xref: /openbmc/linux/drivers/spi/spi-stm32.c (revision 4c1ca831)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7 
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 #include <linux/spi/spi.h>
20 
21 #define DRIVER_NAME "spi_stm32"
22 
23 /* STM32F4 SPI registers */
24 #define STM32F4_SPI_CR1			0x00
25 #define STM32F4_SPI_CR2			0x04
26 #define STM32F4_SPI_SR			0x08
27 #define STM32F4_SPI_DR			0x0C
28 #define STM32F4_SPI_I2SCFGR		0x1C
29 
30 /* STM32F4_SPI_CR1 bit fields */
31 #define STM32F4_SPI_CR1_CPHA		BIT(0)
32 #define STM32F4_SPI_CR1_CPOL		BIT(1)
33 #define STM32F4_SPI_CR1_MSTR		BIT(2)
34 #define STM32F4_SPI_CR1_BR_SHIFT	3
35 #define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
36 #define STM32F4_SPI_CR1_SPE		BIT(6)
37 #define STM32F4_SPI_CR1_LSBFRST		BIT(7)
38 #define STM32F4_SPI_CR1_SSI		BIT(8)
39 #define STM32F4_SPI_CR1_SSM		BIT(9)
40 #define STM32F4_SPI_CR1_RXONLY		BIT(10)
41 #define STM32F4_SPI_CR1_DFF		BIT(11)
42 #define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
43 #define STM32F4_SPI_CR1_CRCEN		BIT(13)
44 #define STM32F4_SPI_CR1_BIDIOE		BIT(14)
45 #define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
46 #define STM32F4_SPI_CR1_BR_MIN		0
47 #define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
48 
49 /* STM32F4_SPI_CR2 bit fields */
50 #define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
51 #define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
52 #define STM32F4_SPI_CR2_SSOE		BIT(2)
53 #define STM32F4_SPI_CR2_FRF		BIT(4)
54 #define STM32F4_SPI_CR2_ERRIE		BIT(5)
55 #define STM32F4_SPI_CR2_RXNEIE		BIT(6)
56 #define STM32F4_SPI_CR2_TXEIE		BIT(7)
57 
58 /* STM32F4_SPI_SR bit fields */
59 #define STM32F4_SPI_SR_RXNE		BIT(0)
60 #define STM32F4_SPI_SR_TXE		BIT(1)
61 #define STM32F4_SPI_SR_CHSIDE		BIT(2)
62 #define STM32F4_SPI_SR_UDR		BIT(3)
63 #define STM32F4_SPI_SR_CRCERR		BIT(4)
64 #define STM32F4_SPI_SR_MODF		BIT(5)
65 #define STM32F4_SPI_SR_OVR		BIT(6)
66 #define STM32F4_SPI_SR_BSY		BIT(7)
67 #define STM32F4_SPI_SR_FRE		BIT(8)
68 
69 /* STM32F4_SPI_I2SCFGR bit fields */
70 #define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
71 
72 /* STM32F4 SPI Baud Rate min/max divisor */
73 #define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
74 #define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
75 
76 /* STM32H7 SPI registers */
77 #define STM32H7_SPI_CR1			0x00
78 #define STM32H7_SPI_CR2			0x04
79 #define STM32H7_SPI_CFG1		0x08
80 #define STM32H7_SPI_CFG2		0x0C
81 #define STM32H7_SPI_IER			0x10
82 #define STM32H7_SPI_SR			0x14
83 #define STM32H7_SPI_IFCR		0x18
84 #define STM32H7_SPI_TXDR		0x20
85 #define STM32H7_SPI_RXDR		0x30
86 #define STM32H7_SPI_I2SCFGR		0x50
87 
88 /* STM32H7_SPI_CR1 bit fields */
89 #define STM32H7_SPI_CR1_SPE		BIT(0)
90 #define STM32H7_SPI_CR1_MASRX		BIT(8)
91 #define STM32H7_SPI_CR1_CSTART		BIT(9)
92 #define STM32H7_SPI_CR1_CSUSP		BIT(10)
93 #define STM32H7_SPI_CR1_HDDIR		BIT(11)
94 #define STM32H7_SPI_CR1_SSI		BIT(12)
95 
96 /* STM32H7_SPI_CR2 bit fields */
97 #define STM32H7_SPI_CR2_TSIZE_SHIFT	0
98 #define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
99 
100 /* STM32H7_SPI_CFG1 bit fields */
101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
102 #define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
104 #define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT	28
108 #define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
109 #define STM32H7_SPI_CFG1_MBR_MIN	0
110 #define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
111 
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI_SHIFT	4
114 #define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
115 #define STM32H7_SPI_CFG2_COMM_SHIFT	17
116 #define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
117 #define STM32H7_SPI_CFG2_SP_SHIFT	19
118 #define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
119 #define STM32H7_SPI_CFG2_MASTER		BIT(22)
120 #define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
121 #define STM32H7_SPI_CFG2_CPHA		BIT(24)
122 #define STM32H7_SPI_CFG2_CPOL		BIT(25)
123 #define STM32H7_SPI_CFG2_SSM		BIT(26)
124 #define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
125 
126 /* STM32H7_SPI_IER bit fields */
127 #define STM32H7_SPI_IER_RXPIE		BIT(0)
128 #define STM32H7_SPI_IER_TXPIE		BIT(1)
129 #define STM32H7_SPI_IER_DXPIE		BIT(2)
130 #define STM32H7_SPI_IER_EOTIE		BIT(3)
131 #define STM32H7_SPI_IER_TXTFIE		BIT(4)
132 #define STM32H7_SPI_IER_OVRIE		BIT(6)
133 #define STM32H7_SPI_IER_MODFIE		BIT(9)
134 #define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
135 
136 /* STM32H7_SPI_SR bit fields */
137 #define STM32H7_SPI_SR_RXP		BIT(0)
138 #define STM32H7_SPI_SR_TXP		BIT(1)
139 #define STM32H7_SPI_SR_EOT		BIT(3)
140 #define STM32H7_SPI_SR_OVR		BIT(6)
141 #define STM32H7_SPI_SR_MODF		BIT(9)
142 #define STM32H7_SPI_SR_SUSP		BIT(11)
143 #define STM32H7_SPI_SR_RXPLVL_SHIFT	13
144 #define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
145 #define STM32H7_SPI_SR_RXWNE		BIT(15)
146 
147 /* STM32H7_SPI_IFCR bit fields */
148 #define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
149 
150 /* STM32H7_SPI_I2SCFGR bit fields */
151 #define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
152 
153 /* STM32H7 SPI Master Baud Rate min/max divisor */
154 #define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
155 #define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
156 
157 /* STM32H7 SPI Communication mode */
158 #define STM32H7_SPI_FULL_DUPLEX		0
159 #define STM32H7_SPI_SIMPLEX_TX		1
160 #define STM32H7_SPI_SIMPLEX_RX		2
161 #define STM32H7_SPI_HALF_DUPLEX		3
162 
163 /* SPI Communication type */
164 #define SPI_FULL_DUPLEX		0
165 #define SPI_SIMPLEX_TX		1
166 #define SPI_SIMPLEX_RX		2
167 #define SPI_3WIRE_TX		3
168 #define SPI_3WIRE_RX		4
169 
170 #define SPI_1HZ_NS		1000000000
171 
172 /*
173  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174  * without fifo buffers.
