xref: /openbmc/linux/drivers/spi/spi-stm32.c (revision 8d81cd1a)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7 
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 #include <linux/spi/spi.h>
21 
22 #define DRIVER_NAME "spi_stm32"
23 
24 /* STM32F4 SPI registers */
25 #define STM32F4_SPI_CR1			0x00
26 #define STM32F4_SPI_CR2			0x04
27 #define STM32F4_SPI_SR			0x08
28 #define STM32F4_SPI_DR			0x0C
29 #define STM32F4_SPI_I2SCFGR		0x1C
30 
31 /* STM32F4_SPI_CR1 bit fields */
32 #define STM32F4_SPI_CR1_CPHA		BIT(0)
33 #define STM32F4_SPI_CR1_CPOL		BIT(1)
34 #define STM32F4_SPI_CR1_MSTR		BIT(2)
35 #define STM32F4_SPI_CR1_BR_SHIFT	3
36 #define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
37 #define STM32F4_SPI_CR1_SPE		BIT(6)
38 #define STM32F4_SPI_CR1_LSBFRST		BIT(7)
39 #define STM32F4_SPI_CR1_SSI		BIT(8)
40 #define STM32F4_SPI_CR1_SSM		BIT(9)
41 #define STM32F4_SPI_CR1_RXONLY		BIT(10)
42 #define STM32F4_SPI_CR1_DFF		BIT(11)
43 #define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
44 #define STM32F4_SPI_CR1_CRCEN		BIT(13)
45 #define STM32F4_SPI_CR1_BIDIOE		BIT(14)
46 #define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
47 #define STM32F4_SPI_CR1_BR_MIN		0
48 #define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
49 
50 /* STM32F4_SPI_CR2 bit fields */
51 #define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
52 #define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
53 #define STM32F4_SPI_CR2_SSOE		BIT(2)
54 #define STM32F4_SPI_CR2_FRF		BIT(4)
55 #define STM32F4_SPI_CR2_ERRIE		BIT(5)
56 #define STM32F4_SPI_CR2_RXNEIE		BIT(6)
57 #define STM32F4_SPI_CR2_TXEIE		BIT(7)
58 
59 /* STM32F4_SPI_SR bit fields */
60 #define STM32F4_SPI_SR_RXNE		BIT(0)
61 #define STM32F4_SPI_SR_TXE		BIT(1)
62 #define STM32F4_SPI_SR_CHSIDE		BIT(2)
63 #define STM32F4_SPI_SR_UDR		BIT(3)
64 #define STM32F4_SPI_SR_CRCERR		BIT(4)
65 #define STM32F4_SPI_SR_MODF		BIT(5)
66 #define STM32F4_SPI_SR_OVR		BIT(6)
67 #define STM32F4_SPI_SR_BSY		BIT(7)
68 #define STM32F4_SPI_SR_FRE		BIT(8)
69 
70 /* STM32F4_SPI_I2SCFGR bit fields */
71 #define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
72 
73 /* STM32F4 SPI Baud Rate min/max divisor */
74 #define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
75 #define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
76 
77 /* STM32H7 SPI registers */
78 #define STM32H7_SPI_CR1			0x00
79 #define STM32H7_SPI_CR2			0x04
80 #define STM32H7_SPI_CFG1		0x08
81 #define STM32H7_SPI_CFG2		0x0C
82 #define STM32H7_SPI_IER			0x10
83 #define STM32H7_SPI_SR			0x14
84 #define STM32H7_SPI_IFCR		0x18
85 #define STM32H7_SPI_TXDR		0x20
86 #define STM32H7_SPI_RXDR		0x30
87 #define STM32H7_SPI_I2SCFGR		0x50
88 
89 /* STM32H7_SPI_CR1 bit fields */
90 #define STM32H7_SPI_CR1_SPE		BIT(0)
91 #define STM32H7_SPI_CR1_MASRX		BIT(8)
92 #define STM32H7_SPI_CR1_CSTART		BIT(9)
93 #define STM32H7_SPI_CR1_CSUSP		BIT(10)
94 #define STM32H7_SPI_CR1_HDDIR		BIT(11)
95 #define STM32H7_SPI_CR1_SSI		BIT(12)
96 
97 /* STM32H7_SPI_CR2 bit fields */
98 #define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
99 #define STM32H7_SPI_TSIZE_MAX		GENMASK(15, 0)
100 
101 /* STM32H7_SPI_CFG1 bit fields */
102 #define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
106 #define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT	28
108 #define STM32H7_SPI_CFG1_MBR_MIN	0
109 #define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
110 
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
113 #define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
114 #define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
115 #define STM32H7_SPI_CFG2_MASTER		BIT(22)
116 #define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
117 #define STM32H7_SPI_CFG2_CPHA		BIT(24)
118 #define STM32H7_SPI_CFG2_CPOL		BIT(25)
119 #define STM32H7_SPI_CFG2_SSM		BIT(26)
120 #define STM32H7_SPI_CFG2_SSIOP		BIT(28)
121 #define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
122 
123 /* STM32H7_SPI_IER bit fields */
124 #define STM32H7_SPI_IER_RXPIE		BIT(0)
125 #define STM32H7_SPI_IER_TXPIE		BIT(1)
126 #define STM32H7_SPI_IER_DXPIE		BIT(2)
127 #define STM32H7_SPI_IER_EOTIE		BIT(3)
128 #define STM32H7_SPI_IER_TXTFIE		BIT(4)
129 #define STM32H7_SPI_IER_OVRIE		BIT(6)
130 #define STM32H7_SPI_IER_MODFIE		BIT(9)
131 #define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
132 
133 /* STM32H7_SPI_SR bit fields */
134 #define STM32H7_SPI_SR_RXP		BIT(0)
135 #define STM32H7_SPI_SR_TXP		BIT(1)
136 #define STM32H7_SPI_SR_EOT		BIT(3)
137 #define STM32H7_SPI_SR_OVR		BIT(6)
138 #define STM32H7_SPI_SR_MODF		BIT(9)
139 #define STM32H7_SPI_SR_SUSP		BIT(11)
140 #define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
141 #define STM32H7_SPI_SR_RXWNE		BIT(15)
142 
143 /* STM32H7_SPI_IFCR bit fields */
144 #define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
145 
146 /* STM32H7_SPI_I2SCFGR bit fields */
147 #define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
148 
149 /* STM32H7 SPI Master Baud Rate min/max divisor */
150 #define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
151 #define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
152 
153 /* STM32H7 SPI Communication mode */
154 #define STM32H7_SPI_FULL_DUPLEX		0
155 #define STM32H7_SPI_SIMPLEX_TX		1
156 #define STM32H7_SPI_SIMPLEX_RX		2
157 #define STM32H7_SPI_HALF_DUPLEX		3
158 
159 /* SPI Communication type */
160 #define SPI_FULL_DUPLEX		0
161 #define SPI_SIMPLEX_TX		1
162 #define SPI_SIMPLEX_RX		2
163 #define SPI_3WIRE_TX		3
164 #define SPI_3WIRE_RX		4
165 
166 #define STM32_SPI_AUTOSUSPEND_DELAY		1	/* 1 ms */
167 
168 /*
169  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
170  * without fifo buffers.
