xref: /openbmc/linux/drivers/spi/spi-stm32.c (revision b9b77222)
1 /*
2  * STMicroelectronics STM32 SPI Controller driver (master mode only)
3  *
4  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
5  * Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
6  *
7  * License terms: GPL V2.0.
8  *
9  * spi_stm32 driver is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License version 2 as published by
11  * the Free Software Foundation.
12  *
13  * spi_stm32 driver is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  * details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * spi_stm32 driver. If not, see <http://www.gnu.org/licenses/>.
20  */
21 #include <linux/debugfs.h>
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/dmaengine.h>
25 #include <linux/gpio.h>
26 #include <linux/interrupt.h>
27 #include <linux/iopoll.h>
28 #include <linux/module.h>
29 #include <linux/of_platform.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/reset.h>
32 #include <linux/spi/spi.h>
33 
34 #define DRIVER_NAME "spi_stm32"
35 
36 /* STM32 SPI registers */
37 #define STM32_SPI_CR1		0x00
38 #define STM32_SPI_CR2		0x04
39 #define STM32_SPI_CFG1		0x08
40 #define STM32_SPI_CFG2		0x0C
41 #define STM32_SPI_IER		0x10
42 #define STM32_SPI_SR		0x14
43 #define STM32_SPI_IFCR		0x18
44 #define STM32_SPI_TXDR		0x20
45 #define STM32_SPI_RXDR		0x30
46 #define STM32_SPI_I2SCFGR	0x50
47 
48 /* STM32_SPI_CR1 bit fields */
49 #define SPI_CR1_SPE		BIT(0)
50 #define SPI_CR1_MASRX		BIT(8)
51 #define SPI_CR1_CSTART		BIT(9)
52 #define SPI_CR1_CSUSP		BIT(10)
53 #define SPI_CR1_HDDIR		BIT(11)
54 #define SPI_CR1_SSI		BIT(12)
55 
56 /* STM32_SPI_CR2 bit fields */
57 #define SPI_CR2_TSIZE_SHIFT	0
58 #define SPI_CR2_TSIZE		GENMASK(15, 0)
59 
60 /* STM32_SPI_CFG1 bit fields */
61 #define SPI_CFG1_DSIZE_SHIFT	0
62 #define SPI_CFG1_DSIZE		GENMASK(4, 0)
63 #define SPI_CFG1_FTHLV_SHIFT	5
64 #define SPI_CFG1_FTHLV		GENMASK(8, 5)
65 #define SPI_CFG1_RXDMAEN	BIT(14)
66 #define SPI_CFG1_TXDMAEN	BIT(15)
67 #define SPI_CFG1_MBR_SHIFT	28
68 #define SPI_CFG1_MBR		GENMASK(30, 28)
69 #define SPI_CFG1_MBR_MIN	0
70 #define SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
71 
72 /* STM32_SPI_CFG2 bit fields */
73 #define SPI_CFG2_MIDI_SHIFT	4
74 #define SPI_CFG2_MIDI		GENMASK(7, 4)
75 #define SPI_CFG2_COMM_SHIFT	17
76 #define SPI_CFG2_COMM		GENMASK(18, 17)
77 #define SPI_CFG2_SP_SHIFT	19
78 #define SPI_CFG2_SP		GENMASK(21, 19)
79 #define SPI_CFG2_MASTER		BIT(22)
80 #define SPI_CFG2_LSBFRST	BIT(23)
81 #define SPI_CFG2_CPHA		BIT(24)
82 #define SPI_CFG2_CPOL		BIT(25)
83 #define SPI_CFG2_SSM		BIT(26)
84 #define SPI_CFG2_AFCNTR		BIT(31)
85 
86 /* STM32_SPI_IER bit fields */
87 #define SPI_IER_RXPIE		BIT(0)
88 #define SPI_IER_TXPIE		BIT(1)
89 #define SPI_IER_DXPIE		BIT(2)
90 #define SPI_IER_EOTIE		BIT(3)
91 #define SPI_IER_TXTFIE		BIT(4)
92 #define SPI_IER_OVRIE		BIT(6)
93 #define SPI_IER_MODFIE		BIT(9)
94 #define SPI_IER_ALL		GENMASK(10, 0)
95 
96 /* STM32_SPI_SR bit fields */
97 #define SPI_SR_RXP		BIT(0)
98 #define SPI_SR_TXP		BIT(1)
99 #define SPI_SR_EOT		BIT(3)
100 #define SPI_SR_OVR		BIT(6)
101 #define SPI_SR_MODF		BIT(9)
102 #define SPI_SR_SUSP		BIT(11)
103 #define SPI_SR_RXPLVL_SHIFT	13
104 #define SPI_SR_RXPLVL		GENMASK(14, 13)
105 #define SPI_SR_RXWNE		BIT(15)
106 
107 /* STM32_SPI_IFCR bit fields */
108 #define SPI_IFCR_ALL		GENMASK(11, 3)
109 
110 /* STM32_SPI_I2SCFGR bit fields */
111 #define SPI_I2SCFGR_I2SMOD	BIT(0)
112 
113 /* SPI Master Baud Rate min/max divisor */
114 #define SPI_MBR_DIV_MIN		(2 << SPI_CFG1_MBR_MIN)
115 #define SPI_MBR_DIV_MAX		(2 << SPI_CFG1_MBR_MAX)
116 
117 /* SPI Communication mode */
118 #define SPI_FULL_DUPLEX		0
119 #define SPI_SIMPLEX_TX		1
120 #define SPI_SIMPLEX_RX		2
121 #define SPI_HALF_DUPLEX		3
122 
123 #define SPI_1HZ_NS		1000000000
124 
125 /**
126  * struct stm32_spi - private data of the SPI controller
127  * @dev: driver model representation of the controller
128  * @master: controller master interface
129  * @base: virtual memory area
130  * @clk: hw kernel clock feeding the SPI clock generator
131  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
132  * @rst: SPI controller reset line
133  * @lock: prevent I/O concurrent access
134  * @irq: SPI controller interrupt line
135  * @fifo_size: size of the embedded fifo in bytes
136  * @cur_midi: master inter-data idleness in ns
137  * @cur_speed: speed configured in Hz
138  * @cur_bpw: number of bits in a single SPI data frame
139  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
140  * @cur_comm: SPI communication mode
141  * @cur_xferlen: current transfer length in bytes
142  * @cur_usedma: boolean to know if dma is used in current transfer
143  * @tx_buf: data to be written, or NULL
144  * @rx_buf: data to be read, or NULL
145  * @tx_len: number of data to be written in bytes
