release;
1877 
1878 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1879 	} else {
1880 		master->dma_rx = spi->dma_rx;
1881 	}
1882 
1883 	if (spi->dma_tx || spi->dma_rx)
1884 		master->can_dma = stm32_spi_can_dma;
1885 
1886 	pm_runtime_set_autosuspend_delay(&pdev->dev,
1887 					 STM32_SPI_AUTOSUSPEND_DELAY);
1888 	pm_runtime_use_autosuspend(&pdev->dev);
1889 	pm_runtime_set_active(&pdev->dev);
1890 	pm_runtime_get_noresume(&pdev->dev);
1891 	pm_runtime_enable(&pdev->dev);
1892 
1893 	ret = spi_register_master(master);
1894 	if (ret) {
1895 		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1896 			ret);
1897 		goto err_pm_disable;
1898 	}
1899 
1900 	pm_runtime_mark_last_busy(&pdev->dev);
1901 	pm_runtime_put_autosuspend(&pdev->dev);
1902 
1903 	dev_info(&pdev->dev, "driver initialized\n");
1904 
1905 	return 0;
1906 
1907 err_pm_disable:
1908 	pm_runtime_disable(&pdev->dev);
1909 	pm_runtime_put_noidle(&pdev->dev);
1910 	pm_runtime_set_suspended(&pdev->dev);
1911 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1912 err_dma_release:
1913 	if (spi->dma_tx)
1914 		dma_release_channel(spi->dma_tx);
1915 	if (spi->dma_rx)
1916 		dma_release_channel(spi->dma_rx);
1917 err_clk_disable:
1918 	clk_disable_unprepare(spi->clk);
1919 
1920 	return ret;
1921 }
1922 
1923 static int stm32_spi_remove(struct platform_device *pdev)
1924 {
1925 	struct spi_master *master = platform_get_drvdata(pdev);
1926 	struct stm32_spi *spi = spi_master_get_devdata(master);
1927 
1928 	pm_runtime_get_sync(&pdev->dev);
1929 
1930 	spi_unregister_master(master);
1931 	spi->cfg->disable(spi);
1932 
1933 	pm_runtime_disable(&pdev->dev);
1934 	pm_runtime_put_noidle(&pdev->dev);
1935 	pm_runtime_set_suspended(&pdev->dev);
1936 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1937 
1938 	if (master->dma_tx)
1939 		dma_release_channel(master->dma_tx);
1940 	if (master->dma_rx)
1941 		dma_release_channel(master->dma_rx);
1942 
1943 	clk_disable_unprepare(spi->clk);
1944 
1945 
1946 	pinctrl_pm_select_sleep_state(&pdev->dev);
1947 
1948 	return 0;
1949 }
1950 
1951 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
1952 {
1953 	struct spi_master *master = dev_get_drvdata(dev);
1954 	struct stm32_spi *spi = spi_master_get_devdata(master);
1955 
1956 	clk_disable_unprepare(spi->clk);
1957 
1958 	return pinctrl_pm_select_sleep_state(dev);
1959 }
1960 
1961 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
1962 {
1963 	struct spi_master *master = dev_get_drvdata(dev);
1964 	struct stm32_spi *spi = spi_master_get_devdata(master);
1965 	int ret;
1966 
1967 	ret = pinctrl_pm_select_default_state(dev);
1968 	if (ret)
1969 		return ret;
1970 
1971 	return clk_prepare_enable(spi->clk);
1972 }
1973 
1974 static int __maybe_unused stm32_spi_suspend(struct device *dev)
1975 {
1976 	struct spi_master *master = dev_get_drvdata(dev);
1977 	int ret;
1978 
1979 	ret = spi_master_suspend(master);
1980 	if (ret)
1981 		return ret;
1982 
1983 	return pm_runtime_force_suspend(dev);
1984 }
1985 
1986 static int __maybe_unused stm32_spi_resume(struct device *dev)
1987 {
1988 	struct spi_master *master = dev_get_drvdata(dev);
1989 	struct stm32_spi *spi = spi_master_get_devdata(master);
1990 	int ret;
1991 
1992 	ret = pm_runtime_force_resume(dev);
1993 	if (ret)
1994 		return ret;
1995 
1996 	ret = spi_master_resume(master);
1997 	if (ret) {
1998 		clk_disable_unprepare(spi->clk);
1999 		return ret;
2000 	}
2001 
2002 	ret = pm_runtime_get_sync(dev);
2003 	if (ret < 0) {
2004 		pm_runtime_put_noidle(dev);
2005 		dev_err(dev, "Unable to power device:%d\n", ret);
2006 		return ret;
2007 	}
2008 
2009 	spi->cfg->config(spi);
2010 
2011 	pm_runtime_mark_last_busy(dev);
2012 	pm_runtime_put_autosuspend(dev);
2013 
2014 	return 0;
2015 }
2016 
2017 static const struct dev_pm_ops stm32_spi_pm_ops = {
2018 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2019 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2020 			   stm32_spi_runtime_resume, NULL)
2021 };
2022 
2023 static struct platform_driver stm32_spi_driver = {
2024 	.probe = stm32_spi_probe,
2025 	.remove = stm32_spi_remove,
2026 	.driver = {
2027 		.name = DRIVER_NAME,
2028 		.pm = &stm32_spi_pm_ops,
2029 		.of_match_table = stm32_spi_of_match,
2030 	},
2031 };
2032 
2033 module_platform_driver(stm32_spi_driver);
2034 
2035 MODULE_ALIAS("platform:" DRIVER_NAME);
2036 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2037 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2038 MODULE_LICENSE("GPL v2");
2039