xref: /openbmc/linux/drivers/spi/spi-stm32.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7 
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/gpio.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 #include <linux/spi/spi.h>
20 
21 #define DRIVER_NAME "spi_stm32"
22 
23 /* STM32F4 SPI registers */
24 #define STM32F4_SPI_CR1			0x00
25 #define STM32F4_SPI_CR2			0x04
26 #define STM32F4_SPI_SR			0x08
27 #define STM32F4_SPI_DR			0x0C
28 #define STM32F4_SPI_I2SCFGR		0x1C
29 
30 /* STM32F4_SPI_CR1 bit fields */
31 #define STM32F4_SPI_CR1_CPHA		BIT(0)
32 #define STM32F4_SPI_CR1_CPOL		BIT(1)
33 #define STM32F4_SPI_CR1_MSTR		BIT(2)
34 #define STM32F4_SPI_CR1_BR_SHIFT	3
35 #define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
36 #define STM32F4_SPI_CR1_SPE		BIT(6)
37 #define STM32F4_SPI_CR1_LSBFRST		BIT(7)
38 #define STM32F4_SPI_CR1_SSI		BIT(8)
39 #define STM32F4_SPI_CR1_SSM		BIT(9)
40 #define STM32F4_SPI_CR1_RXONLY		BIT(10)
41 #define STM32F4_SPI_CR1_DFF		BIT(11)
42 #define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
43 #define STM32F4_SPI_CR1_CRCEN		BIT(13)
44 #define STM32F4_SPI_CR1_BIDIOE		BIT(14)
45 #define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
46 #define STM32F4_SPI_CR1_BR_MIN		0
47 #define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
48 
49 /* STM32F4_SPI_CR2 bit fields */
50 #define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
51 #define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
52 #define STM32F4_SPI_CR2_SSOE		BIT(2)
53 #define STM32F4_SPI_CR2_FRF		BIT(4)
54 #define STM32F4_SPI_CR2_ERRIE		BIT(5)
55 #define STM32F4_SPI_CR2_RXNEIE		BIT(6)
56 #define STM32F4_SPI_CR2_TXEIE		BIT(7)
57 
58 /* STM32F4_SPI_SR bit fields */
59 #define STM32F4_SPI_SR_RXNE		BIT(0)
60 #define STM32F4_SPI_SR_TXE		BIT(1)
61 #define STM32F4_SPI_SR_CHSIDE		BIT(2)
62 #define STM32F4_SPI_SR_UDR		BIT(3)
63 #define STM32F4_SPI_SR_CRCERR		BIT(4)
64 #define STM32F4_SPI_SR_MODF		BIT(5)
65 #define STM32F4_SPI_SR_OVR		BIT(6)
66 #define STM32F4_SPI_SR_BSY		BIT(7)
67 #define STM32F4_SPI_SR_FRE		BIT(8)
68 
69 /* STM32F4_SPI_I2SCFGR bit fields */
70 #define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
71 
72 /* STM32F4 SPI Baud Rate min/max divisor */
73 #define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
74 #define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
75 
76 /* STM32H7 SPI registers */
77 #define STM32H7_SPI_CR1			0x00
78 #define STM32H7_SPI_CR2			0x04
79 #define STM32H7_SPI_CFG1		0x08
80 #define STM32H7_SPI_CFG2		0x0C
81 #define STM32H7_SPI_IER			0x10
82 #define STM32H7_SPI_SR			0x14
83 #define STM32H7_SPI_IFCR		0x18
84 #define STM32H7_SPI_TXDR		0x20
85 #define STM32H7_SPI_RXDR		0x30
86 #define STM32H7_SPI_I2SCFGR		0x50
87 
88 /* STM32H7_SPI_CR1 bit fields */
89 #define STM32H7_SPI_CR1_SPE		BIT(0)
90 #define STM32H7_SPI_CR1_MASRX		BIT(8)
91 #define STM32H7_SPI_CR1_CSTART		BIT(9)
92 #define STM32H7_SPI_CR1_CSUSP		BIT(10)
93 #define STM32H7_SPI_CR1_HDDIR		BIT(11)
94 #define STM32H7_SPI_CR1_SSI		BIT(12)
95 
96 /* STM32H7_SPI_CR2 bit fields */
97 #define STM32H7_SPI_CR2_TSIZE_SHIFT	0
98 #define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
99 
100 /* STM32H7_SPI_CFG1 bit fields */
101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
102 #define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
104 #define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT	28
108 #define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
109 #define STM32H7_SPI_CFG1_MBR_MIN	0
110 #define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
111 
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI_SHIFT	4
114 #define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
115 #define STM32H7_SPI_CFG2_COMM_SHIFT	17
116 #define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
117 #define STM32H7_SPI_CFG2_SP_SHIFT	19
118 #define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
119 #define STM32H7_SPI_CFG2_MASTER		BIT(22)
120 #define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
121 #define STM32H7_SPI_CFG2_CPHA		BIT(24)
122 #define STM32H7_SPI_CFG2_CPOL		BIT(25)
123 #define STM32H7_SPI_CFG2_SSM		BIT(26)
124 #define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
125 
126 /* STM32H7_SPI_IER bit fields */
127 #define STM32H7_SPI_IER_RXPIE		BIT(0)
128 #define STM32H7_SPI_IER_TXPIE		BIT(1)
129 #define STM32H7_SPI_IER_DXPIE		BIT(2)
130 #define STM32H7_SPI_IER_EOTIE		BIT(3)
131 #define STM32H7_SPI_IER_TXTFIE		BIT(4)
132 #define STM32H7_SPI_IER_OVRIE		BIT(6)
133 #define STM32H7_SPI_IER_MODFIE		BIT(9)
134 #define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
135 
136 /* STM32H7_SPI_SR bit fields */
137 #define STM32H7_SPI_SR_RXP		BIT(0)
138 #define STM32H7_SPI_SR_TXP		BIT(1)
139 #define STM32H7_SPI_SR_EOT		BIT(3)
140 #define STM32H7_SPI_SR_OVR		BIT(6)
141 #define STM32H7_SPI_SR_MODF		BIT(9)
142 #define STM32H7_SPI_SR_SUSP		BIT(11)
143 #define STM32H7_SPI_SR_RXPLVL_SHIFT	13
144 #define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
145 #define STM32H7_SPI_SR_RXWNE		BIT(15)
146 
147 /* STM32H7_SPI_IFCR bit fields */
148 #define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
149 
150 /* STM32H7_SPI_I2SCFGR bit fields */
151 #define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
152 
153 /* STM32H7 SPI Master Baud Rate min/max divisor */
154 #define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
155 #define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
156 
157 /* STM32H7 SPI Communication mode */
158 #define STM32H7_SPI_FULL_DUPLEX		0
159 #define STM32H7_SPI_SIMPLEX_TX		1
160 #define STM32H7_SPI_SIMPLEX_RX		2
161 #define STM32H7_SPI_HALF_DUPLEX		3
162 
163 /* SPI Communication type */
164 #define SPI_FULL_DUPLEX		0
165 #define SPI_SIMPLEX_TX		1
166 #define SPI_SIMPLEX_RX		2
167 #define SPI_3WIRE_TX		3
168 #define SPI_3WIRE_RX		4
169 
170 #define SPI_1HZ_NS		1000000000
171 
172 /*
173  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174  * without fifo buffers.