171  */
172 #define SPI_DMA_MIN_BYTES	16
173 
174 /* STM32 SPI driver helpers */
175 #define STM32_SPI_MASTER_MODE(stm32_spi) (!(stm32_spi)->device_mode)
176 #define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode)
177 
178 /**
179  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180  * @reg:		register offset
181  * @mask:		bitfield mask
182  * @shift:		left shift
183  */
184 struct stm32_spi_reg {
185 	int reg;
186 	int mask;
187 	int shift;
188 };
189 
190 /**
191  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192  * @en: enable register and SPI enable bit
193  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195  * @cpol: clock polarity register and polarity bit
196  * @cpha: clock phase register and phase bit
197  * @lsb_first: LSB transmitted first register and bit
198  * @cs_high: chips select active value
199  * @br: baud rate register and bitfields
200  * @rx: SPI RX data register
201  * @tx: SPI TX data register
202  */
203 struct stm32_spi_regspec {
204 	const struct stm32_spi_reg en;
205 	const struct stm32_spi_reg dma_rx_en;
206 	const struct stm32_spi_reg dma_tx_en;
207 	const struct stm32_spi_reg cpol;
208 	const struct stm32_spi_reg cpha;
209 	const struct stm32_spi_reg lsb_first;
210 	const struct stm32_spi_reg cs_high;
211 	const struct stm32_spi_reg br;
212 	const struct stm32_spi_reg rx;
213 	const struct stm32_spi_reg tx;
214 };
215 
216 struct stm32_spi;
217 
218 /**
219  * struct stm32_spi_cfg - stm32 compatible configuration data
220  * @regs: registers descriptions
221  * @get_fifo_size: routine to get fifo size
222  * @get_bpw_mask: routine to get bits per word mask
223  * @disable: routine to disable controller
224  * @config: routine to configure controller as SPI Master
225  * @set_bpw: routine to configure registers to for bits per word
226  * @set_mode: routine to configure registers to desired mode
227  * @set_data_idleness: optional routine to configure registers to desired idle
228  * time between frames (if driver has this functionality)
229  * @set_number_of_data: optional routine to configure registers to desired
230  * number of data (if driver has this functionality)
231  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
232  * using DMA
233  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
234  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
235  * @transfer_one_irq: routine to configure interrupts for driver
236  * @irq_handler_event: Interrupt handler for SPI controller events
237  * @irq_handler_thread: thread of interrupt handler for SPI controller
238  * @baud_rate_div_min: minimum baud rate divisor
239  * @baud_rate_div_max: maximum baud rate divisor
240  * @has_fifo: boolean to know if fifo is used for driver
241  * @has_device_mode: is this compatible capable to switch on device mode
242  * @flags: compatible specific SPI controller flags used at registration time
243  */
244 struct stm32_spi_cfg {
245 	const struct stm32_spi_regspec *regs;
246 	int (*get_fifo_size)(struct stm32_spi *spi);
247 	int (*get_bpw_mask)(struct stm32_spi *spi);
248 	void (*disable)(struct stm32_spi *spi);
249 	int (*config)(struct stm32_spi *spi);
250 	void (*set_bpw)(struct stm32_spi *spi);
251 	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
252 	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
253 	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
254 	void (*transfer_one_dma_start)(struct stm32_spi *spi);
255 	void (*dma_rx_cb)(void *data);
256 	void (*dma_tx_cb)(void *data);
257 	int (*transfer_one_irq)(struct stm32_spi *spi);
258 	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
259 	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
260 	unsigned int baud_rate_div_min;
261 	unsigned int baud_rate_div_max;
262 	bool has_fifo;
263 	bool has_device_mode;
264 	u16 flags;
265 };
266 
267 /**
268  * struct stm32_spi - private data of the SPI controller
269  * @dev: driver model representation of the controller
270  * @ctrl: controller interface
271  * @cfg: compatible configuration data
272  * @base: virtual memory area
273  * @clk: hw kernel clock feeding the SPI clock generator
274  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
275  * @lock: prevent I/O concurrent access
276  * @irq: SPI controller interrupt line
277  * @fifo_size: size of the embedded fifo in bytes
278  * @cur_midi: master inter-data idleness in ns
279  * @cur_speed: speed configured in Hz
280  * @cur_half_period: time of a half bit in us
281  * @cur_bpw: number of bits in a single SPI data frame
282  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
283  * @cur_comm: SPI communication mode
284  * @cur_xferlen: current transfer length in bytes
285  * @cur_usedma: boolean to know if dma is used in current transfer
286  * @tx_buf: data to be written, or NULL
287  * @rx_buf: data to be read, or NULL
288  * @tx_len: number of data to be written in bytes
289  * @rx_len: number of data to be read in bytes
290  * @dma_tx: dma channel for TX transfer
291  * @dma_rx: dma channel for RX transfer
292  * @phys_addr: SPI registers physical base address
293  * @device_mode: the controller is configured as SPI device
294  */
295 struct stm32_spi {
296 	struct device *dev;
297 	struct spi_controller *ctrl;
298 	const struct stm32_spi_cfg *cfg;
299 	void __iomem *base;
300 	struct clk *clk;
301 	u32 clk_rate;
302 	spinlock_t lock; /* prevent I/O concurrent access */
303 	int irq;
304 	unsigned int fifo_size;
305 
306 	unsigned int cur_midi;
307 	unsigned int cur_speed;
308 	unsigned int cur_half_period;
309 	unsigned int cur_bpw;
310 	unsigned int cur_fthlv;
311 	unsigned int cur_comm;
312 	unsigned int cur_xferlen;
313 	bool cur_usedma;
314 
315 	const void *tx_buf;
316 	void *rx_buf;
317 	int tx_len;
318 	int rx_len;
319 	struct dma_chan *dma_tx;
320 	struct dma_chan *dma_rx;
321 	dma_addr_t phys_addr;
322 
323 	bool device_mode;
324 };
325 
326 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
327 	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
328 
329 	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
330 	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
331 
332 	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
333 	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
334 	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
335 	.cs_high = {},
336 	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
337 
338 	.rx = { STM32F4_SPI_DR },
339 	.tx = { STM32F4_SPI_DR },
340 };
341 
342 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
343 	/* SPI data transfer is enabled but spi_ker_ck is idle.
344 	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
345 	 */
346 	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
347 
348 	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
349 	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
350 
351 	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
352 	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
353 	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
354 	.cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
355 	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
356 		STM32H7_SPI_CFG1_MBR_SHIFT },
357 
358 	.rx = { STM32H7_SPI_RXDR },
359 	.tx = { STM32H7_SPI_TXDR },
360 };
361 
362 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
363 				      u32 offset, u32 bits)
364 {
365 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
366 		       spi->base + offset);
367 }
368 
369 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
370 				      u32 offset, u32 bits)
371 {
372 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
373 		       spi->base + offset);
374 }
375 
376 /**
377  * stm32h7_spi_get_fifo_size - Return fifo size
378  * @spi: pointer to the spi controller data structure
379  */
380 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
381 {
382 	unsigned long flags;
383 	u32 count = 0;
384 
385 	spin_lock_irqsave(&spi->lock, flags);
386 
387 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
388 
389 	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
390 		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
391 
392 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
393 
394 	spin_unlock_irqrestore(&spi->lock, flags);
395 
396 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
397 
398 	return count;
399 }
400 
401 /**
402  * stm32f4_spi_get_bpw_mask - Return bits per word mask
403  * @spi: pointer to the spi controller data structure
404  */
405 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
406 {
407 	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
408 	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
409 }
410 
411 /**
412  * stm32h7_spi_get_bpw_mask - Return bits per word mask
413  * @spi: pointer to the spi controller data structure
414  */
415 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
416 {
417 	unsigned long flags;
418 	u32 cfg1, max_bpw;
419 
420 	spin_lock_irqsave(&spi->lock, flags);
421 
422 	/*
423 	 * The most significant bit at DSIZE bit field is reserved when the
424 	 * maximum data size of periperal instances is limited to 16-bit
425 	 */
426 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
427 
428 	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
429 	max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
430 
431 	spin_unlock_irqrestore(&spi->lock, flags);
432 
433 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
434 
435 	return SPI_BPW_RANGE_MASK(4, max_bpw);
436 }
437 
438 /**
439  * stm32_spi_prepare_mbr - Determine baud rate divisor value
440  * @spi: pointer to the spi controller data structure
441  * @speed_hz: requested speed
442  * @min_div: minimum baud rate divisor
443  * @max_div: maximum baud rate divisor
444  *
445  * Return baud rate divisor value in case of success or -EINVAL
446  */
447 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
448 				 u32 min_div, u32 max_div)
449 {
450 	u32 div, mbrdiv;
451 
452 	/* Ensure spi->clk_rate is even */
453 	div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
454 
455 	/*
456 	 * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if
457 	 * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns
458 	 * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so
459 	 * no need to check it there.
460 	 * However, we need to ensure the following calculations.
461 	 */
462 	if ((div < min_div) || (div > max_div))
463 		return -EINVAL;
464 
465 	/* Determine the first power of 2 greater than or equal to div */
466 	if (div & (div - 1))
467 		mbrdiv = fls(div);
468 	else
469 		mbrdiv = fls(div) - 1;
470 
471 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
472 
473 	spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
474 
475 	return mbrdiv - 1;
476 }
477 
478 /**
479  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
480  * @spi: pointer to the spi controller data structure
481  * @xfer_len: length of the message to be transferred
482  */
483 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
484 {
485 	u32 packet, bpw;
486 
487 	/* data packet should not exceed 1/2 of fifo space */
488 	packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
489 
490 	/* align packet size with data registers access */
491 	bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
492 	return DIV_ROUND_UP(packet, bpw);
493 }
494 
495 /**
496  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
497  * @spi: pointer to the spi controller data structure
498  *
499  * Read from tx_buf depends on remaining bytes to avoid to read beyond
500  * tx_buf end.