146  * @rx_len: number of data to be read in bytes
147  * @dma_tx: dma channel for TX transfer
148  * @dma_rx: dma channel for RX transfer
149  * @phys_addr: SPI registers physical base address
150  */
151 struct stm32_spi {
152 	struct device *dev;
153 	struct spi_master *master;
154 	void __iomem *base;
155 	struct clk *clk;
156 	u32 clk_rate;
157 	struct reset_control *rst;
158 	spinlock_t lock; /* prevent I/O concurrent access */
159 	int irq;
160 	unsigned int fifo_size;
161 
162 	unsigned int cur_midi;
163 	unsigned int cur_speed;
164 	unsigned int cur_bpw;
165 	unsigned int cur_fthlv;
166 	unsigned int cur_comm;
167 	unsigned int cur_xferlen;
168 	bool cur_usedma;
169 
170 	const void *tx_buf;
171 	void *rx_buf;
172 	int tx_len;
173 	int rx_len;
174 	struct dma_chan *dma_tx;
175 	struct dma_chan *dma_rx;
176 	dma_addr_t phys_addr;
177 };
178 
179 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
180 				      u32 offset, u32 bits)
181 {
182 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
183 		       spi->base + offset);
184 }
185 
186 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
187 				      u32 offset, u32 bits)
188 {
189 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
190 		       spi->base + offset);
191 }
192 
193 /**
194  * stm32_spi_get_fifo_size - Return fifo size
195  * @spi: pointer to the spi controller data structure
196  */
197 static int stm32_spi_get_fifo_size(struct stm32_spi *spi)
198 {
199 	unsigned long flags;
200 	u32 count = 0;
201 
202 	spin_lock_irqsave(&spi->lock, flags);
203 
204 	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
205 
206 	while (readl_relaxed(spi->base + STM32_SPI_SR) & SPI_SR_TXP)
207 		writeb_relaxed(++count, spi->base + STM32_SPI_TXDR);
208 
209 	stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
210 
211 	spin_unlock_irqrestore(&spi->lock, flags);
212 
213 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
214 
215 	return count;
216 }
217 
218 /**
219  * stm32_spi_get_bpw_mask - Return bits per word mask
220  * @spi: pointer to the spi controller data structure
221  */
222 static int stm32_spi_get_bpw_mask(struct stm32_spi *spi)
223 {
224 	unsigned long flags;
225 	u32 cfg1, max_bpw;
226 
227 	spin_lock_irqsave(&spi->lock, flags);
228 
229 	/*
230 	 * The most significant bit at DSIZE bit field is reserved when the
231 	 * maximum data size of periperal instances is limited to 16-bit
232 	 */
233 	stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_DSIZE);
234 
235 	cfg1 = readl_relaxed(spi->base + STM32_SPI_CFG1);
236 	max_bpw = (cfg1 & SPI_CFG1_DSIZE) >> SPI_CFG1_DSIZE_SHIFT;
237 	max_bpw += 1;
238 
239 	spin_unlock_irqrestore(&spi->lock, flags);
240 
241 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
242 
243 	return SPI_BPW_RANGE_MASK(4, max_bpw);
244 }
245 
246 /**
247  * stm32_spi_prepare_mbr - Determine SPI_CFG1.MBR value
248  * @spi: pointer to the spi controller data structure
249  * @speed_hz: requested speed
250  *
251  * Return SPI_CFG1.MBR value in case of success or -EINVAL
252  */
253 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz)
254 {
255 	u32 div, mbrdiv;
256 
257 	div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
258 
259 	/*
260 	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
261 	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
262 	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
263 	 * no need to check it there.
264 	 * However, we need to ensure the following calculations.
265 	 */
266 	if (div < SPI_MBR_DIV_MIN ||
267 	    div > SPI_MBR_DIV_MAX)
268 		return -EINVAL;
269 
270 	/* Determine the first power of 2 greater than or equal to div */
271 	if (div & (div - 1))
272 		mbrdiv = fls(div);
273 	else
274 		mbrdiv = fls(div) - 1;
275 
276 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
277 
278 	return mbrdiv - 1;
279 }
280 
281 /**
282  * stm32_spi_prepare_fthlv - Determine FIFO threshold level
283  * @spi: pointer to the spi controller data structure
284  */
285 static u32 stm32_spi_prepare_fthlv(struct stm32_spi *spi)
286 {
287 	u32 fthlv, half_fifo;
288 
289 	/* data packet should not exceed 1/2 of fifo space */
290 	half_fifo = (spi->fifo_size / 2);
291 
292 	if (spi->cur_bpw <= 8)
293 		fthlv = half_fifo;
294 	else if (spi->cur_bpw <= 16)
295 		fthlv = half_fifo / 2;
296 	else
297 		fthlv = half_fifo / 4;
298 
299 	/* align packet size with data registers access */
300 	if (spi->cur_bpw > 8)
301 		fthlv -= (fthlv % 2); /* multiple of 2 */
302 	else
303 		fthlv -= (fthlv % 4); /* multiple of 4 */
304 
305 	return fthlv;
306 }
307 
308 /**
309  * stm32_spi_write_txfifo - Write bytes in Transmit Data Register
310  * @spi: pointer to the spi controller data structure
311  *
312  * Read from tx_buf depends on remaining bytes to avoid to read beyond
313  * tx_buf end.