175  */
176 #define SPI_DMA_MIN_BYTES	16
177 
178 /**
179  * stm32_spi_reg - stm32 SPI register & bitfield desc
180  * @reg:		register offset
181  * @mask:		bitfield mask
182  * @shift:		left shift
183  */
184 struct stm32_spi_reg {
185 	int reg;
186 	int mask;
187 	int shift;
188 };
189 
190 /**
191  * stm32_spi_regspec - stm32 registers definition, compatible dependent data
192  * en: enable register and SPI enable bit
193  * dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194  * dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195  * cpol: clock polarity register and polarity bit
196  * cpha: clock phase register and phase bit
197  * lsb_first: LSB transmitted first register and bit
198  * br: baud rate register and bitfields
199  * rx: SPI RX data register
200  * tx: SPI TX data register
201  */
202 struct stm32_spi_regspec {
203 	const struct stm32_spi_reg en;
204 	const struct stm32_spi_reg dma_rx_en;
205 	const struct stm32_spi_reg dma_tx_en;
206 	const struct stm32_spi_reg cpol;
207 	const struct stm32_spi_reg cpha;
208 	const struct stm32_spi_reg lsb_first;
209 	const struct stm32_spi_reg br;
210 	const struct stm32_spi_reg rx;
211 	const struct stm32_spi_reg tx;
212 };
213 
214 struct stm32_spi;
215 
216 /**
217  * stm32_spi_cfg - stm32 compatible configuration data
218  * @regs: registers descriptions
219  * @get_fifo_size: routine to get fifo size
220  * @get_bpw_mask: routine to get bits per word mask
221  * @disable: routine to disable controller
222  * @config: routine to configure controller as SPI Master
223  * @set_bpw: routine to configure registers to for bits per word
224  * @set_mode: routine to configure registers to desired mode
225  * @set_data_idleness: optional routine to configure registers to desired idle
226  * time between frames (if driver has this functionality)
227  * set_number_of_data: optional routine to configure registers to desired
228  * number of data (if driver has this functionality)
229  * @can_dma: routine to determine if the transfer is eligible for DMA use
230  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231  * using DMA
232  * @dma_rx cb: routine to call after DMA RX channel operation is complete
233  * @dma_tx cb: routine to call after DMA TX channel operation is complete
234  * @transfer_one_irq: routine to configure interrupts for driver
235  * @irq_handler_event: Interrupt handler for SPI controller events
236  * @irq_handler_thread: thread of interrupt handler for SPI controller
237  * @baud_rate_div_min: minimum baud rate divisor
238  * @baud_rate_div_max: maximum baud rate divisor
239  * @has_fifo: boolean to know if fifo is used for driver
240  * @has_startbit: boolean to know if start bit is used to start transfer
241  */
242 struct stm32_spi_cfg {
243 	const struct stm32_spi_regspec *regs;
244 	int (*get_fifo_size)(struct stm32_spi *spi);
245 	int (*get_bpw_mask)(struct stm32_spi *spi);
246 	void (*disable)(struct stm32_spi *spi);
247 	int (*config)(struct stm32_spi *spi);
248 	void (*set_bpw)(struct stm32_spi *spi);
249 	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250 	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251 	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252 	void (*transfer_one_dma_start)(struct stm32_spi *spi);
253 	void (*dma_rx_cb)(void *data);
254 	void (*dma_tx_cb)(void *data);
255 	int (*transfer_one_irq)(struct stm32_spi *spi);
256 	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257 	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258 	unsigned int baud_rate_div_min;
259 	unsigned int baud_rate_div_max;
260 	bool has_fifo;
261 };
262 
263 /**
264  * struct stm32_spi - private data of the SPI controller
265  * @dev: driver model representation of the controller
266  * @master: controller master interface
267  * @cfg: compatible configuration data
268  * @base: virtual memory area
269  * @clk: hw kernel clock feeding the SPI clock generator
270  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271  * @rst: SPI controller reset line
272  * @lock: prevent I/O concurrent access
273  * @irq: SPI controller interrupt line
274  * @fifo_size: size of the embedded fifo in bytes
275  * @cur_midi: master inter-data idleness in ns
276  * @cur_speed: speed configured in Hz
277  * @cur_bpw: number of bits in a single SPI data frame
278  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279  * @cur_comm: SPI communication mode
280  * @cur_xferlen: current transfer length in bytes
281  * @cur_usedma: boolean to know if dma is used in current transfer
282  * @tx_buf: data to be written, or NULL
283  * @rx_buf: data to be read, or NULL
284  * @tx_len: number of data to be written in bytes
285  * @rx_len: number of data to be read in bytes
286  * @dma_tx: dma channel for TX transfer
287  * @dma_rx: dma channel for RX transfer
288  * @phys_addr: SPI registers physical base address
289  */
290 struct stm32_spi {
291 	struct device *dev;
292 	struct spi_master *master;
293 	const struct stm32_spi_cfg *cfg;
294 	void __iomem *base;
295 	struct clk *clk;
296 	u32 clk_rate;
297 	struct reset_control *rst;
298 	spinlock_t lock; /* prevent I/O concurrent access */
299 	int irq;
300 	unsigned int fifo_size;
301 
302 	unsigned int cur_midi;
303 	unsigned int cur_speed;
304 	unsigned int cur_bpw;
305 	unsigned int cur_fthlv;
306 	unsigned int cur_comm;
307 	unsigned int cur_xferlen;
308 	bool cur_usedma;
309 
310 	const void *tx_buf;
311 	void *rx_buf;
312 	int tx_len;
313 	int rx_len;
314 	struct dma_chan *dma_tx;
315 	struct dma_chan *dma_rx;
316 	dma_addr_t phys_addr;
317 };
318 
319 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320 	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321 
322 	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323 	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324 
325 	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326 	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327 	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328 	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329 
330 	.rx = { STM32F4_SPI_DR },
331 	.tx = { STM32F4_SPI_DR },
332 };
333 
334 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335 	/* SPI data transfer is enabled but spi_ker_ck is idle.
336 	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
337 	 */
338 	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339 
340 	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341 	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342 
343 	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344 	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345 	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346 	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347 		STM32H7_SPI_CFG1_MBR_SHIFT },
348 
349 	.rx = { STM32H7_SPI_RXDR },
350 	.tx = { STM32H7_SPI_TXDR },
351 };
352 
353 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354 				      u32 offset, u32 bits)
355 {
356 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357 		       spi->base + offset);
358 }
359 
360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361 				      u32 offset, u32 bits)
362 {
363 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364 		       spi->base + offset);
365 }
366 
367 /**
368  * stm32h7_spi_get_fifo_size - Return fifo size
369  * @spi: pointer to the spi controller data structure
370  */
371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 {
373 	unsigned long flags;
374 	u32 count = 0;
375 
376 	spin_lock_irqsave(&spi->lock, flags);
377 
378 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379 
380 	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381 		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382 
383 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384 
385 	spin_unlock_irqrestore(&spi->lock, flags);
386 
387 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388 
389 	return count;
390 }
391 
392 /**
393  * stm32f4_spi_get_bpw_mask - Return bits per word mask
394  * @spi: pointer to the spi controller data structure
395  */
396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 {
398 	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399 	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
400 }
401 
402 /**
403  * stm32h7_spi_get_bpw_mask - Return bits per word mask
404  * @spi: pointer to the spi controller data structure
405  */
406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 {
408 	unsigned long flags;
409 	u32 cfg1, max_bpw;
410 
411 	spin_lock_irqsave(&spi->lock, flags);
412 
413 	/*
414 	 * The most significant bit at DSIZE bit field is reserved when the
415 	 * maximum data size of periperal instances is limited to 16-bit
416 	 */
417 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418 
419 	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420 	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421 		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
422 	max_bpw += 1;
423 
424 	spin_unlock_irqrestore(&spi->lock, flags);
425 
426 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427 
428 	return SPI_BPW_RANGE_MASK(4, max_bpw);
429 }
430 
431 /**
432  * stm32_spi_prepare_mbr - Determine baud rate divisor value
433  * @spi: pointer to the spi controller data structure
434  * @speed_hz: requested speed
435  * @min_div: minimum baud rate divisor
436  * @max_div: maximum baud rate divisor
437  *
438  * Return baud rate divisor value in case of success or -EINVAL
439  */
440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441 				 u32 min_div, u32 max_div)
442 {
443 	u32 div, mbrdiv;
444 
445 	div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
446 
447 	/*
448 	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
449 	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
450 	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
451 	 * no need to check it there.
452 	 * However, we need to ensure the following calculations.
453 	 */
454 	if ((div < min_div) || (div > max_div))
455 		return -EINVAL;
456 
457 	/* Determine the first power of 2 greater than or equal to div */
458 	if (div & (div - 1))
459 		mbrdiv = fls(div);
460 	else
461 		mbrdiv = fls(div) - 1;
462 
463 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
464 
465 	return mbrdiv - 1;
466 }
467 
468 /**
469  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
470  * @spi: pointer to the spi controller data structure
471  */
472 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi)
473 {
474 	u32 fthlv, half_fifo;
475 
476 	/* data packet should not exceed 1/2 of fifo space */
477 	half_fifo = (spi->fifo_size / 2);
478 
479 	if (spi->cur_bpw <= 8)
480 		fthlv = half_fifo;
481 	else if (spi->cur_bpw <= 16)
482 		fthlv = half_fifo / 2;
483 	else
484 		fthlv = half_fifo / 4;
485 
486 	/* align packet size with data registers access */
487 	if (spi->cur_bpw > 8)
488 		fthlv -= (fthlv % 2); /* multiple of 2 */
489 	else
490 		fthlv -= (fthlv % 4); /* multiple of 4 */
491 
492 	return fthlv;
493 }
494 
495 /**
496  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
497  * @spi: pointer to the spi controller data structure
498  *
499  * Read from tx_buf depends on remaining bytes to avoid to read beyond
500  * tx_buf end.