501  */
502 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
503 {
504 	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
505 				  STM32F4_SPI_SR_TXE)) {
506 		u32 offs = spi->cur_xferlen - spi->tx_len;
507 
508 		if (spi->cur_bpw == 16) {
509 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
510 
511 			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
512 			spi->tx_len -= sizeof(u16);
513 		} else {
514 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
515 
516 			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
517 			spi->tx_len -= sizeof(u8);
518 		}
519 	}
520 
521 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
522 }
523 
524 /**
525  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
526  * @spi: pointer to the spi controller data structure
527  *
528  * Read from tx_buf depends on remaining bytes to avoid to read beyond
529  * tx_buf end.
530  */
531 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
532 {
533 	while ((spi->tx_len > 0) &&
534 		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
535 			STM32H7_SPI_SR_TXP)) {
536 		u32 offs = spi->cur_xferlen - spi->tx_len;
537 
538 		if (spi->tx_len >= sizeof(u32)) {
539 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
540 
541 			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
542 			spi->tx_len -= sizeof(u32);
543 		} else if (spi->tx_len >= sizeof(u16)) {
544 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
545 
546 			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
547 			spi->tx_len -= sizeof(u16);
548 		} else {
549 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
550 
551 			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
552 			spi->tx_len -= sizeof(u8);
553 		}
554 	}
555 
556 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
557 }
558 
559 /**
560  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
561  * @spi: pointer to the spi controller data structure
562  *
563  * Write in rx_buf depends on remaining bytes to avoid to write beyond
564  * rx_buf end.
565  */
566 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
567 {
568 	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
569 				  STM32F4_SPI_SR_RXNE)) {
570 		u32 offs = spi->cur_xferlen - spi->rx_len;
571 
572 		if (spi->cur_bpw == 16) {
573 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
574 
575 			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
576 			spi->rx_len -= sizeof(u16);
577 		} else {
578 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
579 
580 			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
581 			spi->rx_len -= sizeof(u8);
582 		}
583 	}
584 
585 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
586 }
587 
588 /**
589  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
590  * @spi: pointer to the spi controller data structure
591  *
592  * Write in rx_buf depends on remaining bytes to avoid to write beyond
593  * rx_buf end.
594  */
595 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
596 {
597 	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
598 	u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
599 
600 	while ((spi->rx_len > 0) &&
601 	       ((sr & STM32H7_SPI_SR_RXP) ||
602 		((sr & STM32H7_SPI_SR_EOT) &&
603 		 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
604 		u32 offs = spi->cur_xferlen - spi->rx_len;
605 
606 		if ((spi->rx_len >= sizeof(u32)) ||
607 		    (sr & STM32H7_SPI_SR_RXWNE)) {
608 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
609 
610 			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
611 			spi->rx_len -= sizeof(u32);
612 		} else if ((spi->rx_len >= sizeof(u16)) ||
613 			   (!(sr & STM32H7_SPI_SR_RXWNE) &&
614 			    (rxplvl >= 2 || spi->cur_bpw > 8))) {
615 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
616 
617 			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
618 			spi->rx_len -= sizeof(u16);
619 		} else {
620 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
621 
622 			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
623 			spi->rx_len -= sizeof(u8);
624 		}
625 
626 		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
627 		rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
628 	}
629 
630 	dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
631 		__func__, spi->rx_len, sr);
632 }
633 
634 /**
635  * stm32_spi_enable - Enable SPI controller
636  * @spi: pointer to the spi controller data structure
637  */
638 static void stm32_spi_enable(struct stm32_spi *spi)
639 {
640 	dev_dbg(spi->dev, "enable controller\n");
641 
642 	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
643 			   spi->cfg->regs->en.mask);
644 }
645 
646 /**
647  * stm32f4_spi_disable - Disable SPI controller
648  * @spi: pointer to the spi controller data structure
649  */
650 static void stm32f4_spi_disable(struct stm32_spi *spi)
651 {
652 	unsigned long flags;
653 	u32 sr;
654 
655 	dev_dbg(spi->dev, "disable controller\n");
656 
657 	spin_lock_irqsave(&spi->lock, flags);
658 
659 	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
660 	      STM32F4_SPI_CR1_SPE)) {
661 		spin_unlock_irqrestore(&spi->lock, flags);
662 		return;
663 	}
664 
665 	/* Disable interrupts */
666 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
667 						 STM32F4_SPI_CR2_RXNEIE |
668 						 STM32F4_SPI_CR2_ERRIE);
669 
670 	/* Wait until BSY = 0 */
671 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
672 					      sr, !(sr & STM32F4_SPI_SR_BSY),
673 					      10, 100000) < 0) {
674 		dev_warn(spi->dev, "disabling condition timeout\n");
675 	}
676 
677 	if (spi->cur_usedma && spi->dma_tx)
678 		dmaengine_terminate_async(spi->dma_tx);
679 	if (spi->cur_usedma && spi->dma_rx)
680 		dmaengine_terminate_async(spi->dma_rx);
681 
682 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
683 
684 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
685 						 STM32F4_SPI_CR2_RXDMAEN);
686 
687 	/* Sequence to clear OVR flag */
688 	readl_relaxed(spi->base + STM32F4_SPI_DR);
689 	readl_relaxed(spi->base + STM32F4_SPI_SR);
690 
691 	spin_unlock_irqrestore(&spi->lock, flags);
692 }
693 
694 /**
695  * stm32h7_spi_disable - Disable SPI controller
696  * @spi: pointer to the spi controller data structure
697  *
698  * RX-Fifo is flushed when SPI controller is disabled.
699  */
700 static void stm32h7_spi_disable(struct stm32_spi *spi)
701 {
702 	unsigned long flags;
703 	u32 cr1;
704 
705 	dev_dbg(spi->dev, "disable controller\n");
706 
707 	spin_lock_irqsave(&spi->lock, flags);
708 
709 	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
710 
711 	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
712 		spin_unlock_irqrestore(&spi->lock, flags);
713 		return;
714 	}
715 
716 	/* Add a delay to make sure that transmission is ended. */
717 	if (spi->cur_half_period)
718 		udelay(spi->cur_half_period);
719 
720 	if (spi->cur_usedma && spi->dma_tx)
721 		dmaengine_terminate_async(spi->dma_tx);
722 	if (spi->cur_usedma && spi->dma_rx)
723 		dmaengine_terminate_async(spi->dma_rx);
724 
725 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
726 
727 	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
728 						STM32H7_SPI_CFG1_RXDMAEN);
729 
730 	/* Disable interrupts and clear status flags */
731 	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
732 	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
733 
734 	spin_unlock_irqrestore(&spi->lock, flags);
735 }
736 
737 /**
738  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
739  * @ctrl: controller interface
740  * @spi_dev: pointer to the spi device
741  * @transfer: pointer to spi transfer
742  *
743  * If driver has fifo and the current transfer size is greater than fifo size,
744  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
745  */
746 static bool stm32_spi_can_dma(struct spi_controller *ctrl,
747 			      struct spi_device *spi_dev,
748 			      struct spi_transfer *transfer)
749 {
750 	unsigned int dma_size;
751 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
752 
753 	if (spi->cfg->has_fifo)
754 		dma_size = spi->fifo_size;
755 	else
756 		dma_size = SPI_DMA_MIN_BYTES;
757 
758 	dev_dbg(spi->dev, "%s: %s\n", __func__,
759 		(transfer->len > dma_size) ? "true" : "false");
760 
761 	return (transfer->len > dma_size);
762 }
763 
764 /**
765  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
766  * @irq: interrupt line
767  * @dev_id: SPI controller ctrl interface
768  */
769 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
770 {
771 	struct spi_controller *ctrl = dev_id;
772 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
773 	u32 sr, mask = 0;
774 	bool end = false;
775 
776 	spin_lock(&spi->lock);
777 
778 	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
779 	/*
780 	 * BSY flag is not handled in interrupt but it is normal behavior when
781 	 * this flag is set.