314  */
315 static void stm32_spi_write_txfifo(struct stm32_spi *spi)
316 {
317 	while ((spi->tx_len > 0) &&
318 	       (readl_relaxed(spi->base + STM32_SPI_SR) & SPI_SR_TXP)) {
319 		u32 offs = spi->cur_xferlen - spi->tx_len;
320 
321 		if (spi->tx_len >= sizeof(u32)) {
322 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
323 
324 			writel_relaxed(*tx_buf32, spi->base + STM32_SPI_TXDR);
325 			spi->tx_len -= sizeof(u32);
326 		} else if (spi->tx_len >= sizeof(u16)) {
327 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
328 
329 			writew_relaxed(*tx_buf16, spi->base + STM32_SPI_TXDR);
330 			spi->tx_len -= sizeof(u16);
331 		} else {
332 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
333 
334 			writeb_relaxed(*tx_buf8, spi->base + STM32_SPI_TXDR);
335 			spi->tx_len -= sizeof(u8);
336 		}
337 	}
338 
339 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
340 }
341 
342 /**
343  * stm32_spi_read_rxfifo - Read bytes in Receive Data Register
344  * @spi: pointer to the spi controller data structure
345  *
346  * Write in rx_buf depends on remaining bytes to avoid to write beyond
347  * rx_buf end.
348  */
349 static void stm32_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
350 {
351 	u32 sr = readl_relaxed(spi->base + STM32_SPI_SR);
352 	u32 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
353 
354 	while ((spi->rx_len > 0) &&
355 	       ((sr & SPI_SR_RXP) ||
356 		(flush && ((sr & SPI_SR_RXWNE) || (rxplvl > 0))))) {
357 		u32 offs = spi->cur_xferlen - spi->rx_len;
358 
359 		if ((spi->rx_len >= sizeof(u32)) ||
360 		    (flush && (sr & SPI_SR_RXWNE))) {
361 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
362 
363 			*rx_buf32 = readl_relaxed(spi->base + STM32_SPI_RXDR);
364 			spi->rx_len -= sizeof(u32);
365 		} else if ((spi->rx_len >= sizeof(u16)) ||
366 			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
367 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
368 
369 			*rx_buf16 = readw_relaxed(spi->base + STM32_SPI_RXDR);
370 			spi->rx_len -= sizeof(u16);
371 		} else {
372 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
373 
374 			*rx_buf8 = readb_relaxed(spi->base + STM32_SPI_RXDR);
375 			spi->rx_len -= sizeof(u8);
376 		}
377 
378 		sr = readl_relaxed(spi->base + STM32_SPI_SR);
379 		rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
380 	}
381 
382 	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
383 		flush ? "(flush)" : "", spi->rx_len);
384 }
385 
386 /**
387  * stm32_spi_enable - Enable SPI controller
388  * @spi: pointer to the spi controller data structure
389  *
390  * SPI data transfer is enabled but spi_ker_ck is idle.
391  * SPI_CFG1 and SPI_CFG2 are now write protected.
392  */
393 static void stm32_spi_enable(struct stm32_spi *spi)
394 {
395 	dev_dbg(spi->dev, "enable controller\n");
396 
397 	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
398 }
399 
400 /**
401  * stm32_spi_disable - Disable SPI controller
402  * @spi: pointer to the spi controller data structure
403  *
404  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
405  * loss, use stm32_spi_read_rxfifo(flush) to read the remaining bytes in
406  * RX-Fifo.
407  */
408 static void stm32_spi_disable(struct stm32_spi *spi)
409 {
410 	unsigned long flags;
411 	u32 cr1, sr;
412 
413 	dev_dbg(spi->dev, "disable controller\n");
414 
415 	spin_lock_irqsave(&spi->lock, flags);
416 
417 	cr1 = readl_relaxed(spi->base + STM32_SPI_CR1);
418 
419 	if (!(cr1 & SPI_CR1_SPE)) {
420 		spin_unlock_irqrestore(&spi->lock, flags);
421 		return;
422 	}
423 
424 	/* Wait on EOT or suspend the flow */
425 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32_SPI_SR,
426 					      sr, !(sr & SPI_SR_EOT),
427 					      10, 100000) < 0) {
428 		if (cr1 & SPI_CR1_CSTART) {
429 			writel_relaxed(cr1 | SPI_CR1_CSUSP,
430 				       spi->base + STM32_SPI_CR1);
431 			if (readl_relaxed_poll_timeout_atomic(
432 						spi->base + STM32_SPI_SR,
433 						sr, !(sr & SPI_SR_SUSP),
434 						10, 100000) < 0)
435 				dev_warn(spi->dev,
436 					 "Suspend request timeout\n");
437 		}
438 	}
439 
440 	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
441 		stm32_spi_read_rxfifo(spi, true);
442 
443 	if (spi->cur_usedma && spi->tx_buf)
444 		dmaengine_terminate_all(spi->dma_tx);
445 	if (spi->cur_usedma && spi->rx_buf)
446 		dmaengine_terminate_all(spi->dma_rx);
447 
448 	stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
449 
450 	stm32_spi_clr_bits(spi, STM32_SPI_CFG1, SPI_CFG1_TXDMAEN |
451 						SPI_CFG1_RXDMAEN);
452 
453 	/* Disable interrupts and clear status flags */
454 	writel_relaxed(0, spi->base + STM32_SPI_IER);
455 	writel_relaxed(SPI_IFCR_ALL, spi->base + STM32_SPI_IFCR);
456 
457 	spin_unlock_irqrestore(&spi->lock, flags);
458 }
459 
460 /**
461  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
462  *
463  * If the current transfer size is greater than fifo size, use DMA.