501  */
502 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
503 {
504 	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
505 				  STM32F4_SPI_SR_TXE)) {
506 		u32 offs = spi->cur_xferlen - spi->tx_len;
507 
508 		if (spi->cur_bpw == 16) {
509 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
510 
511 			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
512 			spi->tx_len -= sizeof(u16);
513 		} else {
514 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
515 
516 			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
517 			spi->tx_len -= sizeof(u8);
518 		}
519 	}
520 
521 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
522 }
523 
524 /**
525  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
526  * @spi: pointer to the spi controller data structure
527  *
528  * Read from tx_buf depends on remaining bytes to avoid to read beyond
529  * tx_buf end.
530  */
531 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
532 {
533 	while ((spi->tx_len > 0) &&
534 		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
535 			STM32H7_SPI_SR_TXP)) {
536 		u32 offs = spi->cur_xferlen - spi->tx_len;
537 
538 		if (spi->tx_len >= sizeof(u32)) {
539 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
540 
541 			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
542 			spi->tx_len -= sizeof(u32);
543 		} else if (spi->tx_len >= sizeof(u16)) {
544 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
545 
546 			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
547 			spi->tx_len -= sizeof(u16);
548 		} else {
549 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
550 
551 			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
552 			spi->tx_len -= sizeof(u8);
553 		}
554 	}
555 
556 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
557 }
558 
559 /**
560  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
561  * @spi: pointer to the spi controller data structure
562  *
563  * Write in rx_buf depends on remaining bytes to avoid to write beyond
564  * rx_buf end.
565  */
566 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
567 {
568 	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
569 				  STM32F4_SPI_SR_RXNE)) {
570 		u32 offs = spi->cur_xferlen - spi->rx_len;
571 
572 		if (spi->cur_bpw == 16) {
573 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
574 
575 			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
576 			spi->rx_len -= sizeof(u16);
577 		} else {
578 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
579 
580 			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
581 			spi->rx_len -= sizeof(u8);
582 		}
583 	}
584 
585 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
586 }
587 
588 /**
589  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
590  * @spi: pointer to the spi controller data structure
591  *
592  * Write in rx_buf depends on remaining bytes to avoid to write beyond
593  * rx_buf end.
594  */
595 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
596 {
597 	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
598 	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
599 		     STM32H7_SPI_SR_RXPLVL_SHIFT;
600 
601 	while ((spi->rx_len > 0) &&
602 	       ((sr & STM32H7_SPI_SR_RXP) ||
603 		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
604 		u32 offs = spi->cur_xferlen - spi->rx_len;
605 
606 		if ((spi->rx_len >= sizeof(u32)) ||
607 		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
608 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
609 
610 			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
611 			spi->rx_len -= sizeof(u32);
612 		} else if ((spi->rx_len >= sizeof(u16)) ||
613 			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
614 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
615 
616 			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
617 			spi->rx_len -= sizeof(u16);
618 		} else {
619 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
620 
621 			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
622 			spi->rx_len -= sizeof(u8);
623 		}
624 
625 		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
626 		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
627 			 STM32H7_SPI_SR_RXPLVL_SHIFT;
628 	}
629 
630 	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
631 		flush ? "(flush)" : "", spi->rx_len);
632 }
633 
634 /**
635  * stm32_spi_enable - Enable SPI controller
636  * @spi: pointer to the spi controller data structure
637  */
638 static void stm32_spi_enable(struct stm32_spi *spi)
639 {
640 	dev_dbg(spi->dev, "enable controller\n");
641 
642 	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
643 			   spi->cfg->regs->en.mask);
644 }
645 
646 /**
647  * stm32f4_spi_disable - Disable SPI controller
648  * @spi: pointer to the spi controller data structure
649  */
650 static void stm32f4_spi_disable(struct stm32_spi *spi)
651 {
652 	unsigned long flags;
653 	u32 sr;
654 
655 	dev_dbg(spi->dev, "disable controller\n");
656 
657 	spin_lock_irqsave(&spi->lock, flags);
658 
659 	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
660 	      STM32F4_SPI_CR1_SPE)) {
661 		spin_unlock_irqrestore(&spi->lock, flags);
662 		return;
663 	}
664 
665 	/* Disable interrupts */
666 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
667 						 STM32F4_SPI_CR2_RXNEIE |
668 						 STM32F4_SPI_CR2_ERRIE);
669 
670 	/* Wait until BSY = 0 */
671 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
672 					      sr, !(sr & STM32F4_SPI_SR_BSY),
673 					      10, 100000) < 0) {
674 		dev_warn(spi->dev, "disabling condition timeout\n");
675 	}
676 
677 	if (spi->cur_usedma && spi->dma_tx)
678 		dmaengine_terminate_all(spi->dma_tx);
679 	if (spi->cur_usedma && spi->dma_rx)
680 		dmaengine_terminate_all(spi->dma_rx);
681 
682 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
683 
684 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
685 						 STM32F4_SPI_CR2_RXDMAEN);
686 
687 	/* Sequence to clear OVR flag */
688 	readl_relaxed(spi->base + STM32F4_SPI_DR);
689 	readl_relaxed(spi->base + STM32F4_SPI_SR);
690 
691 	spin_unlock_irqrestore(&spi->lock, flags);
692 }
693 
694 /**
695  * stm32h7_spi_disable - Disable SPI controller
696  * @spi: pointer to the spi controller data structure
697  *
698  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
699  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
700  * RX-Fifo.
701  * Normally, if TSIZE has been configured, we should relax the hardware at the
702  * reception of the EOT interrupt. But in case of error, EOT will not be
703  * raised. So the subsystem unprepare_message call allows us to properly
704  * complete the transfer from an hardware point of view.
705  */
706 static void stm32h7_spi_disable(struct stm32_spi *spi)
707 {
708 	unsigned long flags;
709 	u32 cr1, sr;
710 
711 	dev_dbg(spi->dev, "disable controller\n");
712 
713 	spin_lock_irqsave(&spi->lock, flags);
714 
715 	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
716 
717 	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
718 		spin_unlock_irqrestore(&spi->lock, flags);
719 		return;
720 	}
721 
722 	/* Wait on EOT or suspend the flow */
723 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
724 					      sr, !(sr & STM32H7_SPI_SR_EOT),
725 					      10, 100000) < 0) {
726 		if (cr1 & STM32H7_SPI_CR1_CSTART) {
727 			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
728 				       spi->base + STM32H7_SPI_CR1);
729 			if (readl_relaxed_poll_timeout_atomic(
730 						spi->base + STM32H7_SPI_SR,
731 						sr, !(sr & STM32H7_SPI_SR_SUSP),
732 						10, 100000) < 0)
733 				dev_warn(spi->dev,
734 					 "Suspend request timeout\n");
735 		}
736 	}
737 
738 	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
739 		stm32h7_spi_read_rxfifo(spi, true);
740 
741 	if (spi->cur_usedma && spi->dma_tx)
742 		dmaengine_terminate_all(spi->dma_tx);
743 	if (spi->cur_usedma && spi->dma_rx)
744 		dmaengine_terminate_all(spi->dma_rx);
745 
746 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
747 
748 	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
749 						STM32H7_SPI_CFG1_RXDMAEN);
750 
751 	/* Disable interrupts and clear status flags */
752 	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
753 	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
754 
755 	spin_unlock_irqrestore(&spi->lock, flags);
756 }
757 
758 /**
759  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
760  *
761  * If driver has fifo and the current transfer size is greater than fifo size,
762  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
763  */
764 static bool stm32_spi_can_dma(struct spi_master *master,
765 			      struct spi_device *spi_dev,
766 			      struct spi_transfer *transfer)
767 {
768 	unsigned int dma_size;
769 	struct stm32_spi *spi = spi_master_get_devdata(master);
770 
771 	if (spi->cfg->has_fifo)
772 		dma_size = spi->fifo_size;
773 	else
774 		dma_size = SPI_DMA_MIN_BYTES;
775 
776 	dev_dbg(spi->dev, "%s: %s\n", __func__,
777 		(transfer->len > dma_size) ? "true" : "false");
778 
779 	return (transfer->len > dma_size);
780 }
781 
782 /**
783  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
784  * @irq: interrupt line
785  * @dev_id: SPI controller master interface
786  */
787 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
788 {
789 	struct spi_master *master = dev_id;
790 	struct stm32_spi *spi = spi_master_get_devdata(master);
791 	u32 sr, mask = 0;
792 	unsigned long flags;
793 	bool end = false;
794 
795 	spin_lock_irqsave(&spi->lock, flags);
796 
797 	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
798 	/*
799 	 * BSY flag is not handled in interrupt but it is normal behavior when
800 	 * this flag is set.