782 	 */
783 	sr &= ~STM32F4_SPI_SR_BSY;
784 
785 	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
786 				 spi->cur_comm == SPI_3WIRE_TX)) {
787 		/* OVR flag shouldn't be handled for TX only mode */
788 		sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE);
789 		mask |= STM32F4_SPI_SR_TXE;
790 	}
791 
792 	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
793 				spi->cur_comm == SPI_SIMPLEX_RX ||
794 				spi->cur_comm == SPI_3WIRE_RX)) {
795 		/* TXE flag is set and is handled when RXNE flag occurs */
796 		sr &= ~STM32F4_SPI_SR_TXE;
797 		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
798 	}
799 
800 	if (!(sr & mask)) {
801 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
802 		spin_unlock(&spi->lock);
803 		return IRQ_NONE;
804 	}
805 
806 	if (sr & STM32F4_SPI_SR_OVR) {
807 		dev_warn(spi->dev, "Overrun: received value discarded\n");
808 
809 		/* Sequence to clear OVR flag */
810 		readl_relaxed(spi->base + STM32F4_SPI_DR);
811 		readl_relaxed(spi->base + STM32F4_SPI_SR);
812 
813 		/*
814 		 * If overrun is detected, it means that something went wrong,
815 		 * so stop the current transfer. Transfer can wait for next
816 		 * RXNE but DR is already read and end never happens.
817 		 */
818 		end = true;
819 		goto end_irq;
820 	}
821 
822 	if (sr & STM32F4_SPI_SR_TXE) {
823 		if (spi->tx_buf)
824 			stm32f4_spi_write_tx(spi);
825 		if (spi->tx_len == 0)
826 			end = true;
827 	}
828 
829 	if (sr & STM32F4_SPI_SR_RXNE) {
830 		stm32f4_spi_read_rx(spi);
831 		if (spi->rx_len == 0)
832 			end = true;
833 		else if (spi->tx_buf)/* Load data for discontinuous mode */
834 			stm32f4_spi_write_tx(spi);
835 	}
836 
837 end_irq:
838 	if (end) {
839 		/* Immediately disable interrupts to do not generate new one */
840 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
841 					STM32F4_SPI_CR2_TXEIE |
842 					STM32F4_SPI_CR2_RXNEIE |
843 					STM32F4_SPI_CR2_ERRIE);
844 		spin_unlock(&spi->lock);
845 		return IRQ_WAKE_THREAD;
846 	}
847 
848 	spin_unlock(&spi->lock);
849 	return IRQ_HANDLED;
850 }
851 
852 /**
853  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
854  * @irq: interrupt line
855  * @dev_id: SPI controller interface
856  */
857 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
858 {
859 	struct spi_controller *ctrl = dev_id;
860 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
861 
862 	spi_finalize_current_transfer(ctrl);
863 	stm32f4_spi_disable(spi);
864 
865 	return IRQ_HANDLED;
866 }
867 
868 /**
869  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
870  * @irq: interrupt line
871  * @dev_id: SPI controller interface
872  */
873 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
874 {
875 	struct spi_controller *ctrl = dev_id;
876 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
877 	u32 sr, ier, mask;
878 	unsigned long flags;
879 	bool end = false;
880 
881 	spin_lock_irqsave(&spi->lock, flags);
882 
883 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
884 	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
885 
886 	mask = ier;
887 	/*
888 	 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
889 	 * SUSP to acknowledge it later. TXC is automatically cleared
890 	 */
891 
892 	mask |= STM32H7_SPI_SR_SUSP;
893 	/*
894 	 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
895 	 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
896 	 */
897 	if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
898 		mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
899 
900 	if (!(sr & mask)) {
901 		dev_vdbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
902 			 sr, ier);
903 		spin_unlock_irqrestore(&spi->lock, flags);
904 		return IRQ_NONE;
905 	}
906 
907 	if (sr & STM32H7_SPI_SR_SUSP) {
908 		static DEFINE_RATELIMIT_STATE(rs,
909 					      DEFAULT_RATELIMIT_INTERVAL * 10,
910 					      1);
911 		ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
912 		if (__ratelimit(&rs))
913 			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
914 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
915 			stm32h7_spi_read_rxfifo(spi);
916 		/*
917 		 * If communication is suspended while using DMA, it means
918 		 * that something went wrong, so stop the current transfer
919 		 */
920 		if (spi->cur_usedma)
921 			end = true;
922 	}
923 
924 	if (sr & STM32H7_SPI_SR_MODF) {
925 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
926 		end = true;
927 	}
928 
929 	if (sr & STM32H7_SPI_SR_OVR) {
930 		dev_err(spi->dev, "Overrun: RX data lost\n");
931 		end = true;
932 	}
933 
934 	if (sr & STM32H7_SPI_SR_EOT) {
935 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
936 			stm32h7_spi_read_rxfifo(spi);
937 		if (!spi->cur_usedma ||
938 		    (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
939 			end = true;
940 	}
941 
942 	if (sr & STM32H7_SPI_SR_TXP)
943 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
944 			stm32h7_spi_write_txfifo(spi);
945 
946 	if (sr & STM32H7_SPI_SR_RXP)
947 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
948 			stm32h7_spi_read_rxfifo(spi);
949 
950 	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
951 
952 	spin_unlock_irqrestore(&spi->lock, flags);
953 
954 	if (end) {
955 		stm32h7_spi_disable(spi);
956 		spi_finalize_current_transfer(ctrl);
957 	}
958 
959 	return IRQ_HANDLED;
960 }
961 
962 /**
963  * stm32_spi_prepare_msg - set up the controller to transfer a single message
964  * @ctrl: controller interface
965  * @msg: pointer to spi message
966  */
967 static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
968 				 struct spi_message *msg)
969 {
970 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
971 	struct spi_device *spi_dev = msg->spi;
972 	struct device_node *np = spi_dev->dev.of_node;
973 	unsigned long flags;
974 	u32 clrb = 0, setb = 0;
975 
976 	/* SPI slave device may need time between data frames */
977 	spi->cur_midi = 0;
978 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
979 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
980 
981 	if (spi_dev->mode & SPI_CPOL)
982 		setb |= spi->cfg->regs->cpol.mask;
983 	else
984 		clrb |= spi->cfg->regs->cpol.mask;
985 
986 	if (spi_dev->mode & SPI_CPHA)
987 		setb |= spi->cfg->regs->cpha.mask;
988 	else
989 		clrb |= spi->cfg->regs->cpha.mask;
990 
991 	if (spi_dev->mode & SPI_LSB_FIRST)
992 		setb |= spi->cfg->regs->lsb_first.mask;
993 	else
994 		clrb |= spi->cfg->regs->lsb_first.mask;
995 
996 	if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH)
997 		setb |= spi->cfg->regs->cs_high.mask;
998 	else
999 		clrb |= spi->cfg->regs->cs_high.mask;
1000 
1001 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1002 		!!(spi_dev->mode & SPI_CPOL),
1003 		!!(spi_dev->mode & SPI_CPHA),
1004 		!!(spi_dev->mode & SPI_LSB_FIRST),
1005 		!!(spi_dev->mode & SPI_CS_HIGH));
1006 
1007 	/* On STM32H7, messages should not exceed a maximum size setted
1008 	 * afterward via the set_number_of_data function. In order to
1009 	 * ensure that, split large messages into several messages
1010 	 */
1011 	if (spi->cfg->set_number_of_data) {
1012 		int ret;
1013 
1014 		ret = spi_split_transfers_maxwords(ctrl, msg,
1015 						   STM32H7_SPI_TSIZE_MAX,
1016 						   GFP_KERNEL | GFP_DMA);
1017 		if (ret)
1018 			return ret;
1019 	}
1020 
1021 	spin_lock_irqsave(&spi->lock, flags);
1022 
1023 	/* CPOL, CPHA and LSB FIRST bits have common register */
1024 	if (clrb || setb)
1025 		writel_relaxed(
1026 			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1027 			 ~clrb) | setb,
1028 			spi->base + spi->cfg->regs->cpol.reg);
1029 
1030 	spin_unlock_irqrestore(&spi->lock, flags);
1031 
1032 	return 0;
1033 }
1034 
1035 /**
1036  * stm32f4_spi_dma_tx_cb - dma callback
1037  * @data: pointer to the spi controller data structure
1038  *
1039  * DMA callback is called when the transfer is complete for DMA TX channel.