175  */
176 #define SPI_DMA_MIN_BYTES	16
177 
178 /**
179  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180  * @reg:		register offset
181  * @mask:		bitfield mask
182  * @shift:		left shift
183  */
184 struct stm32_spi_reg {
185 	int reg;
186 	int mask;
187 	int shift;
188 };
189 
190 /**
191  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192  * @en: enable register and SPI enable bit
193  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195  * @cpol: clock polarity register and polarity bit
196  * @cpha: clock phase register and phase bit
197  * @lsb_first: LSB transmitted first register and bit
198  * @br: baud rate register and bitfields
199  * @rx: SPI RX data register
200  * @tx: SPI TX data register
201  */
202 struct stm32_spi_regspec {
203 	const struct stm32_spi_reg en;
204 	const struct stm32_spi_reg dma_rx_en;
205 	const struct stm32_spi_reg dma_tx_en;
206 	const struct stm32_spi_reg cpol;
207 	const struct stm32_spi_reg cpha;
208 	const struct stm32_spi_reg lsb_first;
209 	const struct stm32_spi_reg br;
210 	const struct stm32_spi_reg rx;
211 	const struct stm32_spi_reg tx;
212 };
213 
214 struct stm32_spi;
215 
216 /**
217  * struct stm32_spi_cfg - stm32 compatible configuration data
218  * @regs: registers descriptions
219  * @get_fifo_size: routine to get fifo size
220  * @get_bpw_mask: routine to get bits per word mask
221  * @disable: routine to disable controller
222  * @config: routine to configure controller as SPI Master
223  * @set_bpw: routine to configure registers to for bits per word
224  * @set_mode: routine to configure registers to desired mode
225  * @set_data_idleness: optional routine to configure registers to desired idle
226  * time between frames (if driver has this functionality)
227  * @set_number_of_data: optional routine to configure registers to desired
228  * number of data (if driver has this functionality)
229  * @can_dma: routine to determine if the transfer is eligible for DMA use
230  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231  * using DMA
232  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
233  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234  * @transfer_one_irq: routine to configure interrupts for driver
235  * @irq_handler_event: Interrupt handler for SPI controller events
236  * @irq_handler_thread: thread of interrupt handler for SPI controller
237  * @baud_rate_div_min: minimum baud rate divisor
238  * @baud_rate_div_max: maximum baud rate divisor
239  * @has_fifo: boolean to know if fifo is used for driver
240  * @has_startbit: boolean to know if start bit is used to start transfer
241  */
242 struct stm32_spi_cfg {
243 	const struct stm32_spi_regspec *regs;
244 	int (*get_fifo_size)(struct stm32_spi *spi);
245 	int (*get_bpw_mask)(struct stm32_spi *spi);
246 	void (*disable)(struct stm32_spi *spi);
247 	int (*config)(struct stm32_spi *spi);
248 	void (*set_bpw)(struct stm32_spi *spi);
249 	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250 	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251 	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252 	void (*transfer_one_dma_start)(struct stm32_spi *spi);
253 	void (*dma_rx_cb)(void *data);
254 	void (*dma_tx_cb)(void *data);
255 	int (*transfer_one_irq)(struct stm32_spi *spi);
256 	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257 	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258 	unsigned int baud_rate_div_min;
259 	unsigned int baud_rate_div_max;
260 	bool has_fifo;
261 };
262 
263 /**
264  * struct stm32_spi - private data of the SPI controller
265  * @dev: driver model representation of the controller
266  * @master: controller master interface
267  * @cfg: compatible configuration data
268  * @base: virtual memory area
269  * @clk: hw kernel clock feeding the SPI clock generator
270  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271  * @rst: SPI controller reset line
272  * @lock: prevent I/O concurrent access
273  * @irq: SPI controller interrupt line
274  * @fifo_size: size of the embedded fifo in bytes
275  * @cur_midi: master inter-data idleness in ns
276  * @cur_speed: speed configured in Hz
277  * @cur_bpw: number of bits in a single SPI data frame
278  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279  * @cur_comm: SPI communication mode
280  * @cur_xferlen: current transfer length in bytes
281  * @cur_usedma: boolean to know if dma is used in current transfer
282  * @tx_buf: data to be written, or NULL
283  * @rx_buf: data to be read, or NULL
284  * @tx_len: number of data to be written in bytes
285  * @rx_len: number of data to be read in bytes
286  * @dma_tx: dma channel for TX transfer
287  * @dma_rx: dma channel for RX transfer
288  * @phys_addr: SPI registers physical base address
289  */
290 struct stm32_spi {
291 	struct device *dev;
292 	struct spi_master *master;
293 	const struct stm32_spi_cfg *cfg;
294 	void __iomem *base;
295 	struct clk *clk;
296 	u32 clk_rate;
297 	struct reset_control *rst;
298 	spinlock_t lock; /* prevent I/O concurrent access */
299 	int irq;
300 	unsigned int fifo_size;
301 
302 	unsigned int cur_midi;
303 	unsigned int cur_speed;
304 	unsigned int cur_bpw;
305 	unsigned int cur_fthlv;
306 	unsigned int cur_comm;
307 	unsigned int cur_xferlen;
308 	bool cur_usedma;
309 
310 	const void *tx_buf;
311 	void *rx_buf;
312 	int tx_len;
313 	int rx_len;
314 	struct dma_chan *dma_tx;
315 	struct dma_chan *dma_rx;
316 	dma_addr_t phys_addr;
317 };
318 
319 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320 	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321 
322 	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323 	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324 
325 	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326 	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327 	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328 	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329 
330 	.rx = { STM32F4_SPI_DR },
331 	.tx = { STM32F4_SPI_DR },
332 };
333 
334 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335 	/* SPI data transfer is enabled but spi_ker_ck is idle.
336 	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
337 	 */
338 	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339 
340 	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341 	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342 
343 	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344 	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345 	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346 	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347 		STM32H7_SPI_CFG1_MBR_SHIFT },
348 
349 	.rx = { STM32H7_SPI_RXDR },
350 	.tx = { STM32H7_SPI_TXDR },
351 };
352 
353 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354 				      u32 offset, u32 bits)
355 {
356 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357 		       spi->base + offset);
358 }
359 
360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361 				      u32 offset, u32 bits)
362 {
363 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364 		       spi->base + offset);
365 }
366 
367 /**
368  * stm32h7_spi_get_fifo_size - Return fifo size
369  * @spi: pointer to the spi controller data structure
370  */
371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 {
373 	unsigned long flags;
374 	u32 count = 0;
375 
376 	spin_lock_irqsave(&spi->lock, flags);
377 
378 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379 
380 	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381 		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382 
383 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384 
385 	spin_unlock_irqrestore(&spi->lock, flags);
386 
387 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388 
389 	return count;
390 }
391 
392 /**
393  * stm32f4_spi_get_bpw_mask - Return bits per word mask
394  * @spi: pointer to the spi controller data structure
395  */
396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 {
398 	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399 	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
400 }
401 
402 /**
403  * stm32h7_spi_get_bpw_mask - Return bits per word mask
404  * @spi: pointer to the spi controller data structure
405  */
406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 {
408 	unsigned long flags;
409 	u32 cfg1, max_bpw;
410 
411 	spin_lock_irqsave(&spi->lock, flags);
412 
413 	/*
414 	 * The most significant bit at DSIZE bit field is reserved when the
415 	 * maximum data size of periperal instances is limited to 16-bit
416 	 */
417 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418 
419 	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420 	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421 		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
422 	max_bpw += 1;
423 
424 	spin_unlock_irqrestore(&spi->lock, flags);
425 
426 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427 
428 	return SPI_BPW_RANGE_MASK(4, max_bpw);
429 }
430 
431 /**
432  * stm32_spi_prepare_mbr - Determine baud rate divisor value
433  * @spi: pointer to the spi controller data structure
434  * @speed_hz: requested speed
435  * @min_div: minimum baud rate divisor
436  * @max_div: maximum baud rate divisor
437  *
438  * Return baud rate divisor value in case of success or -EINVAL
439  */
440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441 				 u32 min_div, u32 max_div)
442 {
443 	u32 div, mbrdiv;
444 
445 	/* Ensure spi->clk_rate is even */
446 	div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
447 
448 	/*
449 	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
450 	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
451 	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
452 	 * no need to check it there.
453 	 * However, we need to ensure the following calculations.
454 	 */
455 	if ((div < min_div) || (div > max_div))
456 		return -EINVAL;
457 
458 	/* Determine the first power of 2 greater than or equal to div */
459 	if (div & (div - 1))
460 		mbrdiv = fls(div);
461 	else
462 		mbrdiv = fls(div) - 1;
463 
464 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
465 
466 	return mbrdiv - 1;
467 }
468 
469 /**
470  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471  * @spi: pointer to the spi controller data structure
472  * @xfer_len: length of the message to be transferred
473  */
474 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475 {
476 	u32 fthlv, half_fifo, packet;
477 
478 	/* data packet should not exceed 1/2 of fifo space */
479 	half_fifo = (spi->fifo_size / 2);
480 
481 	/* data_packet should not exceed transfer length */
482 	if (half_fifo > xfer_len)
483 		packet = xfer_len;
484 	else
485 		packet = half_fifo;
486 
487 	if (spi->cur_bpw <= 8)
488 		fthlv = packet;
489 	else if (spi->cur_bpw <= 16)
490 		fthlv = packet / 2;
491 	else
492 		fthlv = packet / 4;
493 
494 	/* align packet size with data registers access */
495 	if (spi->cur_bpw > 8)
496 		fthlv -= (fthlv % 2); /* multiple of 2 */
497 	else
498 		fthlv -= (fthlv % 4); /* multiple of 4 */
499 
500 	if (!fthlv)
501 		fthlv = 1;
502 
503 	return fthlv;
504 }
505 
506 /**
507  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
508  * @spi: pointer to the spi controller data structure
509  *
510  * Read from tx_buf depends on remaining bytes to avoid to read beyond
511  * tx_buf end.