801 	 */
802 	sr &= ~STM32F4_SPI_SR_BSY;
803 
804 	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
805 				 spi->cur_comm == SPI_3WIRE_TX)) {
806 		/* OVR flag shouldn't be handled for TX only mode */
807 		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
808 		mask |= STM32F4_SPI_SR_TXE;
809 	}
810 
811 	if (!spi->cur_usedma && spi->cur_comm == SPI_FULL_DUPLEX) {
812 		/* TXE flag is set and is handled when RXNE flag occurs */
813 		sr &= ~STM32F4_SPI_SR_TXE;
814 		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
815 	}
816 
817 	if (!(sr & mask)) {
818 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
819 		spin_unlock_irqrestore(&spi->lock, flags);
820 		return IRQ_NONE;
821 	}
822 
823 	if (sr & STM32F4_SPI_SR_OVR) {
824 		dev_warn(spi->dev, "Overrun: received value discarded\n");
825 
826 		/* Sequence to clear OVR flag */
827 		readl_relaxed(spi->base + STM32F4_SPI_DR);
828 		readl_relaxed(spi->base + STM32F4_SPI_SR);
829 
830 		/*
831 		 * If overrun is detected, it means that something went wrong,
832 		 * so stop the current transfer. Transfer can wait for next
833 		 * RXNE but DR is already read and end never happens.
834 		 */
835 		end = true;
836 		goto end_irq;
837 	}
838 
839 	if (sr & STM32F4_SPI_SR_TXE) {
840 		if (spi->tx_buf)
841 			stm32f4_spi_write_tx(spi);
842 		if (spi->tx_len == 0)
843 			end = true;
844 	}
845 
846 	if (sr & STM32F4_SPI_SR_RXNE) {
847 		stm32f4_spi_read_rx(spi);
848 		if (spi->rx_len == 0)
849 			end = true;
850 		else /* Load data for discontinuous mode */
851 			stm32f4_spi_write_tx(spi);
852 	}
853 
854 end_irq:
855 	if (end) {
856 		/* Immediately disable interrupts to do not generate new one */
857 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
858 					STM32F4_SPI_CR2_TXEIE |
859 					STM32F4_SPI_CR2_RXNEIE |
860 					STM32F4_SPI_CR2_ERRIE);
861 		spin_unlock_irqrestore(&spi->lock, flags);
862 		return IRQ_WAKE_THREAD;
863 	}
864 
865 	spin_unlock_irqrestore(&spi->lock, flags);
866 	return IRQ_HANDLED;
867 }
868 
869 /**
870  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
871  * @irq: interrupt line
872  * @dev_id: SPI controller master interface
873  */
874 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
875 {
876 	struct spi_master *master = dev_id;
877 	struct stm32_spi *spi = spi_master_get_devdata(master);
878 
879 	spi_finalize_current_transfer(master);
880 	stm32f4_spi_disable(spi);
881 
882 	return IRQ_HANDLED;
883 }
884 
885 /**
886  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
887  * @irq: interrupt line
888  * @dev_id: SPI controller master interface
889  */
890 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
891 {
892 	struct spi_master *master = dev_id;
893 	struct stm32_spi *spi = spi_master_get_devdata(master);
894 	u32 sr, ier, mask;
895 	unsigned long flags;
896 	bool end = false;
897 
898 	spin_lock_irqsave(&spi->lock, flags);
899 
900 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
901 	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
902 
903 	mask = ier;
904 	/* EOTIE is triggered on EOT, SUSP and TXC events. */
905 	mask |= STM32H7_SPI_SR_SUSP;
906 	/*
907 	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
908 	 * Full-Duplex, need to poll RXP event to know if there are remaining
909 	 * data, before disabling SPI.
910 	 */
911 	if (spi->rx_buf && !spi->cur_usedma)
912 		mask |= STM32H7_SPI_SR_RXP;
913 
914 	if (!(sr & mask)) {
915 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
916 			sr, ier);
917 		spin_unlock_irqrestore(&spi->lock, flags);
918 		return IRQ_NONE;
919 	}
920 
921 	if (sr & STM32H7_SPI_SR_SUSP) {
922 		dev_warn(spi->dev, "Communication suspended\n");
923 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
924 			stm32h7_spi_read_rxfifo(spi, false);
925 		/*
926 		 * If communication is suspended while using DMA, it means
927 		 * that something went wrong, so stop the current transfer
928 		 */
929 		if (spi->cur_usedma)
930 			end = true;
931 	}
932 
933 	if (sr & STM32H7_SPI_SR_MODF) {
934 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
935 		end = true;
936 	}
937 
938 	if (sr & STM32H7_SPI_SR_OVR) {
939 		dev_warn(spi->dev, "Overrun: received value discarded\n");
940 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
941 			stm32h7_spi_read_rxfifo(spi, false);
942 		/*
943 		 * If overrun is detected while using DMA, it means that
944 		 * something went wrong, so stop the current transfer
945 		 */
946 		if (spi->cur_usedma)
947 			end = true;
948 	}
949 
950 	if (sr & STM32H7_SPI_SR_EOT) {
951 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
952 			stm32h7_spi_read_rxfifo(spi, true);
953 		end = true;
954 	}
955 
956 	if (sr & STM32H7_SPI_SR_TXP)
957 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
958 			stm32h7_spi_write_txfifo(spi);
959 
960 	if (sr & STM32H7_SPI_SR_RXP)
961 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
962 			stm32h7_spi_read_rxfifo(spi, false);
963 
964 	writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR);
965 
966 	spin_unlock_irqrestore(&spi->lock, flags);
967 
968 	if (end) {
969 		spi_finalize_current_transfer(master);
970 		stm32h7_spi_disable(spi);
971 	}
972 
973 	return IRQ_HANDLED;
974 }
975 
976 /**
977  * stm32_spi_setup - setup device chip select
978  */
979 static int stm32_spi_setup(struct spi_device *spi_dev)
980 {
981 	int ret = 0;
982 
983 	if (!gpio_is_valid(spi_dev->cs_gpio)) {
984 		dev_err(&spi_dev->dev, "%d is not a valid gpio\n",
985 			spi_dev->cs_gpio);
986 		return -EINVAL;
987 	}
988 
989 	dev_dbg(&spi_dev->dev, "%s: set gpio%d output %s\n", __func__,
990 		spi_dev->cs_gpio,
991 		(spi_dev->mode & SPI_CS_HIGH) ? "low" : "high");
992 
993 	ret = gpio_direction_output(spi_dev->cs_gpio,
994 				    !(spi_dev->mode & SPI_CS_HIGH));
995 
996 	return ret;
997 }
998 
999 /**
1000  * stm32_spi_prepare_msg - set up the controller to transfer a single message
1001  */
1002 static int stm32_spi_prepare_msg(struct spi_master *master,
1003 				 struct spi_message *msg)
1004 {
1005 	struct stm32_spi *spi = spi_master_get_devdata(master);
1006 	struct spi_device *spi_dev = msg->spi;
1007 	struct device_node *np = spi_dev->dev.of_node;
1008 	unsigned long flags;
1009 	u32 clrb = 0, setb = 0;
1010 
1011 	/* SPI slave device may need time between data frames */
1012 	spi->cur_midi = 0;
1013 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1014 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1015 
1016 	if (spi_dev->mode & SPI_CPOL)
1017 		setb |= spi->cfg->regs->cpol.mask;
1018 	else
1019 		clrb |= spi->cfg->regs->cpol.mask;
1020 
1021 	if (spi_dev->mode & SPI_CPHA)
1022 		setb |= spi->cfg->regs->cpha.mask;
1023 	else
1024 		clrb |= spi->cfg->regs->cpha.mask;
1025 
1026 	if (spi_dev->mode & SPI_LSB_FIRST)
1027 		setb |= spi->cfg->regs->lsb_first.mask;
1028 	else
1029 		clrb |= spi->cfg->regs->lsb_first.mask;
1030 
1031 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1032 		spi_dev->mode & SPI_CPOL,
1033 		spi_dev->mode & SPI_CPHA,
1034 		spi_dev->mode & SPI_LSB_FIRST,
1035 		spi_dev->mode & SPI_CS_HIGH);
1036 
1037 	spin_lock_irqsave(&spi->lock, flags);
1038 
1039 	/* CPOL, CPHA and LSB FIRST bits have common register */
1040 	if (clrb || setb)
1041 		writel_relaxed(
1042 			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1043 			 ~clrb) | setb,
1044 			spi->base + spi->cfg->regs->cpol.reg);
1045 
1046 	spin_unlock_irqrestore(&spi->lock, flags);
1047 
1048 	return 0;
1049 }
1050 
1051 /**
1052  * stm32f4_spi_dma_tx_cb - dma callback
1053  *
1054  * DMA callback is called when the transfer is complete for DMA TX channel.