1040  */
1041 static void stm32f4_spi_dma_tx_cb(void *data)
1042 {
1043 	struct stm32_spi *spi = data;
1044 
1045 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1046 		spi_finalize_current_transfer(spi->ctrl);
1047 		stm32f4_spi_disable(spi);
1048 	}
1049 }
1050 
1051 /**
1052  * stm32_spi_dma_rx_cb - dma callback
1053  * @data: pointer to the spi controller data structure
1054  *
1055  * DMA callback is called when the transfer is complete for DMA RX channel.
1056  */
1057 static void stm32_spi_dma_rx_cb(void *data)
1058 {
1059 	struct stm32_spi *spi = data;
1060 
1061 	spi_finalize_current_transfer(spi->ctrl);
1062 	spi->cfg->disable(spi);
1063 }
1064 
1065 /**
1066  * stm32_spi_dma_config - configure dma slave channel depending on current
1067  *			  transfer bits_per_word.
1068  * @spi: pointer to the spi controller data structure
1069  * @dma_conf: pointer to the dma_slave_config structure
1070  * @dir: direction of the dma transfer
1071  */
1072 static void stm32_spi_dma_config(struct stm32_spi *spi,
1073 				 struct dma_slave_config *dma_conf,
1074 				 enum dma_transfer_direction dir)
1075 {
1076 	enum dma_slave_buswidth buswidth;
1077 	u32 maxburst;
1078 
1079 	if (spi->cur_bpw <= 8)
1080 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1081 	else if (spi->cur_bpw <= 16)
1082 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1083 	else
1084 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1085 
1086 	if (spi->cfg->has_fifo) {
1087 		/* Valid for DMA Half or Full Fifo threshold */
1088 		if (spi->cur_fthlv == 2)
1089 			maxburst = 1;
1090 		else
1091 			maxburst = spi->cur_fthlv;
1092 	} else {
1093 		maxburst = 1;
1094 	}
1095 
1096 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1097 	dma_conf->direction = dir;
1098 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1099 		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1100 		dma_conf->src_addr_width = buswidth;
1101 		dma_conf->src_maxburst = maxburst;
1102 
1103 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1104 			buswidth, maxburst);
1105 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1106 		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1107 		dma_conf->dst_addr_width = buswidth;
1108 		dma_conf->dst_maxburst = maxburst;
1109 
1110 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1111 			buswidth, maxburst);
1112 	}
1113 }
1114 
1115 /**
1116  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1117  *				  interrupts
1118  * @spi: pointer to the spi controller data structure
1119  *
1120  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1121  * in progress.
1122  */
1123 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1124 {
1125 	unsigned long flags;
1126 	u32 cr2 = 0;
1127 
1128 	/* Enable the interrupts relative to the current communication mode */
1129 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1130 		cr2 |= STM32F4_SPI_CR2_TXEIE;
1131 	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1132 				spi->cur_comm == SPI_SIMPLEX_RX ||
1133 				spi->cur_comm == SPI_3WIRE_RX) {
1134 		/* In transmit-only mode, the OVR flag is set in the SR register
1135 		 * since the received data are never read. Therefore set OVR
1136 		 * interrupt only when rx buffer is available.
1137 		 */
1138 		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1139 	} else {
1140 		return -EINVAL;
1141 	}
1142 
1143 	spin_lock_irqsave(&spi->lock, flags);
1144 
1145 	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1146 
1147 	stm32_spi_enable(spi);
1148 
1149 	/* starting data transfer when buffer is loaded */
1150 	if (spi->tx_buf)
1151 		stm32f4_spi_write_tx(spi);
1152 
1153 	spin_unlock_irqrestore(&spi->lock, flags);
1154 
1155 	return 1;
1156 }
1157 
1158 /**
1159  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1160  *				  interrupts
1161  * @spi: pointer to the spi controller data structure
1162  *
1163  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1164  * in progress.
1165  */
1166 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1167 {
1168 	unsigned long flags;
1169 	u32 ier = 0;
1170 
1171 	/* Enable the interrupts relative to the current communication mode */
1172 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1173 		ier |= STM32H7_SPI_IER_DXPIE;
1174 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1175 		ier |= STM32H7_SPI_IER_TXPIE;
1176 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1177 		ier |= STM32H7_SPI_IER_RXPIE;
1178 
1179 	/* Enable the interrupts relative to the end of transfer */
1180 	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1181 	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1182 
1183 	spin_lock_irqsave(&spi->lock, flags);
1184 
1185 	stm32_spi_enable(spi);
1186 
1187 	/* Be sure to have data in fifo before starting data transfer */
1188 	if (spi->tx_buf)
1189 		stm32h7_spi_write_txfifo(spi);
1190 
1191 	if (STM32_SPI_MASTER_MODE(spi))
1192 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1193 
1194 	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1195 
1196 	spin_unlock_irqrestore(&spi->lock, flags);
1197 
1198 	return 1;
1199 }
1200 
1201 /**
1202  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1203  *					transfer using DMA
1204  * @spi: pointer to the spi controller data structure
1205  */
1206 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1207 {
1208 	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1209 	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1210 	    spi->cur_comm == SPI_FULL_DUPLEX) {
1211 		/*
1212 		 * In transmit-only mode, the OVR flag is set in the SR register
1213 		 * since the received data are never read. Therefore set OVR
1214 		 * interrupt only when rx buffer is available.
1215 		 */
1216 		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1217 	}
1218 
1219 	stm32_spi_enable(spi);
1220 }
1221 
1222 /**
1223  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1224  *					transfer using DMA
1225  * @spi: pointer to the spi controller data structure
1226  */
1227 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1228 {
1229 	uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1230 
1231 	/* Enable the interrupts */
1232 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1233 		ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1234 
1235 	stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1236 
1237 	stm32_spi_enable(spi);
1238 
1239 	if (STM32_SPI_MASTER_MODE(spi))
1240 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1241 }
1242 
1243 /**
1244  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1245  * @spi: pointer to the spi controller data structure
1246  * @xfer: pointer to the spi_transfer structure
1247  *
1248  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1249  * in progress.
1250  */
1251 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1252 				      struct spi_transfer *xfer)
1253 {
1254 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1255 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1256 	unsigned long flags;
1257 
1258 	spin_lock_irqsave(&spi->lock, flags);
1259 
1260 	rx_dma_desc = NULL;
1261 	if (spi->rx_buf && spi->dma_rx) {
1262 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1263 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1264 
1265 		/* Enable Rx DMA request */
1266 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1267 				   spi->cfg->regs->dma_rx_en.mask);
1268 
1269 		rx_dma_desc = dmaengine_prep_slave_sg(
1270 					spi->dma_rx, xfer->rx_sg.sgl,
1271 					xfer->rx_sg.nents,
1272 					rx_dma_conf.direction,
1273 					DMA_PREP_INTERRUPT);
1274 	}
1275 
1276 	tx_dma_desc = NULL;
1277 	if (spi->tx_buf && spi->dma_tx) {
1278 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1279 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1280 
1281 		tx_dma_desc = dmaengine_prep_slave_sg(
1282 					spi->dma_tx, xfer->tx_sg.sgl,
1283 					xfer->tx_sg.nents,
1284 					tx_dma_conf.direction,
1285 					DMA_PREP_INTERRUPT);
1286 	}
1287 
1288 	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1289 	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1290 		goto dma_desc_error;
1291 
1292 	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1293 		goto dma_desc_error;
1294 
1295 	if (rx_dma_desc) {
1296 		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1297 		rx_dma_desc->callback_param = spi;
1298 
1299 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1300 			dev_err(spi->dev, "Rx DMA submit failed\n");
1301 			goto dma_desc_error;
1302 		}
1303 		/* Enable Rx DMA channel */
1304 		dma_async_issue_pending(spi->dma_rx);
1305 	}
1306 
1307 	if (tx_dma_desc) {
1308 		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1309 		    spi->cur_comm == SPI_3WIRE_TX) {
1310 			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1311 			tx_dma_desc->callback_param = spi;
1312 		}
1313 
1314 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1315 			dev_err(spi->dev, "Tx DMA submit failed\n");
1316 			goto dma_submit_error;
1317 		}
1318 		/* Enable Tx DMA channel */
1319 		dma_async_issue_pending(spi->dma_tx);
1320 
1321 		/* Enable Tx DMA request */
1322 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1323 				   spi->cfg->regs->dma_tx_en.mask);
1324 	}
1325 
1326 	spi->cfg->transfer_one_dma_start(spi);
1327 
1328 	spin_unlock_irqrestore(&spi->lock, flags);
1329 
1330 	return 1;
1331 
1332 dma_submit_error:
1333 	if (spi->dma_rx)
1334 		dmaengine_terminate_sync(spi->dma_rx);
1335 
1336 dma_desc_error:
1337 	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1338 			   spi->cfg->regs->dma_rx_en.mask);
1339 
1340 	spin_unlock_irqrestore(&spi->lock, flags);
1341 
1342 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1343 
1344 	spi->cur_usedma = false;
1345 	return spi->cfg->transfer_one_irq(spi);
1346 }
1347 
1348 /**
1349  * stm32f4_spi_set_bpw - Configure bits per word
1350  * @spi: pointer to the spi controller data structure
1351  */
1352 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1353 {
1354 	if (spi->cur_bpw == 16)
1355 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1356 	else
1357 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1358 }
1359 
1360 /**
1361  * stm32h7_spi_set_bpw - configure bits per word
1362  * @spi: pointer to the spi controller data structure
1363  */
1364 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1365 {
1366 	u32 bpw, fthlv;
1367 	u32 cfg1_clrb = 0, cfg1_setb = 0;
1368 
1369 	bpw = spi->cur_bpw - 1;
1370 
1371 	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1372 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1373 
1374 	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1375 	fthlv = spi->cur_fthlv - 1;
1376 
1377 	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1378 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1379 
1380 	writel_relaxed(
1381 		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1382 		 ~cfg1_clrb) | cfg1_setb,
1383 		spi->base + STM32H7_SPI_CFG1);
1384 }
1385 
1386 /**
1387  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1388  * @spi: pointer to the spi controller data structure
1389  * @mbrdiv: baud rate divisor value
1390  */
1391 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1392 {
1393 	u32 clrb = 0, setb = 0;
1394 
1395 	clrb |= spi->cfg->regs->br.mask;
1396 	setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1397 
1398 	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1399 			~clrb) | setb,
1400 		       spi->base + spi->cfg->regs->br.reg);
1401 }
1402 
1403 /**
1404  * stm32_spi_communication_type - return transfer communication type
1405  * @spi_dev: pointer to the spi device
1406  * @transfer: pointer to spi transfer
1407  */
1408 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1409 						 struct spi_transfer *transfer)
1410 {
1411 	unsigned int type = SPI_FULL_DUPLEX;
1412 
1413 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1414 		/*
1415 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1416 		 * is forbidden and unvalidated by SPI subsystem so depending
1417 		 * on the valid buffer, we can determine the direction of the
1418 		 * transfer.