512  */
513 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
514 {
515 	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
516 				  STM32F4_SPI_SR_TXE)) {
517 		u32 offs = spi->cur_xferlen - spi->tx_len;
518 
519 		if (spi->cur_bpw == 16) {
520 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
521 
522 			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
523 			spi->tx_len -= sizeof(u16);
524 		} else {
525 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
526 
527 			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
528 			spi->tx_len -= sizeof(u8);
529 		}
530 	}
531 
532 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
533 }
534 
535 /**
536  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537  * @spi: pointer to the spi controller data structure
538  *
539  * Read from tx_buf depends on remaining bytes to avoid to read beyond
540  * tx_buf end.
541  */
542 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543 {
544 	while ((spi->tx_len > 0) &&
545 		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
546 			STM32H7_SPI_SR_TXP)) {
547 		u32 offs = spi->cur_xferlen - spi->tx_len;
548 
549 		if (spi->tx_len >= sizeof(u32)) {
550 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
551 
552 			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553 			spi->tx_len -= sizeof(u32);
554 		} else if (spi->tx_len >= sizeof(u16)) {
555 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
556 
557 			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558 			spi->tx_len -= sizeof(u16);
559 		} else {
560 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
561 
562 			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563 			spi->tx_len -= sizeof(u8);
564 		}
565 	}
566 
567 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
568 }
569 
570 /**
571  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
572  * @spi: pointer to the spi controller data structure
573  *
574  * Write in rx_buf depends on remaining bytes to avoid to write beyond
575  * rx_buf end.
576  */
577 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
578 {
579 	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
580 				  STM32F4_SPI_SR_RXNE)) {
581 		u32 offs = spi->cur_xferlen - spi->rx_len;
582 
583 		if (spi->cur_bpw == 16) {
584 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
585 
586 			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
587 			spi->rx_len -= sizeof(u16);
588 		} else {
589 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
590 
591 			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
592 			spi->rx_len -= sizeof(u8);
593 		}
594 	}
595 
596 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
597 }
598 
599 /**
600  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601  * @spi: pointer to the spi controller data structure
602  * @flush: boolean indicating that FIFO should be flushed
603  *
604  * Write in rx_buf depends on remaining bytes to avoid to write beyond
605  * rx_buf end.
606  */
607 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608 {
609 	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
610 	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
611 		     STM32H7_SPI_SR_RXPLVL_SHIFT;
612 
613 	while ((spi->rx_len > 0) &&
614 	       ((sr & STM32H7_SPI_SR_RXP) ||
615 		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616 		u32 offs = spi->cur_xferlen - spi->rx_len;
617 
618 		if ((spi->rx_len >= sizeof(u32)) ||
619 		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
621 
622 			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623 			spi->rx_len -= sizeof(u32);
624 		} else if ((spi->rx_len >= sizeof(u16)) ||
625 			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
626 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
627 
628 			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629 			spi->rx_len -= sizeof(u16);
630 		} else {
631 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
632 
633 			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634 			spi->rx_len -= sizeof(u8);
635 		}
636 
637 		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
638 		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
639 			 STM32H7_SPI_SR_RXPLVL_SHIFT;
640 	}
641 
642 	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
643 		flush ? "(flush)" : "", spi->rx_len);
644 }
645 
646 /**
647  * stm32_spi_enable - Enable SPI controller
648  * @spi: pointer to the spi controller data structure
649  */
650 static void stm32_spi_enable(struct stm32_spi *spi)
651 {
652 	dev_dbg(spi->dev, "enable controller\n");
653 
654 	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
655 			   spi->cfg->regs->en.mask);
656 }
657 
658 /**
659  * stm32f4_spi_disable - Disable SPI controller
660  * @spi: pointer to the spi controller data structure
661  */
662 static void stm32f4_spi_disable(struct stm32_spi *spi)
663 {
664 	unsigned long flags;
665 	u32 sr;
666 
667 	dev_dbg(spi->dev, "disable controller\n");
668 
669 	spin_lock_irqsave(&spi->lock, flags);
670 
671 	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
672 	      STM32F4_SPI_CR1_SPE)) {
673 		spin_unlock_irqrestore(&spi->lock, flags);
674 		return;
675 	}
676 
677 	/* Disable interrupts */
678 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
679 						 STM32F4_SPI_CR2_RXNEIE |
680 						 STM32F4_SPI_CR2_ERRIE);
681 
682 	/* Wait until BSY = 0 */
683 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
684 					      sr, !(sr & STM32F4_SPI_SR_BSY),
685 					      10, 100000) < 0) {
686 		dev_warn(spi->dev, "disabling condition timeout\n");
687 	}
688 
689 	if (spi->cur_usedma && spi->dma_tx)
690 		dmaengine_terminate_all(spi->dma_tx);
691 	if (spi->cur_usedma && spi->dma_rx)
692 		dmaengine_terminate_all(spi->dma_rx);
693 
694 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
695 
696 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
697 						 STM32F4_SPI_CR2_RXDMAEN);
698 
699 	/* Sequence to clear OVR flag */
700 	readl_relaxed(spi->base + STM32F4_SPI_DR);
701 	readl_relaxed(spi->base + STM32F4_SPI_SR);
702 
703 	spin_unlock_irqrestore(&spi->lock, flags);
704 }
705 
706 /**
707  * stm32h7_spi_disable - Disable SPI controller
708  * @spi: pointer to the spi controller data structure
709  *
710  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712  * RX-Fifo.
713  * Normally, if TSIZE has been configured, we should relax the hardware at the
714  * reception of the EOT interrupt. But in case of error, EOT will not be
715  * raised. So the subsystem unprepare_message call allows us to properly
716  * complete the transfer from an hardware point of view.
717  */
718 static void stm32h7_spi_disable(struct stm32_spi *spi)
719 {
720 	unsigned long flags;
721 	u32 cr1, sr;
722 
723 	dev_dbg(spi->dev, "disable controller\n");
724 
725 	spin_lock_irqsave(&spi->lock, flags);
726 
727 	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728 
729 	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730 		spin_unlock_irqrestore(&spi->lock, flags);
731 		return;
732 	}
733 
734 	/* Wait on EOT or suspend the flow */
735 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
736 					      sr, !(sr & STM32H7_SPI_SR_EOT),
737 					      10, 100000) < 0) {
738 		if (cr1 & STM32H7_SPI_CR1_CSTART) {
739 			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
740 				       spi->base + STM32H7_SPI_CR1);
741 			if (readl_relaxed_poll_timeout_atomic(
742 						spi->base + STM32H7_SPI_SR,
743 						sr, !(sr & STM32H7_SPI_SR_SUSP),
744 						10, 100000) < 0)
745 				dev_warn(spi->dev,
746 					 "Suspend request timeout\n");
747 		}
748 	}
749 
750 	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751 		stm32h7_spi_read_rxfifo(spi, true);
752 
753 	if (spi->cur_usedma && spi->dma_tx)
754 		dmaengine_terminate_all(spi->dma_tx);
755 	if (spi->cur_usedma && spi->dma_rx)
756 		dmaengine_terminate_all(spi->dma_rx);
757 
758 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759 
760 	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
761 						STM32H7_SPI_CFG1_RXDMAEN);
762 
763 	/* Disable interrupts and clear status flags */
764 	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
765 	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766 
767 	spin_unlock_irqrestore(&spi->lock, flags);
768 }
769 
770 /**
771  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772  * @master: controller master interface
773  * @spi_dev: pointer to the spi device
774  * @transfer: pointer to spi transfer
775  *
776  * If driver has fifo and the current transfer size is greater than fifo size,
777  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778  */
779 static bool stm32_spi_can_dma(struct spi_master *master,
780 			      struct spi_device *spi_dev,
781 			      struct spi_transfer *transfer)
782 {
783 	unsigned int dma_size;
784 	struct stm32_spi *spi = spi_master_get_devdata(master);
785 
786 	if (spi->cfg->has_fifo)
787 		dma_size = spi->fifo_size;
788 	else
789 		dma_size = SPI_DMA_MIN_BYTES;
790 
791 	dev_dbg(spi->dev, "%s: %s\n", __func__,
792 		(transfer->len > dma_size) ? "true" : "false");
793 
794 	return (transfer->len > dma_size);
795 }
796 
797 /**
798  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
799  * @irq: interrupt line
800  * @dev_id: SPI controller master interface
801  */
802 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
803 {
804 	struct spi_master *master = dev_id;
805 	struct stm32_spi *spi = spi_master_get_devdata(master);
806 	u32 sr, mask = 0;
807 	bool end = false;
808 
809 	spin_lock(&spi->lock);
810 
811 	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
812 	/*
813 	 * BSY flag is not handled in interrupt but it is normal behavior when
814 	 * this flag is set.