1055  */
1056 static void stm32f4_spi_dma_tx_cb(void *data)
1057 {
1058 	struct stm32_spi *spi = data;
1059 
1060 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1061 		spi_finalize_current_transfer(spi->master);
1062 		stm32f4_spi_disable(spi);
1063 	}
1064 }
1065 
1066 /**
1067  * stm32f4_spi_dma_rx_cb - dma callback
1068  *
1069  * DMA callback is called when the transfer is complete for DMA RX channel.
1070  */
1071 static void stm32f4_spi_dma_rx_cb(void *data)
1072 {
1073 	struct stm32_spi *spi = data;
1074 
1075 	spi_finalize_current_transfer(spi->master);
1076 	stm32f4_spi_disable(spi);
1077 }
1078 
1079 /**
1080  * stm32h7_spi_dma_cb - dma callback
1081  *
1082  * DMA callback is called when the transfer is complete or when an error
1083  * occurs. If the transfer is complete, EOT flag is raised.
1084  */
1085 static void stm32h7_spi_dma_cb(void *data)
1086 {
1087 	struct stm32_spi *spi = data;
1088 	unsigned long flags;
1089 	u32 sr;
1090 
1091 	spin_lock_irqsave(&spi->lock, flags);
1092 
1093 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1094 
1095 	spin_unlock_irqrestore(&spi->lock, flags);
1096 
1097 	if (!(sr & STM32H7_SPI_SR_EOT))
1098 		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1099 
1100 	/* Now wait for EOT, or SUSP or OVR in case of error */
1101 }
1102 
1103 /**
1104  * stm32_spi_dma_config - configure dma slave channel depending on current
1105  *			  transfer bits_per_word.
1106  */
1107 static void stm32_spi_dma_config(struct stm32_spi *spi,
1108 				 struct dma_slave_config *dma_conf,
1109 				 enum dma_transfer_direction dir)
1110 {
1111 	enum dma_slave_buswidth buswidth;
1112 	u32 maxburst;
1113 
1114 	if (spi->cur_bpw <= 8)
1115 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1116 	else if (spi->cur_bpw <= 16)
1117 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1118 	else
1119 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1120 
1121 	if (spi->cfg->has_fifo) {
1122 		/* Valid for DMA Half or Full Fifo threshold */
1123 		if (spi->cur_fthlv == 2)
1124 			maxburst = 1;
1125 		else
1126 			maxburst = spi->cur_fthlv;
1127 	} else {
1128 		maxburst = 1;
1129 	}
1130 
1131 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1132 	dma_conf->direction = dir;
1133 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1134 		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1135 		dma_conf->src_addr_width = buswidth;
1136 		dma_conf->src_maxburst = maxburst;
1137 
1138 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1139 			buswidth, maxburst);
1140 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1141 		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1142 		dma_conf->dst_addr_width = buswidth;
1143 		dma_conf->dst_maxburst = maxburst;
1144 
1145 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1146 			buswidth, maxburst);
1147 	}
1148 }
1149 
1150 /**
1151  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1152  *				  interrupts
1153  *
1154  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1155  * in progress.
1156  */
1157 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1158 {
1159 	unsigned long flags;
1160 	u32 cr2 = 0;
1161 
1162 	/* Enable the interrupts relative to the current communication mode */
1163 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1164 		cr2 |= STM32F4_SPI_CR2_TXEIE;
1165 	} else if (spi->cur_comm == SPI_FULL_DUPLEX) {
1166 		/* In transmit-only mode, the OVR flag is set in the SR register
1167 		 * since the received data are never read. Therefore set OVR
1168 		 * interrupt only when rx buffer is available.
1169 		 */
1170 		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1171 	} else {
1172 		return -EINVAL;
1173 	}
1174 
1175 	spin_lock_irqsave(&spi->lock, flags);
1176 
1177 	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1178 
1179 	stm32_spi_enable(spi);
1180 
1181 	/* starting data transfer when buffer is loaded */
1182 	if (spi->tx_buf)
1183 		stm32f4_spi_write_tx(spi);
1184 
1185 	spin_unlock_irqrestore(&spi->lock, flags);
1186 
1187 	return 1;
1188 }
1189 
1190 /**
1191  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1192  *				  interrupts
1193  *
1194  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1195  * in progress.
1196  */
1197 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1198 {
1199 	unsigned long flags;
1200 	u32 ier = 0;
1201 
1202 	/* Enable the interrupts relative to the current communication mode */
1203 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1204 		ier |= STM32H7_SPI_IER_DXPIE;
1205 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1206 		ier |= STM32H7_SPI_IER_TXPIE;
1207 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1208 		ier |= STM32H7_SPI_IER_RXPIE;
1209 
1210 	/* Enable the interrupts relative to the end of transfer */
1211 	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1212 	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1213 
1214 	spin_lock_irqsave(&spi->lock, flags);
1215 
1216 	stm32_spi_enable(spi);
1217 
1218 	/* Be sure to have data in fifo before starting data transfer */
1219 	if (spi->tx_buf)
1220 		stm32h7_spi_write_txfifo(spi);
1221 
1222 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1223 
1224 	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1225 
1226 	spin_unlock_irqrestore(&spi->lock, flags);
1227 
1228 	return 1;
1229 }
1230 
1231 /**
1232  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1233  *					transfer using DMA
1234  */
1235 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1236 {
1237 	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1238 	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1239 	    spi->cur_comm == SPI_FULL_DUPLEX) {
1240 		/*
1241 		 * In transmit-only mode, the OVR flag is set in the SR register
1242 		 * since the received data are never read. Therefore set OVR
1243 		 * interrupt only when rx buffer is available.
1244 		 */
1245 		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1246 	}
1247 
1248 	stm32_spi_enable(spi);
1249 }
1250 
1251 /**
1252  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1253  *					transfer using DMA
1254  */
1255 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1256 {
1257 	/* Enable the interrupts relative to the end of transfer */
1258 	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1259 						 STM32H7_SPI_IER_TXTFIE |
1260 						 STM32H7_SPI_IER_OVRIE |
1261 						 STM32H7_SPI_IER_MODFIE);
1262 
1263 	stm32_spi_enable(spi);
1264 
1265 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1266 }
1267 
1268 /**
1269  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1270  *
1271  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1272  * in progress.