464  */
465 static bool stm32_spi_can_dma(struct spi_master *master,
466 			      struct spi_device *spi_dev,
467 			      struct spi_transfer *transfer)
468 {
469 	struct stm32_spi *spi = spi_master_get_devdata(master);
470 
471 	dev_dbg(spi->dev, "%s: %s\n", __func__,
472 		(transfer->len > spi->fifo_size) ? "true" : "false");
473 
474 	return (transfer->len > spi->fifo_size);
475 }
476 
477 /**
478  * stm32_spi_irq - Interrupt handler for SPI controller events
479  * @irq: interrupt line
480  * @dev_id: SPI controller master interface
481  */
482 static irqreturn_t stm32_spi_irq(int irq, void *dev_id)
483 {
484 	struct spi_master *master = dev_id;
485 	struct stm32_spi *spi = spi_master_get_devdata(master);
486 	u32 sr, ier, mask;
487 	unsigned long flags;
488 	bool end = false;
489 
490 	spin_lock_irqsave(&spi->lock, flags);
491 
492 	sr = readl_relaxed(spi->base + STM32_SPI_SR);
493 	ier = readl_relaxed(spi->base + STM32_SPI_IER);
494 
495 	mask = ier;
496 	/* EOTIE is triggered on EOT, SUSP and TXC events. */
497 	mask |= SPI_SR_SUSP;
498 	/*
499 	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
500 	 * Full-Duplex, need to poll RXP event to know if there are remaining
501 	 * data, before disabling SPI.
502 	 */
503 	if (spi->rx_buf && !spi->cur_usedma)
504 		mask |= SPI_SR_RXP;
505 
506 	if (!(sr & mask)) {
507 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
508 			sr, ier);
509 		spin_unlock_irqrestore(&spi->lock, flags);
510 		return IRQ_NONE;
511 	}
512 
513 	if (sr & SPI_SR_SUSP) {
514 		dev_warn(spi->dev, "Communication suspended\n");
515 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
516 			stm32_spi_read_rxfifo(spi, false);
517 		/*
518 		 * If communication is suspended while using DMA, it means
519 		 * that something went wrong, so stop the current transfer
520 		 */
521 		if (spi->cur_usedma)
522 			end = true;
523 	}
524 
525 	if (sr & SPI_SR_MODF) {
526 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
527 		end = true;
528 	}
529 
530 	if (sr & SPI_SR_OVR) {
531 		dev_warn(spi->dev, "Overrun: received value discarded\n");
532 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
533 			stm32_spi_read_rxfifo(spi, false);
534 		/*
535 		 * If overrun is detected while using DMA, it means that
536 		 * something went wrong, so stop the current transfer
537 		 */
538 		if (spi->cur_usedma)
539 			end = true;
540 	}
541 
542 	if (sr & SPI_SR_EOT) {
543 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
544 			stm32_spi_read_rxfifo(spi, true);
545 		end = true;
546 	}
547 
548 	if (sr & SPI_SR_TXP)
549 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
550 			stm32_spi_write_txfifo(spi);
551 
552 	if (sr & SPI_SR_RXP)
553 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
554 			stm32_spi_read_rxfifo(spi, false);
555 
556 	writel_relaxed(mask, spi->base + STM32_SPI_IFCR);
557 
558 	spin_unlock_irqrestore(&spi->lock, flags);
559 
560 	if (end) {
561 		spi_finalize_current_transfer(master);
562 		stm32_spi_disable(spi);
563 	}
564 
565 	return IRQ_HANDLED;
566 }
567 
568 /**
569  * stm32_spi_setup - setup device chip select
570  */
571 static int stm32_spi_setup(struct spi_device *spi_dev)
572 {
573 	int ret = 0;
574 
575 	if (!gpio_is_valid(spi_dev->cs_gpio)) {
576 		dev_err(&spi_dev->dev, "%d is not a valid gpio\n",
577 			spi_dev->cs_gpio);
578 		return -EINVAL;
579 	}
580 
581 	dev_dbg(&spi_dev->dev, "%s: set gpio%d output %s\n", __func__,
582 		spi_dev->cs_gpio,
583 		(spi_dev->mode & SPI_CS_HIGH) ? "low" : "high");
584 
585 	ret = gpio_direction_output(spi_dev->cs_gpio,
586 				    !(spi_dev->mode & SPI_CS_HIGH));
587 
588 	return ret;
589 }
590 
591 /**
592  * stm32_spi_prepare_msg - set up the controller to transfer a single message
593  */
594 static int stm32_spi_prepare_msg(struct spi_master *master,
595 				 struct spi_message *msg)
596 {
597 	struct stm32_spi *spi = spi_master_get_devdata(master);
598 	struct spi_device *spi_dev = msg->spi;
599 	struct device_node *np = spi_dev->dev.of_node;
600 	unsigned long flags;
601 	u32 cfg2_clrb = 0, cfg2_setb = 0;
602 
603 	/* SPI slave device may need time between data frames */
604 	spi->cur_midi = 0;
605 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
606 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
607 
608 	if (spi_dev->mode & SPI_CPOL)
609 		cfg2_setb |= SPI_CFG2_CPOL;
610 	else
611 		cfg2_clrb |= SPI_CFG2_CPOL;
612 
613 	if (spi_dev->mode & SPI_CPHA)
614 		cfg2_setb |= SPI_CFG2_CPHA;
615 	else
616 		cfg2_clrb |= SPI_CFG2_CPHA;
617 
618 	if (spi_dev->mode & SPI_LSB_FIRST)
619 		cfg2_setb |= SPI_CFG2_LSBFRST;
620 	else
621 		cfg2_clrb |= SPI_CFG2_LSBFRST;
622 
623 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
624 		spi_dev->mode & SPI_CPOL,
625 		spi_dev->mode & SPI_CPHA,
626 		spi_dev->mode & SPI_LSB_FIRST,
627 		spi_dev->mode & SPI_CS_HIGH);
628 
629 	spin_lock_irqsave(&spi->lock, flags);
630 
631 	if (cfg2_clrb || cfg2_setb)
632 		writel_relaxed(
633 			(readl_relaxed(spi->base + STM32_SPI_CFG2) &
634 				~cfg2_clrb) | cfg2_setb,
635 			       spi->base + STM32_SPI_CFG2);
636 
637 	spin_unlock_irqrestore(&spi->lock, flags);
638 
639 	return 0;
640 }
641 
642 /**
643  * stm32_spi_dma_cb - dma callback
644  *
645  * DMA callback is called when the transfer is complete or when an error
646  * occurs. If the transfer is complete, EOT flag is raised.