815 	 */
816 	sr &= ~STM32F4_SPI_SR_BSY;
817 
818 	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
819 				 spi->cur_comm == SPI_3WIRE_TX)) {
820 		/* OVR flag shouldn't be handled for TX only mode */
821 		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
822 		mask |= STM32F4_SPI_SR_TXE;
823 	}
824 
825 	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
826 				spi->cur_comm == SPI_SIMPLEX_RX ||
827 				spi->cur_comm == SPI_3WIRE_RX)) {
828 		/* TXE flag is set and is handled when RXNE flag occurs */
829 		sr &= ~STM32F4_SPI_SR_TXE;
830 		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
831 	}
832 
833 	if (!(sr & mask)) {
834 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
835 		spin_unlock(&spi->lock);
836 		return IRQ_NONE;
837 	}
838 
839 	if (sr & STM32F4_SPI_SR_OVR) {
840 		dev_warn(spi->dev, "Overrun: received value discarded\n");
841 
842 		/* Sequence to clear OVR flag */
843 		readl_relaxed(spi->base + STM32F4_SPI_DR);
844 		readl_relaxed(spi->base + STM32F4_SPI_SR);
845 
846 		/*
847 		 * If overrun is detected, it means that something went wrong,
848 		 * so stop the current transfer. Transfer can wait for next
849 		 * RXNE but DR is already read and end never happens.
850 		 */
851 		end = true;
852 		goto end_irq;
853 	}
854 
855 	if (sr & STM32F4_SPI_SR_TXE) {
856 		if (spi->tx_buf)
857 			stm32f4_spi_write_tx(spi);
858 		if (spi->tx_len == 0)
859 			end = true;
860 	}
861 
862 	if (sr & STM32F4_SPI_SR_RXNE) {
863 		stm32f4_spi_read_rx(spi);
864 		if (spi->rx_len == 0)
865 			end = true;
866 		else if (spi->tx_buf)/* Load data for discontinuous mode */
867 			stm32f4_spi_write_tx(spi);
868 	}
869 
870 end_irq:
871 	if (end) {
872 		/* Immediately disable interrupts to do not generate new one */
873 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
874 					STM32F4_SPI_CR2_TXEIE |
875 					STM32F4_SPI_CR2_RXNEIE |
876 					STM32F4_SPI_CR2_ERRIE);
877 		spin_unlock(&spi->lock);
878 		return IRQ_WAKE_THREAD;
879 	}
880 
881 	spin_unlock(&spi->lock);
882 	return IRQ_HANDLED;
883 }
884 
885 /**
886  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
887  * @irq: interrupt line
888  * @dev_id: SPI controller master interface
889  */
890 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
891 {
892 	struct spi_master *master = dev_id;
893 	struct stm32_spi *spi = spi_master_get_devdata(master);
894 
895 	spi_finalize_current_transfer(master);
896 	stm32f4_spi_disable(spi);
897 
898 	return IRQ_HANDLED;
899 }
900 
901 /**
902  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
903  * @irq: interrupt line
904  * @dev_id: SPI controller master interface
905  */
906 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
907 {
908 	struct spi_master *master = dev_id;
909 	struct stm32_spi *spi = spi_master_get_devdata(master);
910 	u32 sr, ier, mask;
911 	unsigned long flags;
912 	bool end = false;
913 
914 	spin_lock_irqsave(&spi->lock, flags);
915 
916 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
917 	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
918 
919 	mask = ier;
920 	/* EOTIE is triggered on EOT, SUSP and TXC events. */
921 	mask |= STM32H7_SPI_SR_SUSP;
922 	/*
923 	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
924 	 * Full-Duplex, need to poll RXP event to know if there are remaining
925 	 * data, before disabling SPI.
926 	 */
927 	if (spi->rx_buf && !spi->cur_usedma)
928 		mask |= STM32H7_SPI_SR_RXP;
929 
930 	if (!(sr & mask)) {
931 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
932 			sr, ier);
933 		spin_unlock_irqrestore(&spi->lock, flags);
934 		return IRQ_NONE;
935 	}
936 
937 	if (sr & STM32H7_SPI_SR_SUSP) {
938 		static DEFINE_RATELIMIT_STATE(rs,
939 					      DEFAULT_RATELIMIT_INTERVAL * 10,
940 					      1);
941 		if (__ratelimit(&rs))
942 			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
943 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
944 			stm32h7_spi_read_rxfifo(spi, false);
945 		/*
946 		 * If communication is suspended while using DMA, it means
947 		 * that something went wrong, so stop the current transfer
948 		 */
949 		if (spi->cur_usedma)
950 			end = true;
951 	}
952 
953 	if (sr & STM32H7_SPI_SR_MODF) {
954 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
955 		end = true;
956 	}
957 
958 	if (sr & STM32H7_SPI_SR_OVR) {
959 		dev_warn(spi->dev, "Overrun: received value discarded\n");
960 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
961 			stm32h7_spi_read_rxfifo(spi, false);
962 		/*
963 		 * If overrun is detected while using DMA, it means that
964 		 * something went wrong, so stop the current transfer
965 		 */
966 		if (spi->cur_usedma)
967 			end = true;
968 	}
969 
970 	if (sr & STM32H7_SPI_SR_EOT) {
971 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
972 			stm32h7_spi_read_rxfifo(spi, true);
973 		end = true;
974 	}
975 
976 	if (sr & STM32H7_SPI_SR_TXP)
977 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
978 			stm32h7_spi_write_txfifo(spi);
979 
980 	if (sr & STM32H7_SPI_SR_RXP)
981 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
982 			stm32h7_spi_read_rxfifo(spi, false);
983 
984 	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
985 
986 	spin_unlock_irqrestore(&spi->lock, flags);
987 
988 	if (end) {
989 		stm32h7_spi_disable(spi);
990 		spi_finalize_current_transfer(master);
991 	}
992 
993 	return IRQ_HANDLED;
994 }
995 
996 /**
997  * stm32_spi_prepare_msg - set up the controller to transfer a single message
998  * @master: controller master interface
999  * @msg: pointer to spi message
1000  */
1001 static int stm32_spi_prepare_msg(struct spi_master *master,
1002 				 struct spi_message *msg)
1003 {
1004 	struct stm32_spi *spi = spi_master_get_devdata(master);
1005 	struct spi_device *spi_dev = msg->spi;
1006 	struct device_node *np = spi_dev->dev.of_node;
1007 	unsigned long flags;
1008 	u32 clrb = 0, setb = 0;
1009 
1010 	/* SPI slave device may need time between data frames */
1011 	spi->cur_midi = 0;
1012 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1013 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1014 
1015 	if (spi_dev->mode & SPI_CPOL)
1016 		setb |= spi->cfg->regs->cpol.mask;
1017 	else
1018 		clrb |= spi->cfg->regs->cpol.mask;
1019 
1020 	if (spi_dev->mode & SPI_CPHA)
1021 		setb |= spi->cfg->regs->cpha.mask;
1022 	else
1023 		clrb |= spi->cfg->regs->cpha.mask;
1024 
1025 	if (spi_dev->mode & SPI_LSB_FIRST)
1026 		setb |= spi->cfg->regs->lsb_first.mask;
1027 	else
1028 		clrb |= spi->cfg->regs->lsb_first.mask;
1029 
1030 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1031 		spi_dev->mode & SPI_CPOL,
1032 		spi_dev->mode & SPI_CPHA,
1033 		spi_dev->mode & SPI_LSB_FIRST,
1034 		spi_dev->mode & SPI_CS_HIGH);
1035 
1036 	spin_lock_irqsave(&spi->lock, flags);
1037 
1038 	/* CPOL, CPHA and LSB FIRST bits have common register */
1039 	if (clrb || setb)
1040 		writel_relaxed(
1041 			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1042 			 ~clrb) | setb,
1043 			spi->base + spi->cfg->regs->cpol.reg);
1044 
1045 	spin_unlock_irqrestore(&spi->lock, flags);
1046 
1047 	return 0;
1048 }
1049 
1050 /**
1051  * stm32f4_spi_dma_tx_cb - dma callback
1052  * @data: pointer to the spi controller data structure
1053  *
1054  * DMA callback is called when the transfer is complete for DMA TX channel.