1419 		 */
1420 		if (!transfer->tx_buf)
1421 			type = SPI_3WIRE_RX;
1422 		else
1423 			type = SPI_3WIRE_TX;
1424 	} else {
1425 		if (!transfer->tx_buf)
1426 			type = SPI_SIMPLEX_RX;
1427 		else if (!transfer->rx_buf)
1428 			type = SPI_SIMPLEX_TX;
1429 	}
1430 
1431 	return type;
1432 }
1433 
1434 /**
1435  * stm32f4_spi_set_mode - configure communication mode
1436  * @spi: pointer to the spi controller data structure
1437  * @comm_type: type of communication to configure
1438  */
1439 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1440 {
1441 	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1442 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1443 					STM32F4_SPI_CR1_BIDIMODE |
1444 					STM32F4_SPI_CR1_BIDIOE);
1445 	} else if (comm_type == SPI_FULL_DUPLEX ||
1446 				comm_type == SPI_SIMPLEX_RX) {
1447 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1448 					STM32F4_SPI_CR1_BIDIMODE |
1449 					STM32F4_SPI_CR1_BIDIOE);
1450 	} else if (comm_type == SPI_3WIRE_RX) {
1451 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1452 					STM32F4_SPI_CR1_BIDIMODE);
1453 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1454 					STM32F4_SPI_CR1_BIDIOE);
1455 	} else {
1456 		return -EINVAL;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 /**
1463  * stm32h7_spi_set_mode - configure communication mode
1464  * @spi: pointer to the spi controller data structure
1465  * @comm_type: type of communication to configure
1466  */
1467 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1468 {
1469 	u32 mode;
1470 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1471 
1472 	if (comm_type == SPI_3WIRE_RX) {
1473 		mode = STM32H7_SPI_HALF_DUPLEX;
1474 		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1475 	} else if (comm_type == SPI_3WIRE_TX) {
1476 		mode = STM32H7_SPI_HALF_DUPLEX;
1477 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1478 	} else if (comm_type == SPI_SIMPLEX_RX) {
1479 		mode = STM32H7_SPI_SIMPLEX_RX;
1480 	} else if (comm_type == SPI_SIMPLEX_TX) {
1481 		mode = STM32H7_SPI_SIMPLEX_TX;
1482 	} else {
1483 		mode = STM32H7_SPI_FULL_DUPLEX;
1484 	}
1485 
1486 	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1487 	cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1488 
1489 	writel_relaxed(
1490 		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1491 		 ~cfg2_clrb) | cfg2_setb,
1492 		spi->base + STM32H7_SPI_CFG2);
1493 
1494 	return 0;
1495 }
1496 
1497 /**
1498  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1499  *			       consecutive data frames in master mode
1500  * @spi: pointer to the spi controller data structure
1501  * @len: transfer len
1502  */
1503 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1504 {
1505 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1506 
1507 	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1508 	if ((len > 1) && (spi->cur_midi > 0)) {
1509 		u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1510 		u32 midi = min_t(u32,
1511 				 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1512 				 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1513 				 STM32H7_SPI_CFG2_MIDI));
1514 
1515 
1516 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1517 			sck_period_ns, midi, midi * sck_period_ns);
1518 		cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1519 	}
1520 
1521 	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1522 			~cfg2_clrb) | cfg2_setb,
1523 		       spi->base + STM32H7_SPI_CFG2);
1524 }
1525 
1526 /**
1527  * stm32h7_spi_number_of_data - configure number of data at current transfer
1528  * @spi: pointer to the spi controller data structure
1529  * @nb_words: transfer length (in words)
1530  */
1531 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1532 {
1533 	if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1534 		writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1535 			       spi->base + STM32H7_SPI_CR2);
1536 	} else {
1537 		return -EMSGSIZE;
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 /**
1544  * stm32_spi_transfer_one_setup - common setup to transfer a single
1545  *				  spi_transfer either using DMA or
1546  *				  interrupts.
1547  * @spi: pointer to the spi controller data structure
1548  * @spi_dev: pointer to the spi device
1549  * @transfer: pointer to spi transfer
1550  */
1551 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1552 					struct spi_device *spi_dev,
1553 					struct spi_transfer *transfer)
1554 {
1555 	unsigned long flags;
1556 	unsigned int comm_type;
1557 	int nb_words, ret = 0;
1558 	int mbr;
1559 
1560 	spin_lock_irqsave(&spi->lock, flags);
1561 
1562 	spi->cur_xferlen = transfer->len;
1563 
1564 	spi->cur_bpw = transfer->bits_per_word;
1565 	spi->cfg->set_bpw(spi);
1566 
1567 	/* Update spi->cur_speed with real clock speed */
1568 	if (STM32_SPI_MASTER_MODE(spi)) {
1569 		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1570 					    spi->cfg->baud_rate_div_min,
1571 					    spi->cfg->baud_rate_div_max);
1572 		if (mbr < 0) {
1573 			ret = mbr;
1574 			goto out;
1575 		}
1576 
1577 		transfer->speed_hz = spi->cur_speed;
1578 		stm32_spi_set_mbr(spi, mbr);
1579 	}
1580 
1581 	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1582 	ret = spi->cfg->set_mode(spi, comm_type);
1583 	if (ret < 0)
1584 		goto out;
1585 
1586 	spi->cur_comm = comm_type;
1587 
1588 	if (STM32_SPI_MASTER_MODE(spi) && spi->cfg->set_data_idleness)
1589 		spi->cfg->set_data_idleness(spi, transfer->len);
1590 
1591 	if (spi->cur_bpw <= 8)
1592 		nb_words = transfer->len;
1593 	else if (spi->cur_bpw <= 16)
1594 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1595 	else
1596 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1597 
1598 	if (spi->cfg->set_number_of_data) {
1599 		ret = spi->cfg->set_number_of_data(spi, nb_words);
1600 		if (ret < 0)
1601 			goto out;
1602 	}
1603 
1604 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1605 		spi->cur_comm);
1606 	dev_dbg(spi->dev,
1607 		"data frame of %d-bit, data packet of %d data frames\n",
1608 		spi->cur_bpw, spi->cur_fthlv);
1609 	if (STM32_SPI_MASTER_MODE(spi))
1610 		dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1611 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1612 		spi->cur_xferlen, nb_words);
1613 	dev_dbg(spi->dev, "dma %s\n",
1614 		(spi->cur_usedma) ? "enabled" : "disabled");
1615 
1616 out:
1617 	spin_unlock_irqrestore(&spi->lock, flags);
1618 
1619 	return ret;
1620 }
1621 
1622 /**
1623  * stm32_spi_transfer_one - transfer a single spi_transfer
1624  * @ctrl: controller interface
1625  * @spi_dev: pointer to the spi device
1626  * @transfer: pointer to spi transfer
1627  *
1628  * It must return 0 if the transfer is finished or 1 if the transfer is still
1629  * in progress.