647  */
648 static void stm32_spi_dma_cb(void *data)
649 {
650 	struct stm32_spi *spi = data;
651 	unsigned long flags;
652 	u32 sr;
653 
654 	spin_lock_irqsave(&spi->lock, flags);
655 
656 	sr = readl_relaxed(spi->base + STM32_SPI_SR);
657 
658 	spin_unlock_irqrestore(&spi->lock, flags);
659 
660 	if (!(sr & SPI_SR_EOT))
661 		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
662 
663 	/* Now wait for EOT, or SUSP or OVR in case of error */
664 }
665 
666 /**
667  * stm32_spi_dma_config - configure dma slave channel depending on current
668  *			  transfer bits_per_word.
669  */
670 static void stm32_spi_dma_config(struct stm32_spi *spi,
671 				 struct dma_slave_config *dma_conf,
672 				 enum dma_transfer_direction dir)
673 {
674 	enum dma_slave_buswidth buswidth;
675 	u32 maxburst;
676 
677 	if (spi->cur_bpw <= 8)
678 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
679 	else if (spi->cur_bpw <= 16)
680 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
681 	else
682 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
683 
684 	/* Valid for DMA Half or Full Fifo threshold */
685 	if (spi->cur_fthlv == 2)
686 		maxburst = 1;
687 	else
688 		maxburst = spi->cur_fthlv;
689 
690 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
691 	dma_conf->direction = dir;
692 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
693 		dma_conf->src_addr = spi->phys_addr + STM32_SPI_RXDR;
694 		dma_conf->src_addr_width = buswidth;
695 		dma_conf->src_maxburst = maxburst;
696 
697 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
698 			buswidth, maxburst);
699 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
700 		dma_conf->dst_addr = spi->phys_addr + STM32_SPI_TXDR;
701 		dma_conf->dst_addr_width = buswidth;
702 		dma_conf->dst_maxburst = maxburst;
703 
704 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
705 			buswidth, maxburst);
706 	}
707 }
708 
709 /**
710  * stm32_spi_transfer_one_irq - transfer a single spi_transfer using
711  *				interrupts
712  *
713  * It must returns 0 if the transfer is finished or 1 if the transfer is still
714  * in progress.
715  */
716 static int stm32_spi_transfer_one_irq(struct stm32_spi *spi)
717 {
718 	unsigned long flags;
719 	u32 ier = 0;
720 
721 	/* Enable the interrupts relative to the current communication mode */
722 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
723 		ier |= SPI_IER_DXPIE;
724 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
725 		ier |= SPI_IER_TXPIE;
726 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
727 		ier |= SPI_IER_RXPIE;
728 
729 	/* Enable the interrupts relative to the end of transfer */
730 	ier |= SPI_IER_EOTIE | SPI_IER_TXTFIE |	SPI_IER_OVRIE |	SPI_IER_MODFIE;
731 
732 	spin_lock_irqsave(&spi->lock, flags);
733 
734 	stm32_spi_enable(spi);
735 
736 	/* Be sure to have data in fifo before starting data transfer */
737 	if (spi->tx_buf)
738 		stm32_spi_write_txfifo(spi);
739 
740 	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_CSTART);
741 
742 	writel_relaxed(ier, spi->base + STM32_SPI_IER);
743 
744 	spin_unlock_irqrestore(&spi->lock, flags);
745 
746 	return 1;
747 }
748 
749 /**
750  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
751  *
752  * It must returns 0 if the transfer is finished or 1 if the transfer is still
753  * in progress.
754  */
755 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
756 				      struct spi_transfer *xfer)
757 {
758 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
759 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
760 	unsigned long flags;
761 	u32 ier = 0;
762 
763 	spin_lock_irqsave(&spi->lock, flags);
764 
765 	rx_dma_desc = NULL;
766 	if (spi->rx_buf) {
767 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
768 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
769 
770 		/* Enable Rx DMA request */
771 		stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_RXDMAEN);
772 
773 		rx_dma_desc = dmaengine_prep_slave_sg(
774 					spi->dma_rx, xfer->rx_sg.sgl,
775 					xfer->rx_sg.nents,
776 					rx_dma_conf.direction,
777 					DMA_PREP_INTERRUPT);
778 	}
779 
780 	tx_dma_desc = NULL;
781 	if (spi->tx_buf) {
782 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
783 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
784 
785 		tx_dma_desc = dmaengine_prep_slave_sg(
786 					spi->dma_tx, xfer->tx_sg.sgl,
787 					xfer->tx_sg.nents,
788 					tx_dma_conf.direction,
789 					DMA_PREP_INTERRUPT);
790 	}
791 
792 	if ((spi->tx_buf && !tx_dma_desc) ||
793 	    (spi->rx_buf && !rx_dma_desc))
794 		goto dma_desc_error;
795 
796 	if (rx_dma_desc) {
797 		rx_dma_desc->callback = stm32_spi_dma_cb;
798 		rx_dma_desc->callback_param = spi;
799 
800 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
801 			dev_err(spi->dev, "Rx DMA submit failed\n");
802 			goto dma_desc_error;
803 		}
804 		/* Enable Rx DMA channel */
805 		dma_async_issue_pending(spi->dma_rx);
806 	}
807 
808 	if (tx_dma_desc) {
809 		if (spi->cur_comm == SPI_SIMPLEX_TX) {
810 			tx_dma_desc->callback = stm32_spi_dma_cb;
811 			tx_dma_desc->callback_param = spi;
812 		}
813 
814 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
815 			dev_err(spi->dev, "Tx DMA submit failed\n");
816 			goto dma_submit_error;
817 		}
818 		/* Enable Tx DMA channel */
819 		dma_async_issue_pending(spi->dma_tx);
820 
821 		/* Enable Tx DMA request */
822 		stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_TXDMAEN);
823 	}
824 
825 	/* Enable the interrupts relative to the end of transfer */
826 	ier |= SPI_IER_EOTIE | SPI_IER_TXTFIE |	SPI_IER_OVRIE |	SPI_IER_MODFIE;
827 	writel_relaxed(ier, spi->base + STM32_SPI_IER);
828 
829 	stm32_spi_enable(spi);
830 
831 	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_CSTART);
832 
833 	spin_unlock_irqrestore(&spi->lock, flags);
834 
835 	return 1;
836 
837 dma_submit_error:
838 	if (spi->rx_buf)
839 		dmaengine_terminate_all(spi->dma_rx);
840 
841 dma_desc_error:
842 	stm32_spi_clr_bits(spi, STM32_SPI_CFG1, SPI_CFG1_RXDMAEN);
843 
844 	spin_unlock_irqrestore(&spi->lock, flags);
845 
846 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
847 
848 	return stm32_spi_transfer_one_irq(spi);
849 }
850 
851 /**
852  * stm32_spi_transfer_one_setup - common setup to transfer a single
853  *				  spi_transfer either using DMA or
854  *				  interrupts.