1055  */
1056 static void stm32f4_spi_dma_tx_cb(void *data)
1057 {
1058 	struct stm32_spi *spi = data;
1059 
1060 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1061 		spi_finalize_current_transfer(spi->master);
1062 		stm32f4_spi_disable(spi);
1063 	}
1064 }
1065 
1066 /**
1067  * stm32f4_spi_dma_rx_cb - dma callback
1068  * @data: pointer to the spi controller data structure
1069  *
1070  * DMA callback is called when the transfer is complete for DMA RX channel.
1071  */
1072 static void stm32f4_spi_dma_rx_cb(void *data)
1073 {
1074 	struct stm32_spi *spi = data;
1075 
1076 	spi_finalize_current_transfer(spi->master);
1077 	stm32f4_spi_disable(spi);
1078 }
1079 
1080 /**
1081  * stm32h7_spi_dma_cb - dma callback
1082  * @data: pointer to the spi controller data structure
1083  *
1084  * DMA callback is called when the transfer is complete or when an error
1085  * occurs. If the transfer is complete, EOT flag is raised.
1086  */
1087 static void stm32h7_spi_dma_cb(void *data)
1088 {
1089 	struct stm32_spi *spi = data;
1090 	unsigned long flags;
1091 	u32 sr;
1092 
1093 	spin_lock_irqsave(&spi->lock, flags);
1094 
1095 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1096 
1097 	spin_unlock_irqrestore(&spi->lock, flags);
1098 
1099 	if (!(sr & STM32H7_SPI_SR_EOT))
1100 		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1101 
1102 	/* Now wait for EOT, or SUSP or OVR in case of error */
1103 }
1104 
1105 /**
1106  * stm32_spi_dma_config - configure dma slave channel depending on current
1107  *			  transfer bits_per_word.
1108  * @spi: pointer to the spi controller data structure
1109  * @dma_conf: pointer to the dma_slave_config structure
1110  * @dir: direction of the dma transfer
1111  */
1112 static void stm32_spi_dma_config(struct stm32_spi *spi,
1113 				 struct dma_slave_config *dma_conf,
1114 				 enum dma_transfer_direction dir)
1115 {
1116 	enum dma_slave_buswidth buswidth;
1117 	u32 maxburst;
1118 
1119 	if (spi->cur_bpw <= 8)
1120 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1121 	else if (spi->cur_bpw <= 16)
1122 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1123 	else
1124 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1125 
1126 	if (spi->cfg->has_fifo) {
1127 		/* Valid for DMA Half or Full Fifo threshold */
1128 		if (spi->cur_fthlv == 2)
1129 			maxburst = 1;
1130 		else
1131 			maxburst = spi->cur_fthlv;
1132 	} else {
1133 		maxburst = 1;
1134 	}
1135 
1136 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1137 	dma_conf->direction = dir;
1138 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1139 		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1140 		dma_conf->src_addr_width = buswidth;
1141 		dma_conf->src_maxburst = maxburst;
1142 
1143 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1144 			buswidth, maxburst);
1145 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1146 		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1147 		dma_conf->dst_addr_width = buswidth;
1148 		dma_conf->dst_maxburst = maxburst;
1149 
1150 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1151 			buswidth, maxburst);
1152 	}
1153 }
1154 
1155 /**
1156  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1157  *				  interrupts
1158  * @spi: pointer to the spi controller data structure
1159  *
1160  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1161  * in progress.
1162  */
1163 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1164 {
1165 	unsigned long flags;
1166 	u32 cr2 = 0;
1167 
1168 	/* Enable the interrupts relative to the current communication mode */
1169 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1170 		cr2 |= STM32F4_SPI_CR2_TXEIE;
1171 	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1172 				spi->cur_comm == SPI_SIMPLEX_RX ||
1173 				spi->cur_comm == SPI_3WIRE_RX) {
1174 		/* In transmit-only mode, the OVR flag is set in the SR register
1175 		 * since the received data are never read. Therefore set OVR
1176 		 * interrupt only when rx buffer is available.
1177 		 */
1178 		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1179 	} else {
1180 		return -EINVAL;
1181 	}
1182 
1183 	spin_lock_irqsave(&spi->lock, flags);
1184 
1185 	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1186 
1187 	stm32_spi_enable(spi);
1188 
1189 	/* starting data transfer when buffer is loaded */
1190 	if (spi->tx_buf)
1191 		stm32f4_spi_write_tx(spi);
1192 
1193 	spin_unlock_irqrestore(&spi->lock, flags);
1194 
1195 	return 1;
1196 }
1197 
1198 /**
1199  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1200  *				  interrupts
1201  * @spi: pointer to the spi controller data structure
1202  *
1203  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1204  * in progress.
1205  */
1206 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1207 {
1208 	unsigned long flags;
1209 	u32 ier = 0;
1210 
1211 	/* Enable the interrupts relative to the current communication mode */
1212 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1213 		ier |= STM32H7_SPI_IER_DXPIE;
1214 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1215 		ier |= STM32H7_SPI_IER_TXPIE;
1216 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1217 		ier |= STM32H7_SPI_IER_RXPIE;
1218 
1219 	/* Enable the interrupts relative to the end of transfer */
1220 	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1221 	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1222 
1223 	spin_lock_irqsave(&spi->lock, flags);
1224 
1225 	stm32_spi_enable(spi);
1226 
1227 	/* Be sure to have data in fifo before starting data transfer */
1228 	if (spi->tx_buf)
1229 		stm32h7_spi_write_txfifo(spi);
1230 
1231 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1232 
1233 	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1234 
1235 	spin_unlock_irqrestore(&spi->lock, flags);
1236 
1237 	return 1;
1238 }
1239 
1240 /**
1241  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1242  *					transfer using DMA
1243  * @spi: pointer to the spi controller data structure
1244  */
1245 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1246 {
1247 	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1248 	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1249 	    spi->cur_comm == SPI_FULL_DUPLEX) {
1250 		/*
1251 		 * In transmit-only mode, the OVR flag is set in the SR register
1252 		 * since the received data are never read. Therefore set OVR
1253 		 * interrupt only when rx buffer is available.
1254 		 */
1255 		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1256 	}
1257 
1258 	stm32_spi_enable(spi);
1259 }
1260 
1261 /**
1262  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1263  *					transfer using DMA
1264  * @spi: pointer to the spi controller data structure
1265  */
1266 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1267 {
1268 	/* Enable the interrupts relative to the end of transfer */
1269 	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1270 						 STM32H7_SPI_IER_TXTFIE |
1271 						 STM32H7_SPI_IER_OVRIE |
1272 						 STM32H7_SPI_IER_MODFIE);
1273 
1274 	stm32_spi_enable(spi);
1275 
1276 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1277 }
1278 
1279 /**
1280  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1281  * @spi: pointer to the spi controller data structure
1282  * @xfer: pointer to the spi_transfer structure
1283  *
1284  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1285  * in progress.