1630  */
1631 static int stm32_spi_transfer_one(struct spi_controller *ctrl,
1632 				  struct spi_device *spi_dev,
1633 				  struct spi_transfer *transfer)
1634 {
1635 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1636 	int ret;
1637 
1638 	spi->tx_buf = transfer->tx_buf;
1639 	spi->rx_buf = transfer->rx_buf;
1640 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1641 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1642 
1643 	spi->cur_usedma = (ctrl->can_dma &&
1644 			   ctrl->can_dma(ctrl, spi_dev, transfer));
1645 
1646 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1647 	if (ret) {
1648 		dev_err(spi->dev, "SPI transfer setup failed\n");
1649 		return ret;
1650 	}
1651 
1652 	if (spi->cur_usedma)
1653 		return stm32_spi_transfer_one_dma(spi, transfer);
1654 	else
1655 		return spi->cfg->transfer_one_irq(spi);
1656 }
1657 
1658 /**
1659  * stm32_spi_unprepare_msg - relax the hardware
1660  * @ctrl: controller interface
1661  * @msg: pointer to the spi message
1662  */
1663 static int stm32_spi_unprepare_msg(struct spi_controller *ctrl,
1664 				   struct spi_message *msg)
1665 {
1666 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1667 
1668 	spi->cfg->disable(spi);
1669 
1670 	return 0;
1671 }
1672 
1673 /**
1674  * stm32f4_spi_config - Configure SPI controller as SPI master
1675  * @spi: pointer to the spi controller data structure
1676  */
1677 static int stm32f4_spi_config(struct stm32_spi *spi)
1678 {
1679 	unsigned long flags;
1680 
1681 	spin_lock_irqsave(&spi->lock, flags);
1682 
1683 	/* Ensure I2SMOD bit is kept cleared */
1684 	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1685 			   STM32F4_SPI_I2SCFGR_I2SMOD);
1686 
1687 	/*
1688 	 * - SS input value high
1689 	 * - transmitter half duplex direction
1690 	 * - Set the master mode (default Motorola mode)
1691 	 * - Consider 1 master/n slaves configuration and
1692 	 *   SS input value is determined by the SSI bit
1693 	 */
1694 	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1695 						 STM32F4_SPI_CR1_BIDIOE |
1696 						 STM32F4_SPI_CR1_MSTR |
1697 						 STM32F4_SPI_CR1_SSM);
1698 
1699 	spin_unlock_irqrestore(&spi->lock, flags);
1700 
1701 	return 0;
1702 }
1703 
1704 /**
1705  * stm32h7_spi_config - Configure SPI controller
1706  * @spi: pointer to the spi controller data structure
1707  */
1708 static int stm32h7_spi_config(struct stm32_spi *spi)
1709 {
1710 	unsigned long flags;
1711 	u32 cr1 = 0, cfg2 = 0;
1712 
1713 	spin_lock_irqsave(&spi->lock, flags);
1714 
1715 	/* Ensure I2SMOD bit is kept cleared */
1716 	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1717 			   STM32H7_SPI_I2SCFGR_I2SMOD);
1718 
1719 	if (STM32_SPI_DEVICE_MODE(spi)) {
1720 		/* Use native device select */
1721 		cfg2 &= ~STM32H7_SPI_CFG2_SSM;
1722 	} else {
1723 		/*
1724 		 * - Transmitter half duplex direction
1725 		 * - Automatic communication suspend when RX-Fifo is full
1726 		 * - SS input value high
1727 		 */
1728 		cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI;
1729 
1730 		/*
1731 		 * - Set the master mode (default Motorola mode)
1732 		 * - Consider 1 master/n devices configuration and
1733 		 *   SS input value is determined by the SSI bit
1734 		 * - keep control of all associated GPIOs
1735 		 */
1736 		cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR;
1737 	}
1738 
1739 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1);
1740 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2);
1741 
1742 	spin_unlock_irqrestore(&spi->lock, flags);
1743 
1744 	return 0;
1745 }
1746 
1747 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1748 	.regs = &stm32f4_spi_regspec,
1749 	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1750 	.disable = stm32f4_spi_disable,
1751 	.config = stm32f4_spi_config,
1752 	.set_bpw = stm32f4_spi_set_bpw,
1753 	.set_mode = stm32f4_spi_set_mode,
1754 	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1755 	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1756 	.dma_rx_cb = stm32_spi_dma_rx_cb,
1757 	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1758 	.irq_handler_event = stm32f4_spi_irq_event,
1759 	.irq_handler_thread = stm32f4_spi_irq_thread,
1760 	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1761 	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1762 	.has_fifo = false,
1763 	.has_device_mode = false,
1764 	.flags = SPI_CONTROLLER_MUST_TX,
1765 };
1766 
1767 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1768 	.regs = &stm32h7_spi_regspec,
1769 	.get_fifo_size = stm32h7_spi_get_fifo_size,
1770 	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1771 	.disable = stm32h7_spi_disable,
1772 	.config = stm32h7_spi_config,
1773 	.set_bpw = stm32h7_spi_set_bpw,
1774 	.set_mode = stm32h7_spi_set_mode,
1775 	.set_data_idleness = stm32h7_spi_data_idleness,
1776 	.set_number_of_data = stm32h7_spi_number_of_data,
1777 	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1778 	.dma_rx_cb = stm32_spi_dma_rx_cb,
1779 	/*
1780 	 * dma_tx_cb is not necessary since in case of TX, dma is followed by
1781 	 * SPI access hence handling is performed within the SPI interrupt
1782 	 */
1783 	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1784 	.irq_handler_thread = stm32h7_spi_irq_thread,
1785 	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1786 	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1787 	.has_fifo = true,
1788 	.has_device_mode = true,
1789 };
1790 
1791 static const struct of_device_id stm32_spi_of_match[] = {
1792 	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1793 	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1794 	{},
1795 };
1796 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1797 
1798 static int stm32h7_spi_device_abort(struct spi_controller *ctrl)
1799 {
1800 	spi_finalize_current_transfer(ctrl);
1801 	return 0;
1802 }
1803 
1804 static int stm32_spi_probe(struct platform_device *pdev)
1805 {
1806 	struct spi_controller *ctrl;
1807 	struct stm32_spi *spi;
1808 	struct resource *res;
1809 	struct reset_control *rst;
1810 	struct device_node *np = pdev->dev.of_node;
1811 	bool device_mode;
1812 	int ret;
1813 	const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev);
1814 
1815 	device_mode = of_property_read_bool(np, "spi-slave");
1816 	if (!cfg->has_device_mode && device_mode) {
1817 		dev_err(&pdev->dev, "spi-slave not supported\n");
1818 		return -EPERM;
1819 	}
1820 
1821 	if (device_mode)
1822 		ctrl = devm_spi_alloc_slave(&pdev->dev, sizeof(struct stm32_spi));
1823 	else
1824 		ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1825 	if (!ctrl) {
1826 		dev_err(&pdev->dev, "spi controller allocation failed\n");
1827 		return -ENOMEM;
1828 	}
1829 	platform_set_drvdata(pdev, ctrl);
1830 
1831 	spi = spi_controller_get_devdata(ctrl);
1832 	spi->dev = &pdev->dev;
1833 	spi->ctrl = ctrl;
1834 	spi->device_mode = device_mode;
1835 	spin_lock_init(&spi->lock);
1836 
1837 	spi->cfg = cfg;
1838 
1839 	spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1840 	if (IS_ERR(spi->base))
1841 		return PTR_ERR(spi->base);
1842 
1843 	spi->phys_addr = (dma_addr_t)res->start;
1844 
1845 	spi->irq = platform_get_irq(pdev, 0);
1846 	if (spi->irq <= 0)
1847 		return spi->irq;
1848 