855  */
856 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
857 					struct spi_device *spi_dev,
858 					struct spi_transfer *transfer)
859 {
860 	unsigned long flags;
861 	u32 cfg1_clrb = 0, cfg1_setb = 0, cfg2_clrb = 0, cfg2_setb = 0;
862 	u32 mode, nb_words;
863 	int ret = 0;
864 
865 	spin_lock_irqsave(&spi->lock, flags);
866 
867 	if (spi->cur_bpw != transfer->bits_per_word) {
868 		u32 bpw, fthlv;
869 
870 		spi->cur_bpw = transfer->bits_per_word;
871 		bpw = spi->cur_bpw - 1;
872 
873 		cfg1_clrb |= SPI_CFG1_DSIZE;
874 		cfg1_setb |= (bpw << SPI_CFG1_DSIZE_SHIFT) & SPI_CFG1_DSIZE;
875 
876 		spi->cur_fthlv = stm32_spi_prepare_fthlv(spi);
877 		fthlv = spi->cur_fthlv - 1;
878 
879 		cfg1_clrb |= SPI_CFG1_FTHLV;
880 		cfg1_setb |= (fthlv << SPI_CFG1_FTHLV_SHIFT) & SPI_CFG1_FTHLV;
881 	}
882 
883 	if (spi->cur_speed != transfer->speed_hz) {
884 		int mbr;
885 
886 		/* Update spi->cur_speed with real clock speed */
887 		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz);
888 		if (mbr < 0) {
889 			ret = mbr;
890 			goto out;
891 		}
892 
893 		transfer->speed_hz = spi->cur_speed;
894 
895 		cfg1_clrb |= SPI_CFG1_MBR;
896 		cfg1_setb |= ((u32)mbr << SPI_CFG1_MBR_SHIFT) & SPI_CFG1_MBR;
897 	}
898 
899 	if (cfg1_clrb || cfg1_setb)
900 		writel_relaxed((readl_relaxed(spi->base + STM32_SPI_CFG1) &
901 				~cfg1_clrb) | cfg1_setb,
902 			       spi->base + STM32_SPI_CFG1);
903 
904 	mode = SPI_FULL_DUPLEX;
905 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
906 		/*
907 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
908 		 * is forbidden und unvalidated by SPI subsystem so depending
909 		 * on the valid buffer, we can determine the direction of the
910 		 * transfer.
911 		 */
912 		mode = SPI_HALF_DUPLEX;
913 		if (!transfer->tx_buf)
914 			stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_HDDIR);
915 		else if (!transfer->rx_buf)
916 			stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_HDDIR);
917 	} else {
918 		if (!transfer->tx_buf)
919 			mode = SPI_SIMPLEX_RX;
920 		else if (!transfer->rx_buf)
921 			mode = SPI_SIMPLEX_TX;
922 	}
923 	if (spi->cur_comm != mode) {
924 		spi->cur_comm = mode;
925 
926 		cfg2_clrb |= SPI_CFG2_COMM;
927 		cfg2_setb |= (mode << SPI_CFG2_COMM_SHIFT) & SPI_CFG2_COMM;
928 	}
929 
930 	cfg2_clrb |= SPI_CFG2_MIDI;
931 	if ((transfer->len > 1) && (spi->cur_midi > 0)) {
932 		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
933 		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
934 			       (u32)SPI_CFG2_MIDI >> SPI_CFG2_MIDI_SHIFT);
935 
936 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
937 			sck_period_ns, midi, midi * sck_period_ns);
938 
939 		cfg2_setb |= (midi << SPI_CFG2_MIDI_SHIFT) & SPI_CFG2_MIDI;
940 	}
941 
942 	if (cfg2_clrb || cfg2_setb)
943 		writel_relaxed((readl_relaxed(spi->base + STM32_SPI_CFG2) &
944 				~cfg2_clrb) | cfg2_setb,
945 			       spi->base + STM32_SPI_CFG2);
946 
947 	if (spi->cur_bpw <= 8)
948 		nb_words = transfer->len;
949 	else if (spi->cur_bpw <= 16)
950 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
951 	else
952 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
953 	nb_words <<= SPI_CR2_TSIZE_SHIFT;
954 
955 	if (nb_words <= SPI_CR2_TSIZE) {
956 		writel_relaxed(nb_words, spi->base + STM32_SPI_CR2);
957 	} else {
958 		ret = -EMSGSIZE;
959 		goto out;
960 	}
961 
962 	spi->cur_xferlen = transfer->len;
963 
964 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
965 		spi->cur_comm);
966 	dev_dbg(spi->dev,
967 		"data frame of %d-bit, data packet of %d data frames\n",
968 		spi->cur_bpw, spi->cur_fthlv);
969 	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
970 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
971 		spi->cur_xferlen, nb_words);
972 	dev_dbg(spi->dev, "dma %s\n",
973 		(spi->cur_usedma) ? "enabled" : "disabled");
974 
975 out:
976 	spin_unlock_irqrestore(&spi->lock, flags);
977 
978 	return ret;
979 }
980 
981 /**
982  * stm32_spi_transfer_one - transfer a single spi_transfer
983  *
984  * It must return 0 if the transfer is finished or 1 if the transfer is still
985  * in progress.