1286  */
1287 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1288 				      struct spi_transfer *xfer)
1289 {
1290 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1291 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1292 	unsigned long flags;
1293 
1294 	spin_lock_irqsave(&spi->lock, flags);
1295 
1296 	rx_dma_desc = NULL;
1297 	if (spi->rx_buf && spi->dma_rx) {
1298 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1299 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1300 
1301 		/* Enable Rx DMA request */
1302 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1303 				   spi->cfg->regs->dma_rx_en.mask);
1304 
1305 		rx_dma_desc = dmaengine_prep_slave_sg(
1306 					spi->dma_rx, xfer->rx_sg.sgl,
1307 					xfer->rx_sg.nents,
1308 					rx_dma_conf.direction,
1309 					DMA_PREP_INTERRUPT);
1310 	}
1311 
1312 	tx_dma_desc = NULL;
1313 	if (spi->tx_buf && spi->dma_tx) {
1314 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1315 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1316 
1317 		tx_dma_desc = dmaengine_prep_slave_sg(
1318 					spi->dma_tx, xfer->tx_sg.sgl,
1319 					xfer->tx_sg.nents,
1320 					tx_dma_conf.direction,
1321 					DMA_PREP_INTERRUPT);
1322 	}
1323 
1324 	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1325 	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1326 		goto dma_desc_error;
1327 
1328 	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1329 		goto dma_desc_error;
1330 
1331 	if (rx_dma_desc) {
1332 		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1333 		rx_dma_desc->callback_param = spi;
1334 
1335 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1336 			dev_err(spi->dev, "Rx DMA submit failed\n");
1337 			goto dma_desc_error;
1338 		}
1339 		/* Enable Rx DMA channel */
1340 		dma_async_issue_pending(spi->dma_rx);
1341 	}
1342 
1343 	if (tx_dma_desc) {
1344 		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1345 		    spi->cur_comm == SPI_3WIRE_TX) {
1346 			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1347 			tx_dma_desc->callback_param = spi;
1348 		}
1349 
1350 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1351 			dev_err(spi->dev, "Tx DMA submit failed\n");
1352 			goto dma_submit_error;
1353 		}
1354 		/* Enable Tx DMA channel */
1355 		dma_async_issue_pending(spi->dma_tx);
1356 
1357 		/* Enable Tx DMA request */
1358 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1359 				   spi->cfg->regs->dma_tx_en.mask);
1360 	}
1361 
1362 	spi->cfg->transfer_one_dma_start(spi);
1363 
1364 	spin_unlock_irqrestore(&spi->lock, flags);
1365 
1366 	return 1;
1367 
1368 dma_submit_error:
1369 	if (spi->dma_rx)
1370 		dmaengine_terminate_all(spi->dma_rx);
1371 
1372 dma_desc_error:
1373 	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1374 			   spi->cfg->regs->dma_rx_en.mask);
1375 
1376 	spin_unlock_irqrestore(&spi->lock, flags);
1377 
1378 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1379 
1380 	spi->cur_usedma = false;
1381 	return spi->cfg->transfer_one_irq(spi);
1382 }
1383 
1384 /**
1385  * stm32f4_spi_set_bpw - Configure bits per word
1386  * @spi: pointer to the spi controller data structure
1387  */
1388 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1389 {
1390 	if (spi->cur_bpw == 16)
1391 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1392 	else
1393 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1394 }
1395 
1396 /**
1397  * stm32h7_spi_set_bpw - configure bits per word
1398  * @spi: pointer to the spi controller data structure
1399  */
1400 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1401 {
1402 	u32 bpw, fthlv;
1403 	u32 cfg1_clrb = 0, cfg1_setb = 0;
1404 
1405 	bpw = spi->cur_bpw - 1;
1406 
1407 	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1408 	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1409 		     STM32H7_SPI_CFG1_DSIZE;
1410 
1411 	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1412 	fthlv = spi->cur_fthlv - 1;
1413 
1414 	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1415 	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1416 		     STM32H7_SPI_CFG1_FTHLV;
1417 
1418 	writel_relaxed(
1419 		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1420 		 ~cfg1_clrb) | cfg1_setb,
1421 		spi->base + STM32H7_SPI_CFG1);
1422 }
1423 
1424 /**
1425  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1426  * @spi: pointer to the spi controller data structure
1427  * @mbrdiv: baud rate divisor value
1428  */
1429 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1430 {
1431 	u32 clrb = 0, setb = 0;
1432 
1433 	clrb |= spi->cfg->regs->br.mask;
1434 	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1435 		spi->cfg->regs->br.mask;
1436 
1437 	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1438 			~clrb) | setb,
1439 		       spi->base + spi->cfg->regs->br.reg);
1440 }
1441 
1442 /**
1443  * stm32_spi_communication_type - return transfer communication type
1444  * @spi_dev: pointer to the spi device
1445  * @transfer: pointer to spi transfer
1446  */
1447 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1448 						 struct spi_transfer *transfer)
1449 {
1450 	unsigned int type = SPI_FULL_DUPLEX;
1451 
1452 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1453 		/*
1454 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1455 		 * is forbidden and unvalidated by SPI subsystem so depending
1456 		 * on the valid buffer, we can determine the direction of the
1457 		 * transfer.
1458 		 */
1459 		if (!transfer->tx_buf)
1460 			type = SPI_3WIRE_RX;
1461 		else
1462 			type = SPI_3WIRE_TX;
1463 	} else {
1464 		if (!transfer->tx_buf)
1465 			type = SPI_SIMPLEX_RX;
1466 		else if (!transfer->rx_buf)
1467 			type = SPI_SIMPLEX_TX;
1468 	}
1469 
1470 	return type;
1471 }
1472 
1473 /**
1474  * stm32f4_spi_set_mode - configure communication mode
1475  * @spi: pointer to the spi controller data structure
1476  * @comm_type: type of communication to configure
1477  */
1478 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1479 {
1480 	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1481 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1482 					STM32F4_SPI_CR1_BIDIMODE |
1483 					STM32F4_SPI_CR1_BIDIOE);
1484 	} else if (comm_type == SPI_FULL_DUPLEX ||
1485 				comm_type == SPI_SIMPLEX_RX) {
1486 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1487 					STM32F4_SPI_CR1_BIDIMODE |
1488 					STM32F4_SPI_CR1_BIDIOE);
1489 	} else if (comm_type == SPI_3WIRE_RX) {
1490 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1491 					STM32F4_SPI_CR1_BIDIMODE);
1492 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1493 					STM32F4_SPI_CR1_BIDIOE);
1494 	} else {
1495 		return -EINVAL;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 /**
1502  * stm32h7_spi_set_mode - configure communication mode
1503  * @spi: pointer to the spi controller data structure
1504  * @comm_type: type of communication to configure
1505  */
1506 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1507 {
1508 	u32 mode;
1509 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1510 
1511 	if (comm_type == SPI_3WIRE_RX) {
1512 		mode = STM32H7_SPI_HALF_DUPLEX;
1513 		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1514 	} else if (comm_type == SPI_3WIRE_TX) {
1515 		mode = STM32H7_SPI_HALF_DUPLEX;
1516 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1517 	} else if (comm_type == SPI_SIMPLEX_RX) {
1518 		mode = STM32H7_SPI_SIMPLEX_RX;
1519 	} else if (comm_type == SPI_SIMPLEX_TX) {
1520 		mode = STM32H7_SPI_SIMPLEX_TX;
1521 	} else {
1522 		mode = STM32H7_SPI_FULL_DUPLEX;
1523 	}
1524 
1525 	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1526 	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1527 		     STM32H7_SPI_CFG2_COMM;
1528 
1529 	writel_relaxed(
1530 		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1531 		 ~cfg2_clrb) | cfg2_setb,
1532 		spi->base + STM32H7_SPI_CFG2);
1533 
1534 	return 0;
1535 }
1536 
1537 /**
1538  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1539  *			       consecutive data frames in master mode
1540  * @spi: pointer to the spi controller data structure
1541  * @len: transfer len
1542  */
1543 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1544 {
1545 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1546 
1547 	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1548 	if ((len > 1) && (spi->cur_midi > 0)) {
1549 		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1550 		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1551 			       (u32)STM32H7_SPI_CFG2_MIDI >>
1552 			       STM32H7_SPI_CFG2_MIDI_SHIFT);
1553 
1554 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1555 			sck_period_ns, midi, midi * sck_period_ns);
1556 		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1557 			     STM32H7_SPI_CFG2_MIDI;
1558 	}
1559 
1560 	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1561 			~cfg2_clrb) | cfg2_setb,
1562 		       spi->base + STM32H7_SPI_CFG2);
1563 }
1564 
1565 /**
1566  * stm32h7_spi_number_of_data - configure number of data at current transfer
1567  * @spi: pointer to the spi controller data structure
1568  * @nb_words: transfer length (in words)
1569  */
1570 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1571 {
1572 	u32 cr2_clrb = 0, cr2_setb = 0;
1573 
1574 	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1575 			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1576 		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1577 		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1578 		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1579 				~cr2_clrb) | cr2_setb,
1580 			       spi->base + STM32H7_SPI_CR2);
1581 	} else {
1582 		return -EMSGSIZE;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 /**
1589  * stm32_spi_transfer_one_setup - common setup to transfer a single
1590  *				  spi_transfer either using DMA or
1591  *				  interrupts.