1273  */
1274 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1275 				      struct spi_transfer *xfer)
1276 {
1277 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1278 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1279 	unsigned long flags;
1280 
1281 	spin_lock_irqsave(&spi->lock, flags);
1282 
1283 	rx_dma_desc = NULL;
1284 	if (spi->rx_buf && spi->dma_rx) {
1285 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1286 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1287 
1288 		/* Enable Rx DMA request */
1289 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1290 				   spi->cfg->regs->dma_rx_en.mask);
1291 
1292 		rx_dma_desc = dmaengine_prep_slave_sg(
1293 					spi->dma_rx, xfer->rx_sg.sgl,
1294 					xfer->rx_sg.nents,
1295 					rx_dma_conf.direction,
1296 					DMA_PREP_INTERRUPT);
1297 	}
1298 
1299 	tx_dma_desc = NULL;
1300 	if (spi->tx_buf && spi->dma_tx) {
1301 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1302 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1303 
1304 		tx_dma_desc = dmaengine_prep_slave_sg(
1305 					spi->dma_tx, xfer->tx_sg.sgl,
1306 					xfer->tx_sg.nents,
1307 					tx_dma_conf.direction,
1308 					DMA_PREP_INTERRUPT);
1309 	}
1310 
1311 	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1312 	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1313 		goto dma_desc_error;
1314 
1315 	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1316 		goto dma_desc_error;
1317 
1318 	if (rx_dma_desc) {
1319 		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1320 		rx_dma_desc->callback_param = spi;
1321 
1322 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1323 			dev_err(spi->dev, "Rx DMA submit failed\n");
1324 			goto dma_desc_error;
1325 		}
1326 		/* Enable Rx DMA channel */
1327 		dma_async_issue_pending(spi->dma_rx);
1328 	}
1329 
1330 	if (tx_dma_desc) {
1331 		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1332 		    spi->cur_comm == SPI_3WIRE_TX) {
1333 			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1334 			tx_dma_desc->callback_param = spi;
1335 		}
1336 
1337 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1338 			dev_err(spi->dev, "Tx DMA submit failed\n");
1339 			goto dma_submit_error;
1340 		}
1341 		/* Enable Tx DMA channel */
1342 		dma_async_issue_pending(spi->dma_tx);
1343 
1344 		/* Enable Tx DMA request */
1345 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1346 				   spi->cfg->regs->dma_tx_en.mask);
1347 	}
1348 
1349 	spi->cfg->transfer_one_dma_start(spi);
1350 
1351 	spin_unlock_irqrestore(&spi->lock, flags);
1352 
1353 	return 1;
1354 
1355 dma_submit_error:
1356 	if (spi->dma_rx)
1357 		dmaengine_terminate_all(spi->dma_rx);
1358 
1359 dma_desc_error:
1360 	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1361 			   spi->cfg->regs->dma_rx_en.mask);
1362 
1363 	spin_unlock_irqrestore(&spi->lock, flags);
1364 
1365 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1366 
1367 	spi->cur_usedma = false;
1368 	return spi->cfg->transfer_one_irq(spi);
1369 }
1370 
1371 /**
1372  * stm32f4_spi_set_bpw - Configure bits per word
1373  * @spi: pointer to the spi controller data structure
1374  */
1375 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1376 {
1377 	if (spi->cur_bpw == 16)
1378 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1379 	else
1380 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1381 }
1382 
1383 /**
1384  * stm32h7_spi_set_bpw - configure bits per word
1385  * @spi: pointer to the spi controller data structure
1386  */
1387 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1388 {
1389 	u32 bpw, fthlv;
1390 	u32 cfg1_clrb = 0, cfg1_setb = 0;
1391 
1392 	bpw = spi->cur_bpw - 1;
1393 
1394 	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1395 	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1396 		     STM32H7_SPI_CFG1_DSIZE;
1397 
1398 	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi);
1399 	fthlv = spi->cur_fthlv - 1;
1400 
1401 	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1402 	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1403 		     STM32H7_SPI_CFG1_FTHLV;
1404 
1405 	writel_relaxed(
1406 		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1407 		 ~cfg1_clrb) | cfg1_setb,
1408 		spi->base + STM32H7_SPI_CFG1);
1409 }
1410 
1411 /**
1412  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1413  * @spi: pointer to the spi controller data structure
1414  * @mbrdiv: baud rate divisor value
1415  */
1416 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1417 {
1418 	u32 clrb = 0, setb = 0;
1419 
1420 	clrb |= spi->cfg->regs->br.mask;
1421 	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1422 		spi->cfg->regs->br.mask;
1423 
1424 	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1425 			~clrb) | setb,
1426 		       spi->base + spi->cfg->regs->br.reg);
1427 }
1428 
1429 /**
1430  * stm32_spi_communication_type - return transfer communication type
1431  * @spi_dev: pointer to the spi device
1432  * transfer: pointer to spi transfer
1433  */
1434 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1435 						 struct spi_transfer *transfer)
1436 {
1437 	unsigned int type = SPI_FULL_DUPLEX;
1438 
1439 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1440 		/*
1441 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1442 		 * is forbidden and unvalidated by SPI subsystem so depending
1443 		 * on the valid buffer, we can determine the direction of the
1444 		 * transfer.
1445 		 */
1446 		if (!transfer->tx_buf)
1447 			type = SPI_3WIRE_RX;
1448 		else
1449 			type = SPI_3WIRE_TX;
1450 	} else {
1451 		if (!transfer->tx_buf)
1452 			type = SPI_SIMPLEX_RX;
1453 		else if (!transfer->rx_buf)
1454 			type = SPI_SIMPLEX_TX;
1455 	}
1456 
1457 	return type;
1458 }
1459 
1460 /**
1461  * stm32f4_spi_set_mode - configure communication mode
1462  * @spi: pointer to the spi controller data structure
1463  * @comm_type: type of communication to configure
1464  */
1465 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1466 {
1467 	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1468 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1469 					STM32F4_SPI_CR1_BIDIMODE |
1470 					STM32F4_SPI_CR1_BIDIOE);
1471 	} else if (comm_type == SPI_FULL_DUPLEX) {
1472 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1473 					STM32F4_SPI_CR1_BIDIMODE |
1474 					STM32F4_SPI_CR1_BIDIOE);
1475 	} else {
1476 		return -EINVAL;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 /**
1483  * stm32h7_spi_set_mode - configure communication mode
1484  * @spi: pointer to the spi controller data structure
1485  * @comm_type: type of communication to configure
1486  */
1487 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1488 {
1489 	u32 mode;
1490 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1491 
1492 	if (comm_type == SPI_3WIRE_RX) {
1493 		mode = STM32H7_SPI_HALF_DUPLEX;
1494 		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1495 	} else if (comm_type == SPI_3WIRE_TX) {
1496 		mode = STM32H7_SPI_HALF_DUPLEX;
1497 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1498 	} else if (comm_type == SPI_SIMPLEX_RX) {
1499 		mode = STM32H7_SPI_SIMPLEX_RX;
1500 	} else if (comm_type == SPI_SIMPLEX_TX) {
1501 		mode = STM32H7_SPI_SIMPLEX_TX;
1502 	} else {
1503 		mode = STM32H7_SPI_FULL_DUPLEX;
1504 	}
1505 
1506 	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1507 	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1508 		     STM32H7_SPI_CFG2_COMM;
1509 
1510 	writel_relaxed(
1511 		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1512 		 ~cfg2_clrb) | cfg2_setb,
1513 		spi->base + STM32H7_SPI_CFG2);
1514 
1515 	return 0;
1516 }
1517 
1518 /**
1519  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1520  *			       consecutive data frames in master mode
1521  * @spi: pointer to the spi controller data structure
1522  * @len: transfer len
1523  */
1524 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1525 {
1526 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1527 
1528 	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1529 	if ((len > 1) && (spi->cur_midi > 0)) {
1530 		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1531 		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1532 			       (u32)STM32H7_SPI_CFG2_MIDI >>
1533 			       STM32H7_SPI_CFG2_MIDI_SHIFT);
1534 
1535 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1536 			sck_period_ns, midi, midi * sck_period_ns);
1537 		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1538 			     STM32H7_SPI_CFG2_MIDI;
1539 	}
1540 
1541 	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1542 			~cfg2_clrb) | cfg2_setb,
1543 		       spi->base + STM32H7_SPI_CFG2);
1544 }
1545 
1546 /**
1547  * stm32h7_spi_number_of_data - configure number of data at current transfer
1548  * @spi: pointer to the spi controller data structure
1549  * @len: transfer length
1550  */
1551 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1552 {
1553 	u32 cr2_clrb = 0, cr2_setb = 0;
1554 
1555 	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1556 			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1557 		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1558 		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1559 		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1560 				~cr2_clrb) | cr2_setb,
1561 			       spi->base + STM32H7_SPI_CR2);
1562 	} else {
1563 		return -EMSGSIZE;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 /**
1570  * stm32_spi_transfer_one_setup - common setup to transfer a single
1571  *				  spi_transfer either using DMA or
1572  *				  interrupts.