986  */
987 static int stm32_spi_transfer_one(struct spi_master *master,
988 				  struct spi_device *spi_dev,
989 				  struct spi_transfer *transfer)
990 {
991 	struct stm32_spi *spi = spi_master_get_devdata(master);
992 	int ret;
993 
994 	spi->tx_buf = transfer->tx_buf;
995 	spi->rx_buf = transfer->rx_buf;
996 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
997 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
998 
999 	spi->cur_usedma = (master->can_dma &&
1000 			   stm32_spi_can_dma(master, spi_dev, transfer));
1001 
1002 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1003 	if (ret) {
1004 		dev_err(spi->dev, "SPI transfer setup failed\n");
1005 		return ret;
1006 	}
1007 
1008 	if (spi->cur_usedma)
1009 		return stm32_spi_transfer_one_dma(spi, transfer);
1010 	else
1011 		return stm32_spi_transfer_one_irq(spi);
1012 }
1013 
1014 /**
1015  * stm32_spi_unprepare_msg - relax the hardware
1016  *
1017  * Normally, if TSIZE has been configured, we should relax the hardware at the
1018  * reception of the EOT interrupt. But in case of error, EOT will not be
1019  * raised. So the subsystem unprepare_message call allows us to properly
1020  * complete the transfer from an hardware point of view.
1021  */
1022 static int stm32_spi_unprepare_msg(struct spi_master *master,
1023 				   struct spi_message *msg)
1024 {
1025 	struct stm32_spi *spi = spi_master_get_devdata(master);
1026 
1027 	stm32_spi_disable(spi);
1028 
1029 	return 0;
1030 }
1031 
1032 /**
1033  * stm32_spi_config - Configure SPI controller as SPI master
1034  */
1035 static int stm32_spi_config(struct stm32_spi *spi)
1036 {
1037 	unsigned long flags;
1038 
1039 	spin_lock_irqsave(&spi->lock, flags);
1040 
1041 	/* Ensure I2SMOD bit is kept cleared */
1042 	stm32_spi_clr_bits(spi, STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);
1043 
1044 	/*
1045 	 * - SS input value high
1046 	 * - transmitter half duplex direction
1047 	 * - automatic communication suspend when RX-Fifo is full
1048 	 */
1049 	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SSI |
1050 					       SPI_CR1_HDDIR |
1051 					       SPI_CR1_MASRX);
1052 
1053 	/*
1054 	 * - Set the master mode (default Motorola mode)
1055 	 * - Consider 1 master/n slaves configuration and
1056 	 *   SS input value is determined by the SSI bit
1057 	 * - keep control of all associated GPIOs
1058 	 */
1059 	stm32_spi_set_bits(spi, STM32_SPI_CFG2, SPI_CFG2_MASTER |
1060 						SPI_CFG2_SSM |
1061 						SPI_CFG2_AFCNTR);
1062 
1063 	spin_unlock_irqrestore(&spi->lock, flags);
1064 
1065 	return 0;
1066 }
1067 
1068 static const struct of_device_id stm32_spi_of_match[] = {
1069 	{ .compatible = "st,stm32h7-spi", },
1070 	{},
1071 };
1072 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1073 
1074 static int stm32_spi_probe(struct platform_device *pdev)
1075 {
1076 	struct spi_master *master;
1077 	struct stm32_spi *spi;
1078 	struct resource *res;
1079 	int i, ret;
1080 
1081 	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1082 	if (!master) {
1083 		dev_err(&pdev->dev, "spi master allocation failed\n");
1084 		return -ENOMEM;
1085 	}
1086 	platform_set_drvdata(pdev, master);
1087 
1088 	spi = spi_master_get_devdata(master);
1089 	spi->dev = &pdev->dev;
1090 	spi->master = master;
1091 	spin_lock_init(&spi->lock);
1092 
1093 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1094 	spi->base = devm_ioremap_resource(&pdev->dev, res);
1095 	if (IS_ERR(spi->base)) {
1096 		ret = PTR_ERR(spi->base);
1097 		goto err_master_put;
1098 	}
1099 	spi->phys_addr = (dma_addr_t)res->start;
1100 
1101 	spi->irq = platform_get_irq(pdev, 0);
1102 	if (spi->irq <= 0) {
1103 		dev_err(&pdev->dev, "no irq: %d\n", spi->irq);
1104 		ret = -ENOENT;
1105 		goto err_master_put;
1106 	}
1107 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq, NULL,
1108 					stm32_spi_irq, IRQF_ONESHOT,
1109 					pdev->name, master);
1110 	if (ret) {
1111 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1112 			ret);
1113 		goto err_master_put;
1114 	}
1115 
1116 	spi->clk = devm_clk_get(&pdev->dev, 0);
1117 	if (IS_ERR(spi->clk)) {
1118 		ret = PTR_ERR(spi->clk);
1119 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1120 		goto err_master_put;
1121 	}
1122 
1123 	ret = clk_prepare_enable(spi->clk);
1124 	if (ret) {
1125 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1126 		goto err_master_put;
1127 	}
1128 	spi->clk_rate = clk_get_rate(spi->clk);
1129 	if (!spi->clk_rate) {
1130 		dev_err(&pdev->dev, "clk rate = 0\n");
1131 		ret = -EINVAL;
1132 		goto err_clk_disable;
1133 	}
1134 
1135 	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1136 	if (!IS_ERR(spi->rst)) {
1137 		reset_control_assert(spi->rst);
1138 		udelay(2);
1139 		reset_control_deassert(spi->rst);
1140 	}
1141 
1142 	spi->fifo_size = stm32_spi_get_fifo_size(spi);
1143 
1144 	ret = stm32_spi_config(spi);
1145 	if (ret) {
1146 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1147 			ret);
1148 		goto err_clk_disable;