1592  * @spi: pointer to the spi controller data structure
1593  * @spi_dev: pointer to the spi device
1594  * @transfer: pointer to spi transfer
1595  */
1596 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1597 					struct spi_device *spi_dev,
1598 					struct spi_transfer *transfer)
1599 {
1600 	unsigned long flags;
1601 	unsigned int comm_type;
1602 	int nb_words, ret = 0;
1603 	int mbr;
1604 
1605 	spin_lock_irqsave(&spi->lock, flags);
1606 
1607 	spi->cur_xferlen = transfer->len;
1608 
1609 	spi->cur_bpw = transfer->bits_per_word;
1610 	spi->cfg->set_bpw(spi);
1611 
1612 	/* Update spi->cur_speed with real clock speed */
1613 	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1614 				    spi->cfg->baud_rate_div_min,
1615 				    spi->cfg->baud_rate_div_max);
1616 	if (mbr < 0) {
1617 		ret = mbr;
1618 		goto out;
1619 	}
1620 
1621 	transfer->speed_hz = spi->cur_speed;
1622 	stm32_spi_set_mbr(spi, mbr);
1623 
1624 	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1625 	ret = spi->cfg->set_mode(spi, comm_type);
1626 	if (ret < 0)
1627 		goto out;
1628 
1629 	spi->cur_comm = comm_type;
1630 
1631 	if (spi->cfg->set_data_idleness)
1632 		spi->cfg->set_data_idleness(spi, transfer->len);
1633 
1634 	if (spi->cur_bpw <= 8)
1635 		nb_words = transfer->len;
1636 	else if (spi->cur_bpw <= 16)
1637 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1638 	else
1639 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1640 
1641 	if (spi->cfg->set_number_of_data) {
1642 		ret = spi->cfg->set_number_of_data(spi, nb_words);
1643 		if (ret < 0)
1644 			goto out;
1645 	}
1646 
1647 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1648 		spi->cur_comm);
1649 	dev_dbg(spi->dev,
1650 		"data frame of %d-bit, data packet of %d data frames\n",
1651 		spi->cur_bpw, spi->cur_fthlv);
1652 	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1653 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1654 		spi->cur_xferlen, nb_words);
1655 	dev_dbg(spi->dev, "dma %s\n",
1656 		(spi->cur_usedma) ? "enabled" : "disabled");
1657 
1658 out:
1659 	spin_unlock_irqrestore(&spi->lock, flags);
1660 
1661 	return ret;
1662 }
1663 
1664 /**
1665  * stm32_spi_transfer_one - transfer a single spi_transfer
1666  * @master: controller master interface
1667  * @spi_dev: pointer to the spi device
1668  * @transfer: pointer to spi transfer
1669  *
1670  * It must return 0 if the transfer is finished or 1 if the transfer is still
1671  * in progress.
1672  */
1673 static int stm32_spi_transfer_one(struct spi_master *master,
1674 				  struct spi_device *spi_dev,
1675 				  struct spi_transfer *transfer)
1676 {
1677 	struct stm32_spi *spi = spi_master_get_devdata(master);
1678 	int ret;
1679 
1680 	spi->tx_buf = transfer->tx_buf;
1681 	spi->rx_buf = transfer->rx_buf;
1682 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1683 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1684 
1685 	spi->cur_usedma = (master->can_dma &&
1686 			   master->can_dma(master, spi_dev, transfer));
1687 
1688 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1689 	if (ret) {
1690 		dev_err(spi->dev, "SPI transfer setup failed\n");
1691 		return ret;
1692 	}
1693 
1694 	if (spi->cur_usedma)
1695 		return stm32_spi_transfer_one_dma(spi, transfer);
1696 	else
1697 		return spi->cfg->transfer_one_irq(spi);
1698 }
1699 
1700 /**
1701  * stm32_spi_unprepare_msg - relax the hardware
1702  * @master: controller master interface
1703  * @msg: pointer to the spi message
1704  */
1705 static int stm32_spi_unprepare_msg(struct spi_master *master,
1706 				   struct spi_message *msg)
1707 {
1708 	struct stm32_spi *spi = spi_master_get_devdata(master);
1709 
1710 	spi->cfg->disable(spi);
1711 
1712 	return 0;
1713 }
1714 
1715 /**
1716  * stm32f4_spi_config - Configure SPI controller as SPI master
1717  * @spi: pointer to the spi controller data structure
1718  */
1719 static int stm32f4_spi_config(struct stm32_spi *spi)
1720 {
1721 	unsigned long flags;
1722 
1723 	spin_lock_irqsave(&spi->lock, flags);
1724 
1725 	/* Ensure I2SMOD bit is kept cleared */
1726 	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1727 			   STM32F4_SPI_I2SCFGR_I2SMOD);
1728 
1729 	/*
1730 	 * - SS input value high
1731 	 * - transmitter half duplex direction
1732 	 * - Set the master mode (default Motorola mode)
1733 	 * - Consider 1 master/n slaves configuration and
1734 	 *   SS input value is determined by the SSI bit
1735 	 */
1736 	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1737 						 STM32F4_SPI_CR1_BIDIOE |
1738 						 STM32F4_SPI_CR1_MSTR |
1739 						 STM32F4_SPI_CR1_SSM);
1740 
1741 	spin_unlock_irqrestore(&spi->lock, flags);
1742 
1743 	return 0;
1744 }
1745 
1746 /**
1747  * stm32h7_spi_config - Configure SPI controller as SPI master
1748  * @spi: pointer to the spi controller data structure
1749  */
1750 static int stm32h7_spi_config(struct stm32_spi *spi)
1751 {
1752 	unsigned long flags;
1753 
1754 	spin_lock_irqsave(&spi->lock, flags);
1755 
1756 	/* Ensure I2SMOD bit is kept cleared */
1757 	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1758 			   STM32H7_SPI_I2SCFGR_I2SMOD);
1759 
1760 	/*
1761 	 * - SS input value high
1762 	 * - transmitter half duplex direction
1763 	 * - automatic communication suspend when RX-Fifo is full
1764 	 */
1765 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1766 						 STM32H7_SPI_CR1_HDDIR |
1767 						 STM32H7_SPI_CR1_MASRX);
1768 
1769 	/*
1770 	 * - Set the master mode (default Motorola mode)
1771 	 * - Consider 1 master/n slaves configuration and
1772 	 *   SS input value is determined by the SSI bit
1773 	 * - keep control of all associated GPIOs
1774 	 */
1775 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1776 						  STM32H7_SPI_CFG2_SSM |
1777 						  STM32H7_SPI_CFG2_AFCNTR);
1778 
1779 	spin_unlock_irqrestore(&spi->lock, flags);
1780 
1781 	return 0;
1782 }
1783 
1784 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1785 	.regs = &stm32f4_spi_regspec,
1786 	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1787 	.disable = stm32f4_spi_disable,
1788 	.config = stm32f4_spi_config,
1789 	.set_bpw = stm32f4_spi_set_bpw,
1790 	.set_mode = stm32f4_spi_set_mode,
1791 	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1792 	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1793 	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
1794 	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1795 	.irq_handler_event = stm32f4_spi_irq_event,
1796 	.irq_handler_thread = stm32f4_spi_irq_thread,
1797 	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1798 	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1799 	.has_fifo = false,
1800 };
1801 
1802 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1803 	.regs = &stm32h7_spi_regspec,
1804 	.get_fifo_size = stm32h7_spi_get_fifo_size,
1805 	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1806 	.disable = stm32h7_spi_disable,
1807 	.config = stm32h7_spi_config,
1808 	.set_bpw = stm32h7_spi_set_bpw,
1809 	.set_mode = stm32h7_spi_set_mode,
1810 	.set_data_idleness = stm32h7_spi_data_idleness,
1811 	.set_number_of_data = stm32h7_spi_number_of_data,
1812 	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1813 	.dma_rx_cb = stm32h7_spi_dma_cb,
1814 	.dma_tx_cb = stm32h7_spi_dma_cb,
1815 	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1816 	.irq_handler_thread = stm32h7_spi_irq_thread,
1817 	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1818 	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1819 	.has_fifo = true,
1820 };
1821 
1822 static const struct of_device_id stm32_spi_of_match[] = {
1823 	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1824 	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1825 	{},
1826 };