1573  */
1574 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1575 					struct spi_device *spi_dev,
1576 					struct spi_transfer *transfer)
1577 {
1578 	unsigned long flags;
1579 	unsigned int comm_type;
1580 	int nb_words, ret = 0;
1581 
1582 	spin_lock_irqsave(&spi->lock, flags);
1583 
1584 	if (spi->cur_bpw != transfer->bits_per_word) {
1585 		spi->cur_bpw = transfer->bits_per_word;
1586 		spi->cfg->set_bpw(spi);
1587 	}
1588 
1589 	if (spi->cur_speed != transfer->speed_hz) {
1590 		int mbr;
1591 
1592 		/* Update spi->cur_speed with real clock speed */
1593 		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1594 					    spi->cfg->baud_rate_div_min,
1595 					    spi->cfg->baud_rate_div_max);
1596 		if (mbr < 0) {
1597 			ret = mbr;
1598 			goto out;
1599 		}
1600 
1601 		transfer->speed_hz = spi->cur_speed;
1602 		stm32_spi_set_mbr(spi, mbr);
1603 	}
1604 
1605 	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1606 	if (spi->cur_comm != comm_type) {
1607 		ret = spi->cfg->set_mode(spi, comm_type);
1608 
1609 		if (ret < 0)
1610 			goto out;
1611 
1612 		spi->cur_comm = comm_type;
1613 	}
1614 
1615 	if (spi->cfg->set_data_idleness)
1616 		spi->cfg->set_data_idleness(spi, transfer->len);
1617 
1618 	if (spi->cur_bpw <= 8)
1619 		nb_words = transfer->len;
1620 	else if (spi->cur_bpw <= 16)
1621 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1622 	else
1623 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1624 
1625 	if (spi->cfg->set_number_of_data) {
1626 		ret = spi->cfg->set_number_of_data(spi, nb_words);
1627 		if (ret < 0)
1628 			goto out;
1629 	}
1630 
1631 	spi->cur_xferlen = transfer->len;
1632 
1633 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1634 		spi->cur_comm);
1635 	dev_dbg(spi->dev,
1636 		"data frame of %d-bit, data packet of %d data frames\n",
1637 		spi->cur_bpw, spi->cur_fthlv);
1638 	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1639 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1640 		spi->cur_xferlen, nb_words);
1641 	dev_dbg(spi->dev, "dma %s\n",
1642 		(spi->cur_usedma) ? "enabled" : "disabled");
1643 
1644 out:
1645 	spin_unlock_irqrestore(&spi->lock, flags);
1646 
1647 	return ret;
1648 }
1649 
1650 /**
1651  * stm32_spi_transfer_one - transfer a single spi_transfer
1652  *
1653  * It must return 0 if the transfer is finished or 1 if the transfer is still
1654  * in progress.
1655  */
1656 static int stm32_spi_transfer_one(struct spi_master *master,
1657 				  struct spi_device *spi_dev,
1658 				  struct spi_transfer *transfer)
1659 {
1660 	struct stm32_spi *spi = spi_master_get_devdata(master);
1661 	int ret;
1662 
1663 	spi->tx_buf = transfer->tx_buf;
1664 	spi->rx_buf = transfer->rx_buf;
1665 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1666 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1667 
1668 	spi->cur_usedma = (master->can_dma &&
1669 			   master->can_dma(master, spi_dev, transfer));
1670 
1671 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1672 	if (ret) {
1673 		dev_err(spi->dev, "SPI transfer setup failed\n");
1674 		return ret;
1675 	}
1676 
1677 	if (spi->cur_usedma)
1678 		return stm32_spi_transfer_one_dma(spi, transfer);
1679 	else
1680 		return spi->cfg->transfer_one_irq(spi);
1681 }
1682 
1683 /**
1684  * stm32_spi_unprepare_msg - relax the hardware
1685  */
1686 static int stm32_spi_unprepare_msg(struct spi_master *master,
1687 				   struct spi_message *msg)
1688 {
1689 	struct stm32_spi *spi = spi_master_get_devdata(master);
1690 
1691 	spi->cfg->disable(spi);
1692 
1693 	return 0;
1694 }
1695 
1696 /**
1697  * stm32f4_spi_config - Configure SPI controller as SPI master
1698  */
1699 static int stm32f4_spi_config(struct stm32_spi *spi)
1700 {
1701 	unsigned long flags;
1702 
1703 	spin_lock_irqsave(&spi->lock, flags);
1704 
1705 	/* Ensure I2SMOD bit is kept cleared */
1706 	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1707 			   STM32F4_SPI_I2SCFGR_I2SMOD);
1708 
1709 	/*
1710 	 * - SS input value high
1711 	 * - transmitter half duplex direction
1712 	 * - Set the master mode (default Motorola mode)
1713 	 * - Consider 1 master/n slaves configuration and
1714 	 *   SS input value is determined by the SSI bit
1715 	 */
1716 	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1717 						 STM32F4_SPI_CR1_BIDIOE |
1718 						 STM32F4_SPI_CR1_MSTR |
1719 						 STM32F4_SPI_CR1_SSM);
1720 
1721 	spin_unlock_irqrestore(&spi->lock, flags);
1722 
1723 	return 0;
1724 }
1725 
1726 /**
1727  * stm32h7_spi_config - Configure SPI controller as SPI master
1728  */
1729 static int stm32h7_spi_config(struct stm32_spi *spi)
1730 {
1731 	unsigned long flags;
1732 
1733 	spin_lock_irqsave(&spi->lock, flags);
1734 
1735 	/* Ensure I2SMOD bit is kept cleared */
1736 	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1737 			   STM32H7_SPI_I2SCFGR_I2SMOD);
1738 
1739 	/*
1740 	 * - SS input value high
1741 	 * - transmitter half duplex direction
1742 	 * - automatic communication suspend when RX-Fifo is full
1743 	 */
1744 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1745 						 STM32H7_SPI_CR1_HDDIR |
1746 						 STM32H7_SPI_CR1_MASRX);
1747 
1748 	/*
1749 	 * - Set the master mode (default Motorola mode)
1750 	 * - Consider 1 master/n slaves configuration and
1751 	 *   SS input value is determined by the SSI bit
1752 	 * - keep control of all associated GPIOs
1753 	 */
1754 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1755 						  STM32H7_SPI_CFG2_SSM |
1756 						  STM32H7_SPI_CFG2_AFCNTR);
1757 
1758 	spin_unlock_irqrestore(&spi->lock, flags);
1759 
1760 	return 0;
1761 }
1762 
1763 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1764 	.regs = &stm32f4_spi_regspec,
1765 	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1766 	.disable = stm32f4_spi_disable,
1767 	.config = stm32f4_spi_config,
1768 	.set_bpw = stm32f4_spi_set_bpw,
1769 	.set_mode = stm32f4_spi_set_mode,
1770 	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1771 	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1772 	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
1773 	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1774 	.irq_handler_event = stm32f4_spi_irq_event,
1775 	.irq_handler_thread = stm32f4_spi_irq_thread,
1776 	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1777 	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1778 	.has_fifo = false,
1779 };
1780 
1781 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1782 	.regs = &stm32h7_spi_regspec,
1783 	.get_fifo_size = stm32h7_spi_get_fifo_size,
1784 	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1785 	.disable = stm32h7_spi_disable,
1786 	.config = stm32h7_spi_config,
1787 	.set_bpw = stm32h7_spi_set_bpw,
1788 	.set_mode = stm32h7_spi_set_mode,
1789 	.set_data_idleness = stm32h7_spi_data_idleness,
1790 	.set_number_of_data = stm32h7_spi_number_of_data,
1791 	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1792 	.dma_rx_cb = stm32h7_spi_dma_cb,
1793 	.dma_tx_cb = stm32h7_spi_dma_cb,
1794 	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1795 	.irq_handler_thread = stm32h7_spi_irq_thread,
1796 	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1797 	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1798 	.has_fifo = true,
1799 };
1800 
1801 static const struct of_device_id stm32_spi_of_match[] = {
1802 	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1803 	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1804 	{},
1805 };