1149 	}
1150 
1151 	master->dev.of_node = pdev->dev.of_node;
1152 	master->auto_runtime_pm = true;
1153 	master->bus_num = pdev->id;
1154 	master->mode_bits = SPI_MODE_3 | SPI_CS_HIGH | SPI_LSB_FIRST |
1155 			    SPI_3WIRE | SPI_LOOP;
1156 	master->bits_per_word_mask = stm32_spi_get_bpw_mask(spi);
1157 	master->max_speed_hz = spi->clk_rate / SPI_MBR_DIV_MIN;
1158 	master->min_speed_hz = spi->clk_rate / SPI_MBR_DIV_MAX;
1159 	master->setup = stm32_spi_setup;
1160 	master->prepare_message = stm32_spi_prepare_msg;
1161 	master->transfer_one = stm32_spi_transfer_one;
1162 	master->unprepare_message = stm32_spi_unprepare_msg;
1163 
1164 	spi->dma_tx = dma_request_slave_channel(spi->dev, "tx");
1165 	if (!spi->dma_tx)
1166 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1167 	else
1168 		master->dma_tx = spi->dma_tx;
1169 
1170 	spi->dma_rx = dma_request_slave_channel(spi->dev, "rx");
1171 	if (!spi->dma_rx)
1172 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1173 	else
1174 		master->dma_rx = spi->dma_rx;
1175 
1176 	if (spi->dma_tx || spi->dma_rx)
1177 		master->can_dma = stm32_spi_can_dma;
1178 
1179 	pm_runtime_set_active(&pdev->dev);
1180 	pm_runtime_enable(&pdev->dev);
1181 
1182 	ret = devm_spi_register_master(&pdev->dev, master);
1183 	if (ret) {
1184 		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1185 			ret);
1186 		goto err_dma_release;
1187 	}
1188 
1189 	if (!master->cs_gpios) {
1190 		dev_err(&pdev->dev, "no CS gpios available\n");
1191 		ret = -EINVAL;
1192 		goto err_dma_release;
1193 	}
1194 
1195 	for (i = 0; i < master->num_chipselect; i++) {
1196 		if (!gpio_is_valid(master->cs_gpios[i])) {
1197 			dev_err(&pdev->dev, "%i is not a valid gpio\n",
1198 				master->cs_gpios[i]);
1199 			ret = -EINVAL;
1200 			goto err_dma_release;
1201 		}
1202 
1203 		ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i],
1204 					DRIVER_NAME);
1205 		if (ret) {
1206 			dev_err(&pdev->dev, "can't get CS gpio %i\n",
1207 				master->cs_gpios[i]);
1208 			goto err_dma_release;
1209 		}
1210 	}
1211 
1212 	dev_info(&pdev->dev, "driver initialized\n");
1213 
1214 	return 0;
1215 
1216 err_dma_release:
1217 	if (spi->dma_tx)
1218 		dma_release_channel(spi->dma_tx);
1219 	if (spi->dma_rx)
1220 		dma_release_channel(spi->dma_rx);
1221 
1222 	pm_runtime_disable(&pdev->dev);
1223 err_clk_disable:
1224 	clk_disable_unprepare(spi->clk);
1225 err_master_put:
1226 	spi_master_put(master);
1227 
1228 	return ret;
1229 }
1230 
1231 static int stm32_spi_remove(struct platform_device *pdev)
1232 {
1233 	struct spi_master *master = platform_get_drvdata(pdev);
1234 	struct stm32_spi *spi = spi_master_get_devdata(master);
1235 
1236 	stm32_spi_disable(spi);
1237 
1238 	if (master->dma_tx)
1239 		dma_release_channel(master->dma_tx);
1240 	if (master->dma_rx)
1241 		dma_release_channel(master->dma_rx);
1242 
1243 	clk_disable_unprepare(spi->clk);
1244 
1245 	pm_runtime_disable(&pdev->dev);
1246 
1247 	return 0;
1248 }
1249 
1250 #ifdef CONFIG_PM
1251 static int stm32_spi_runtime_suspend(struct device *dev)
1252 {
1253 	struct spi_master *master = dev_get_drvdata(dev);
1254 	struct stm32_spi *spi = spi_master_get_devdata(master);
1255 
1256 	clk_disable_unprepare(spi->clk);
1257 
1258 	return 0;
1259 }
1260 
1261 static int stm32_spi_runtime_resume(struct device *dev)
1262 {
1263 	struct spi_master *master = dev_get_drvdata(dev);
1264 	struct stm32_spi *spi = spi_master_get_devdata(master);
1265 
1266 	return clk_prepare_enable(spi->clk);
1267 }
1268 #endif
1269 
1270 #ifdef CONFIG_PM_SLEEP
1271 static int stm32_spi_suspend(struct device *dev)
1272 {
1273 	struct spi_master *master = dev_get_drvdata(dev);
1274 	int ret;
1275 
1276 	ret = spi_master_suspend(master);
1277 	if (ret)
1278 		return ret;
1279 
1280 	return pm_runtime_force_suspend(dev);
1281 }
1282 
1283 static int stm32_spi_resume(struct device *dev)
1284 {
1285 	struct spi_master *master = dev_get_drvdata(dev);
1286 	struct stm32_spi *spi = spi_master_get_devdata(master);
1287 	int ret;
1288 
1289 	ret = pm_runtime_force_resume(dev);
1290 	if (ret)
1291 		return ret;
1292 
1293 	ret = spi_master_resume(master);
1294 	if (ret)
1295 		clk_disable_unprepare(spi->clk);
1296 
1297 	return ret;
1298 }
1299 #endif
1300 
1301 static const struct dev_pm_ops stm32_spi_pm_ops = {
1302 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
1303 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
1304 			   stm32_spi_runtime_resume, NULL)
1305 };
1306 
1307 static struct platform_driver stm32_spi_driver = {
1308 	.probe = stm32_spi_probe,
1309 	.remove = stm32_spi_remove,
1310 	.driver = {
1311 		.name = DRIVER_NAME,
1312 		.pm = &stm32_spi_pm_ops,
1313 		.of_match_table = stm32_spi_of_match,
1314 	},
1315 };
1316 
1317 module_platform_driver(stm32_spi_driver);
1318 
1319 MODULE_ALIAS("platform:" DRIVER_NAME);
1320 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
1321 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
1322 MODULE_LICENSE("GPL v2");
1323