1849 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1850 					spi->cfg->irq_handler_event,
1851 					spi->cfg->irq_handler_thread,
1852 					IRQF_ONESHOT, pdev->name, ctrl);
1853 	if (ret) {
1854 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1855 			ret);
1856 		return ret;
1857 	}
1858 
1859 	spi->clk = devm_clk_get(&pdev->dev, NULL);
1860 	if (IS_ERR(spi->clk)) {
1861 		ret = PTR_ERR(spi->clk);
1862 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1863 		return ret;
1864 	}
1865 
1866 	ret = clk_prepare_enable(spi->clk);
1867 	if (ret) {
1868 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1869 		return ret;
1870 	}
1871 	spi->clk_rate = clk_get_rate(spi->clk);
1872 	if (!spi->clk_rate) {
1873 		dev_err(&pdev->dev, "clk rate = 0\n");
1874 		ret = -EINVAL;
1875 		goto err_clk_disable;
1876 	}
1877 
1878 	rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1879 	if (rst) {
1880 		if (IS_ERR(rst)) {
1881 			ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1882 					    "failed to get reset\n");
1883 			goto err_clk_disable;
1884 		}
1885 
1886 		reset_control_assert(rst);
1887 		udelay(2);
1888 		reset_control_deassert(rst);
1889 	}
1890 
1891 	if (spi->cfg->has_fifo)
1892 		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1893 
1894 	ret = spi->cfg->config(spi);
1895 	if (ret) {
1896 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1897 			ret);
1898 		goto err_clk_disable;
1899 	}
1900 
1901 	ctrl->dev.of_node = pdev->dev.of_node;
1902 	ctrl->auto_runtime_pm = true;
1903 	ctrl->bus_num = pdev->id;
1904 	ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1905 			  SPI_3WIRE;
1906 	ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1907 	ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1908 	ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1909 	ctrl->use_gpio_descriptors = true;
1910 	ctrl->prepare_message = stm32_spi_prepare_msg;
1911 	ctrl->transfer_one = stm32_spi_transfer_one;
1912 	ctrl->unprepare_message = stm32_spi_unprepare_msg;
1913 	ctrl->flags = spi->cfg->flags;
1914 	if (STM32_SPI_DEVICE_MODE(spi))
1915 		ctrl->slave_abort = stm32h7_spi_device_abort;
1916 
1917 	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1918 	if (IS_ERR(spi->dma_tx)) {
1919 		ret = PTR_ERR(spi->dma_tx);
1920 		spi->dma_tx = NULL;
1921 		if (ret == -EPROBE_DEFER)
1922 			goto err_clk_disable;
1923 
1924 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1925 	} else {
1926 		ctrl->dma_tx = spi->dma_tx;
1927 	}
1928 
1929 	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1930 	if (IS_ERR(spi->dma_rx)) {
1931 		ret = PTR_ERR(spi->dma_rx);
1932 		spi->dma_rx = NULL;
1933 		if (ret == -EPROBE_DEFER)
1934 			goto err_dma_release;
1935 
1936 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1937 	} else {
1938 		ctrl->dma_rx = spi->dma_rx;
1939 	}
1940 
1941 	if (spi->dma_tx || spi->dma_rx)
1942 		ctrl->can_dma = stm32_spi_can_dma;
1943 
1944 	pm_runtime_set_autosuspend_delay(&pdev->dev,
1945 					 STM32_SPI_AUTOSUSPEND_DELAY);
1946 	pm_runtime_use_autosuspend(&pdev->dev);
1947 	pm_runtime_set_active(&pdev->dev);
1948 	pm_runtime_get_noresume(&pdev->dev);
1949 	pm_runtime_enable(&pdev->dev);
1950 
1951 	ret = spi_register_controller(ctrl);
1952 	if (ret) {
1953 		dev_err(&pdev->dev, "spi controller registration failed: %d\n",
1954 			ret);
1955 		goto err_pm_disable;
1956 	}
1957 
1958 	pm_runtime_mark_last_busy(&pdev->dev);
1959 	pm_runtime_put_autosuspend(&pdev->dev);
1960 
1961 	dev_info(&pdev->dev, "driver initialized (%s mode)\n",
1962 		 STM32_SPI_MASTER_MODE(spi) ? "master" : "device");
1963 
1964 	return 0;
1965 
1966 err_pm_disable:
1967 	pm_runtime_disable(&pdev->dev);
1968 	pm_runtime_put_noidle(&pdev->dev);
1969 	pm_runtime_set_suspended(&pdev->dev);
1970 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1971 err_dma_release:
1972 	if (spi->dma_tx)
1973 		dma_release_channel(spi->dma_tx);
1974 	if (spi->dma_rx)
1975 		dma_release_channel(spi->dma_rx);
1976 err_clk_disable:
1977 	clk_disable_unprepare(spi->clk);
1978 
1979 	return ret;
1980 }
1981 
1982 static void stm32_spi_remove(struct platform_device *pdev)
1983 {
1984 	struct spi_controller *ctrl = platform_get_drvdata(pdev);
1985 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1986 
1987 	pm_runtime_get_sync(&pdev->dev);
1988 
1989 	spi_unregister_controller(ctrl);
1990 	spi->cfg->disable(spi);
1991 
1992 	pm_runtime_disable(&pdev->dev);
1993 	pm_runtime_put_noidle(&pdev->dev);
1994 	pm_runtime_set_suspended(&pdev->dev);
1995 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1996 
1997 	if (ctrl->dma_tx)
1998 		dma_release_channel(ctrl->dma_tx);
1999 	if (ctrl->dma_rx)
2000 		dma_release_channel(ctrl->dma_rx);
2001 
2002 	clk_disable_unprepare(spi->clk);
2003 
2004 
2005 	pinctrl_pm_select_sleep_state(&pdev->dev);
2006 }
2007 
2008 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
2009 {
2010 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2011 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2012 
2013 	clk_disable_unprepare(spi->clk);
2014 
2015 	return pinctrl_pm_select_sleep_state(dev);
2016 }
2017 
2018 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
2019 {
2020 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2021 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2022 	int ret;
2023 
2024 	ret = pinctrl_pm_select_default_state(dev);
2025 	if (ret)
2026 		return ret;
2027 
2028 	return clk_prepare_enable(spi->clk);
2029 }
2030 
2031 static int __maybe_unused stm32_spi_suspend(struct device *dev)
2032 {
2033 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2034 	int ret;
2035 
2036 	ret = spi_controller_suspend(ctrl);
2037 	if (ret)
2038 		return ret;
2039 
2040 	return pm_runtime_force_suspend(dev);
2041 }
2042 
2043 static int __maybe_unused stm32_spi_resume(struct device *dev)
2044 {
2045 	struct spi_controller *ctrl = dev_get_drvdata(dev);
2046 	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2047 	int ret;
2048 
2049 	ret = pm_runtime_force_resume(dev);
2050 	if (ret)
2051 		return ret;
2052 
2053 	ret = spi_controller_resume(ctrl);
2054 	if (ret) {
2055 		clk_disable_unprepare(spi->clk);
2056 		return ret;
2057 	}
2058 
2059 	ret = pm_runtime_resume_and_get(dev);
2060 	if (ret < 0) {
2061 		dev_err(dev, "Unable to power device:%d\n", ret);
2062 		return ret;
2063 	}
2064 
2065 	spi->cfg->config(spi);
2066 
2067 	pm_runtime_mark_last_busy(dev);
2068 	pm_runtime_put_autosuspend(dev);
2069 
2070 	return 0;
2071 }
2072 
2073 static const struct dev_pm_ops stm32_spi_pm_ops = {
2074 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2075 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2076 			   stm32_spi_runtime_resume, NULL)
2077 };
2078 
2079 static struct platform_driver stm32_spi_driver = {
2080 	.probe = stm32_spi_probe,
2081 	.remove_new = stm32_spi_remove,
2082 	.driver = {
2083 		.name = DRIVER_NAME,
2084 		.pm = &stm32_spi_pm_ops,
2085 		.of_match_table = stm32_spi_of_match,
2086 	},
2087 };
2088 
2089 module_platform_driver(stm32_spi_driver);
2090 
2091 MODULE_ALIAS("platform:" DRIVER_NAME);
2092 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2093 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2094 MODULE_LICENSE("GPL v2");
2095