1806 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1807 
1808 static int stm32_spi_probe(struct platform_device *pdev)
1809 {
1810 	struct spi_master *master;
1811 	struct stm32_spi *spi;
1812 	struct resource *res;
1813 	int i, ret;
1814 
1815 	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1816 	if (!master) {
1817 		dev_err(&pdev->dev, "spi master allocation failed\n");
1818 		return -ENOMEM;
1819 	}
1820 	platform_set_drvdata(pdev, master);
1821 
1822 	spi = spi_master_get_devdata(master);
1823 	spi->dev = &pdev->dev;
1824 	spi->master = master;
1825 	spin_lock_init(&spi->lock);
1826 
1827 	spi->cfg = (const struct stm32_spi_cfg *)
1828 		of_match_device(pdev->dev.driver->of_match_table,
1829 				&pdev->dev)->data;
1830 
1831 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1832 	spi->base = devm_ioremap_resource(&pdev->dev, res);
1833 	if (IS_ERR(spi->base)) {
1834 		ret = PTR_ERR(spi->base);
1835 		goto err_master_put;
1836 	}
1837 
1838 	spi->phys_addr = (dma_addr_t)res->start;
1839 
1840 	spi->irq = platform_get_irq(pdev, 0);
1841 	if (spi->irq <= 0) {
1842 		ret = spi->irq;
1843 		if (ret != -EPROBE_DEFER)
1844 			dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1845 		goto err_master_put;
1846 	}
1847 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1848 					spi->cfg->irq_handler_event,
1849 					spi->cfg->irq_handler_thread,
1850 					IRQF_ONESHOT, pdev->name, master);
1851 	if (ret) {
1852 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1853 			ret);
1854 		goto err_master_put;
1855 	}
1856 
1857 	spi->clk = devm_clk_get(&pdev->dev, NULL);
1858 	if (IS_ERR(spi->clk)) {
1859 		ret = PTR_ERR(spi->clk);
1860 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1861 		goto err_master_put;
1862 	}
1863 
1864 	ret = clk_prepare_enable(spi->clk);
1865 	if (ret) {
1866 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1867 		goto err_master_put;
1868 	}
1869 	spi->clk_rate = clk_get_rate(spi->clk);
1870 	if (!spi->clk_rate) {
1871 		dev_err(&pdev->dev, "clk rate = 0\n");
1872 		ret = -EINVAL;
1873 		goto err_clk_disable;
1874 	}
1875 
1876 	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1877 	if (!IS_ERR(spi->rst)) {
1878 		reset_control_assert(spi->rst);
1879 		udelay(2);
1880 		reset_control_deassert(spi->rst);
1881 	}
1882 
1883 	if (spi->cfg->has_fifo)
1884 		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1885 
1886 	ret = spi->cfg->config(spi);
1887 	if (ret) {
1888 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1889 			ret);
1890 		goto err_clk_disable;
1891 	}
1892 
1893 	master->dev.of_node = pdev->dev.of_node;
1894 	master->auto_runtime_pm = true;
1895 	master->bus_num = pdev->id;
1896 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1897 			    SPI_3WIRE;
1898 	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1899 	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1900 	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1901 	master->setup = stm32_spi_setup;
1902 	master->prepare_message = stm32_spi_prepare_msg;
1903 	master->transfer_one = stm32_spi_transfer_one;
1904 	master->unprepare_message = stm32_spi_unprepare_msg;
1905 
1906 	spi->dma_tx = dma_request_slave_channel(spi->dev, "tx");
1907 	if (!spi->dma_tx)
1908 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1909 	else
1910 		master->dma_tx = spi->dma_tx;
1911 
1912 	spi->dma_rx = dma_request_slave_channel(spi->dev, "rx");
1913 	if (!spi->dma_rx)
1914 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1915 	else
1916 		master->dma_rx = spi->dma_rx;
1917 
1918 	if (spi->dma_tx || spi->dma_rx)
1919 		master->can_dma = stm32_spi_can_dma;
1920 
1921 	pm_runtime_set_active(&pdev->dev);
1922 	pm_runtime_enable(&pdev->dev);
1923 
1924 	ret = devm_spi_register_master(&pdev->dev, master);
1925 	if (ret) {
1926 		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1927 			ret);
1928 		goto err_dma_release;
1929 	}
1930 
1931 	if (!master->cs_gpios) {
1932 		dev_err(&pdev->dev, "no CS gpios available\n");
1933 		ret = -EINVAL;
1934 		goto err_dma_release;
1935 	}
1936 
1937 	for (i = 0; i < master->num_chipselect; i++) {
1938 		if (!gpio_is_valid(master->cs_gpios[i])) {
1939 			dev_err(&pdev->dev, "%i is not a valid gpio\n",
1940 				master->cs_gpios[i]);
1941 			ret = -EINVAL;
1942 			goto err_dma_release;
1943 		}
1944 
1945 		ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i],
1946 					DRIVER_NAME);
1947 		if (ret) {
1948 			dev_err(&pdev->dev, "can't get CS gpio %i\n",
1949 				master->cs_gpios[i]);
1950 			goto err_dma_release;
1951 		}
1952 	}
1953 
1954 	dev_info(&pdev->dev, "driver initialized\n");
1955 
1956 	return 0;
1957 
1958 err_dma_release:
1959 	if (spi->dma_tx)
1960 		dma_release_channel(spi->dma_tx);
1961 	if (spi->dma_rx)
1962 		dma_release_channel(spi->dma_rx);
1963 
1964 	pm_runtime_disable(&pdev->dev);
1965 err_clk_disable:
1966 	clk_disable_unprepare(spi->clk);
1967 err_master_put:
1968 	spi_master_put(master);
1969 
1970 	return ret;
1971 }
1972 
1973 static int stm32_spi_remove(struct platform_device *pdev)
1974 {
1975 	struct spi_master *master = platform_get_drvdata(pdev);
1976 	struct stm32_spi *spi = spi_master_get_devdata(master);
1977 
1978 	spi->cfg->disable(spi);
1979 
1980 	if (master->dma_tx)
1981 		dma_release_channel(master->dma_tx);
1982 	if (master->dma_rx)
1983 		dma_release_channel(master->dma_rx);
1984 
1985 	clk_disable_unprepare(spi->clk);
1986 
1987 	pm_runtime_disable(&pdev->dev);
1988 
1989 	return 0;
1990 }
1991 
1992 #ifdef CONFIG_PM
1993 static int stm32_spi_runtime_suspend(struct device *dev)
1994 {
1995 	struct spi_master *master = dev_get_drvdata(dev);
1996 	struct stm32_spi *spi = spi_master_get_devdata(master);
1997 
1998 	clk_disable_unprepare(spi->clk);
1999 
2000 	return 0;
2001 }
2002 
2003 static int stm32_spi_runtime_resume(struct device *dev)
2004 {
2005 	struct spi_master *master = dev_get_drvdata(dev);
2006 	struct stm32_spi *spi = spi_master_get_devdata(master);
2007 
2008 	return clk_prepare_enable(spi->clk);
2009 }
2010 #endif
2011 
2012 #ifdef CONFIG_PM_SLEEP
2013 static int stm32_spi_suspend(struct device *dev)
2014 {
2015 	struct spi_master *master = dev_get_drvdata(dev);
2016 	int ret;
2017 
2018 	ret = spi_master_suspend(master);
2019 	if (ret)
2020 		return ret;
2021 
2022 	return pm_runtime_force_suspend(dev);
2023 }
2024 
2025 static int stm32_spi_resume(struct device *dev)
2026 {
2027 	struct spi_master *master = dev_get_drvdata(dev);
2028 	struct stm32_spi *spi = spi_master_get_devdata(master);
2029 	int ret;
2030 
2031 	ret = pm_runtime_force_resume(dev);
2032 	if (ret)
2033 		return ret;
2034 
2035 	ret = spi_master_resume(master);
2036 	if (ret)
2037 		clk_disable_unprepare(spi->clk);
2038 
2039 	return ret;
2040 }
2041 #endif
2042 
2043 static const struct dev_pm_ops stm32_spi_pm_ops = {
2044 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2045 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2046 			   stm32_spi_runtime_resume, NULL)
2047 };
2048 
2049 static struct platform_driver stm32_spi_driver = {
2050 	.probe = stm32_spi_probe,
2051 	.remove = stm32_spi_remove,
2052 	.driver = {
2053 		.name = DRIVER_NAME,
2054 		.pm = &stm32_spi_pm_ops,
2055 		.of_match_table = stm32_spi_of_match,
2056 	},
2057 };
2058 
2059 module_platform_driver(stm32_spi_driver);
2060 
2061 MODULE_ALIAS("platform:" DRIVER_NAME);
2062 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2063 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2064 MODULE_LICENSE("GPL v2");
2065