1827 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1828 
1829 static int stm32_spi_probe(struct platform_device *pdev)
1830 {
1831 	struct spi_master *master;
1832 	struct stm32_spi *spi;
1833 	struct resource *res;
1834 	int ret;
1835 
1836 	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1837 	if (!master) {
1838 		dev_err(&pdev->dev, "spi master allocation failed\n");
1839 		return -ENOMEM;
1840 	}
1841 	platform_set_drvdata(pdev, master);
1842 
1843 	spi = spi_master_get_devdata(master);
1844 	spi->dev = &pdev->dev;
1845 	spi->master = master;
1846 	spin_lock_init(&spi->lock);
1847 
1848 	spi->cfg = (const struct stm32_spi_cfg *)
1849 		of_match_device(pdev->dev.driver->of_match_table,
1850 				&pdev->dev)->data;
1851 
1852 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1853 	spi->base = devm_ioremap_resource(&pdev->dev, res);
1854 	if (IS_ERR(spi->base)) {
1855 		ret = PTR_ERR(spi->base);
1856 		goto err_master_put;
1857 	}
1858 
1859 	spi->phys_addr = (dma_addr_t)res->start;
1860 
1861 	spi->irq = platform_get_irq(pdev, 0);
1862 	if (spi->irq <= 0) {
1863 		ret = dev_err_probe(&pdev->dev, spi->irq, "failed to get irq\n");
1864 		goto err_master_put;
1865 	}
1866 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1867 					spi->cfg->irq_handler_event,
1868 					spi->cfg->irq_handler_thread,
1869 					IRQF_ONESHOT, pdev->name, master);
1870 	if (ret) {
1871 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1872 			ret);
1873 		goto err_master_put;
1874 	}
1875 
1876 	spi->clk = devm_clk_get(&pdev->dev, NULL);
1877 	if (IS_ERR(spi->clk)) {
1878 		ret = PTR_ERR(spi->clk);
1879 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1880 		goto err_master_put;
1881 	}
1882 
1883 	ret = clk_prepare_enable(spi->clk);
1884 	if (ret) {
1885 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1886 		goto err_master_put;
1887 	}
1888 	spi->clk_rate = clk_get_rate(spi->clk);
1889 	if (!spi->clk_rate) {
1890 		dev_err(&pdev->dev, "clk rate = 0\n");
1891 		ret = -EINVAL;
1892 		goto err_clk_disable;
1893 	}
1894 
1895 	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1896 	if (!IS_ERR(spi->rst)) {
1897 		reset_control_assert(spi->rst);
1898 		udelay(2);
1899 		reset_control_deassert(spi->rst);
1900 	}
1901 
1902 	if (spi->cfg->has_fifo)
1903 		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1904 
1905 	ret = spi->cfg->config(spi);
1906 	if (ret) {
1907 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1908 			ret);
1909 		goto err_clk_disable;
1910 	}
1911 
1912 	master->dev.of_node = pdev->dev.of_node;
1913 	master->auto_runtime_pm = true;
1914 	master->bus_num = pdev->id;
1915 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1916 			    SPI_3WIRE;
1917 	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1918 	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1919 	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1920 	master->use_gpio_descriptors = true;
1921 	master->prepare_message = stm32_spi_prepare_msg;
1922 	master->transfer_one = stm32_spi_transfer_one;
1923 	master->unprepare_message = stm32_spi_unprepare_msg;
1924 	master->flags = SPI_MASTER_MUST_TX;
1925 
1926 	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1927 	if (IS_ERR(spi->dma_tx)) {
1928 		ret = PTR_ERR(spi->dma_tx);
1929 		spi->dma_tx = NULL;
1930 		if (ret == -EPROBE_DEFER)
1931 			goto err_clk_disable;
1932 
1933 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1934 	} else {
1935 		master->dma_tx = spi->dma_tx;
1936 	}
1937 
1938 	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1939 	if (IS_ERR(spi->dma_rx)) {
1940 		ret = PTR_ERR(spi->dma_rx);
1941 		spi->dma_rx = NULL;
1942 		if (ret == -EPROBE_DEFER)
1943 			goto err_dma_release;
1944 
1945 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1946 	} else {
1947 		master->dma_rx = spi->dma_rx;
1948 	}
1949 
1950 	if (spi->dma_tx || spi->dma_rx)
1951 		master->can_dma = stm32_spi_can_dma;
1952 
1953 	pm_runtime_set_active(&pdev->dev);
1954 	pm_runtime_enable(&pdev->dev);
1955 
1956 	ret = devm_spi_register_master(&pdev->dev, master);
1957 	if (ret) {
1958 		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1959 			ret);
1960 		goto err_pm_disable;
1961 	}
1962 
1963 	if (!master->cs_gpiods) {
1964 		dev_err(&pdev->dev, "no CS gpios available\n");
1965 		ret = -EINVAL;
1966 		goto err_pm_disable;
1967 	}
1968 
1969 	dev_info(&pdev->dev, "driver initialized\n");
1970 
1971 	return 0;
1972 
1973 err_pm_disable:
1974 	pm_runtime_disable(&pdev->dev);
1975 err_dma_release:
1976 	if (spi->dma_tx)
1977 		dma_release_channel(spi->dma_tx);
1978 	if (spi->dma_rx)
1979 		dma_release_channel(spi->dma_rx);
1980 err_clk_disable:
1981 	clk_disable_unprepare(spi->clk);
1982 err_master_put:
1983 	spi_master_put(master);
1984 
1985 	return ret;
1986 }
1987 
1988 static int stm32_spi_remove(struct platform_device *pdev)
1989 {
1990 	struct spi_master *master = platform_get_drvdata(pdev);
1991 	struct stm32_spi *spi = spi_master_get_devdata(master);
1992 
1993 	spi->cfg->disable(spi);
1994 
1995 	if (master->dma_tx)
1996 		dma_release_channel(master->dma_tx);
1997 	if (master->dma_rx)
1998 		dma_release_channel(master->dma_rx);
1999 
2000 	clk_disable_unprepare(spi->clk);
2001 
2002 	pm_runtime_disable(&pdev->dev);
2003 
2004 	pinctrl_pm_select_sleep_state(&pdev->dev);
2005 
2006 	return 0;
2007 }
2008 
2009 #ifdef CONFIG_PM
2010 static int stm32_spi_runtime_suspend(struct device *dev)
2011 {
2012 	struct spi_master *master = dev_get_drvdata(dev);
2013 	struct stm32_spi *spi = spi_master_get_devdata(master);
2014 
2015 	clk_disable_unprepare(spi->clk);
2016 
2017 	return pinctrl_pm_select_sleep_state(dev);
2018 }
2019 
2020 static int stm32_spi_runtime_resume(struct device *dev)
2021 {
2022 	struct spi_master *master = dev_get_drvdata(dev);
2023 	struct stm32_spi *spi = spi_master_get_devdata(master);
2024 	int ret;
2025 
2026 	ret = pinctrl_pm_select_default_state(dev);
2027 	if (ret)
2028 		return ret;
2029 
2030 	return clk_prepare_enable(spi->clk);
2031 }
2032 #endif
2033 
2034 #ifdef CONFIG_PM_SLEEP
2035 static int stm32_spi_suspend(struct device *dev)
2036 {
2037 	struct spi_master *master = dev_get_drvdata(dev);
2038 	int ret;
2039 
2040 	ret = spi_master_suspend(master);
2041 	if (ret)
2042 		return ret;
2043 
2044 	return pm_runtime_force_suspend(dev);
2045 }
2046 
2047 static int stm32_spi_resume(struct device *dev)
2048 {
2049 	struct spi_master *master = dev_get_drvdata(dev);
2050 	struct stm32_spi *spi = spi_master_get_devdata(master);
2051 	int ret;
2052 
2053 	ret = pm_runtime_force_resume(dev);
2054 	if (ret)
2055 		return ret;
2056 
2057 	ret = spi_master_resume(master);
2058 	if (ret) {
2059 		clk_disable_unprepare(spi->clk);
2060 		return ret;
2061 	}
2062 
2063 	ret = pm_runtime_get_sync(dev);
2064 	if (ret < 0) {
2065 		dev_err(dev, "Unable to power device:%d\n", ret);
2066 		return ret;
2067 	}
2068 
2069 	spi->cfg->config(spi);
2070 
2071 	pm_runtime_mark_last_busy(dev);
2072 	pm_runtime_put_autosuspend(dev);
2073 
2074 	return 0;
2075 }
2076 #endif
2077 
2078 static const struct dev_pm_ops stm32_spi_pm_ops = {
2079 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2080 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2081 			   stm32_spi_runtime_resume, NULL)
2082 };
2083 
2084 static struct platform_driver stm32_spi_driver = {
2085 	.probe = stm32_spi_probe,
2086 	.remove = stm32_spi_remove,
2087 	.driver = {
2088 		.name = DRIVER_NAME,
2089 		.pm = &stm32_spi_pm_ops,
2090 		.of_match_table = stm32_spi_of_match,
2091 	},
2092 };
2093 
2094 module_platform_driver(stm32_spi_driver);
2095 
2096 MODULE_ALIAS("platform:" DRIVER_NAME);
2097 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2098 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2099 MODULE_LICENSE("GPL v2");
2100