1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // STMicroelectronics STM32 SPI Controller driver (master mode only) 4 // 5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved 6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. 7 8 #include <linux/bitfield.h> 9 #include <linux/debugfs.h> 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/dmaengine.h> 13 #include <linux/interrupt.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/of_platform.h> 17 #include <linux/pinctrl/consumer.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/reset.h> 20 #include <linux/spi/spi.h> 21 22 #define DRIVER_NAME "spi_stm32" 23 24 /* STM32F4 SPI registers */ 25 #define STM32F4_SPI_CR1 0x00 26 #define STM32F4_SPI_CR2 0x04 27 #define STM32F4_SPI_SR 0x08 28 #define STM32F4_SPI_DR 0x0C 29 #define STM32F4_SPI_I2SCFGR 0x1C 30 31 /* STM32F4_SPI_CR1 bit fields */ 32 #define STM32F4_SPI_CR1_CPHA BIT(0) 33 #define STM32F4_SPI_CR1_CPOL BIT(1) 34 #define STM32F4_SPI_CR1_MSTR BIT(2) 35 #define STM32F4_SPI_CR1_BR_SHIFT 3 36 #define STM32F4_SPI_CR1_BR GENMASK(5, 3) 37 #define STM32F4_SPI_CR1_SPE BIT(6) 38 #define STM32F4_SPI_CR1_LSBFRST BIT(7) 39 #define STM32F4_SPI_CR1_SSI BIT(8) 40 #define STM32F4_SPI_CR1_SSM BIT(9) 41 #define STM32F4_SPI_CR1_RXONLY BIT(10) 42 #define STM32F4_SPI_CR1_DFF BIT(11) 43 #define STM32F4_SPI_CR1_CRCNEXT BIT(12) 44 #define STM32F4_SPI_CR1_CRCEN BIT(13) 45 #define STM32F4_SPI_CR1_BIDIOE BIT(14) 46 #define STM32F4_SPI_CR1_BIDIMODE BIT(15) 47 #define STM32F4_SPI_CR1_BR_MIN 0 48 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3) 49 50 /* STM32F4_SPI_CR2 bit fields */ 51 #define STM32F4_SPI_CR2_RXDMAEN BIT(0) 52 #define STM32F4_SPI_CR2_TXDMAEN BIT(1) 53 #define STM32F4_SPI_CR2_SSOE BIT(2) 54 #define STM32F4_SPI_CR2_FRF BIT(4) 55 #define STM32F4_SPI_CR2_ERRIE BIT(5) 56 #define STM32F4_SPI_CR2_RXNEIE BIT(6) 57 #define STM32F4_SPI_CR2_TXEIE BIT(7) 58 59 /* STM32F4_SPI_SR bit fields */ 60 #define STM32F4_SPI_SR_RXNE BIT(0) 61 #define STM32F4_SPI_SR_TXE BIT(1) 62 #define STM32F4_SPI_SR_CHSIDE BIT(2) 63 #define STM32F4_SPI_SR_UDR BIT(3) 64 #define STM32F4_SPI_SR_CRCERR BIT(4) 65 #define STM32F4_SPI_SR_MODF BIT(5) 66 #define STM32F4_SPI_SR_OVR BIT(6) 67 #define STM32F4_SPI_SR_BSY BIT(7) 68 #define STM32F4_SPI_SR_FRE BIT(8) 69 70 /* STM32F4_SPI_I2SCFGR bit fields */ 71 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11) 72 73 /* STM32F4 SPI Baud Rate min/max divisor */ 74 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN) 75 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX) 76 77 /* STM32H7 SPI registers */ 78 #define STM32H7_SPI_CR1 0x00 79 #define STM32H7_SPI_CR2 0x04 80 #define STM32H7_SPI_CFG1 0x08 81 #define STM32H7_SPI_CFG2 0x0C 82 #define STM32H7_SPI_IER 0x10 83 #define STM32H7_SPI_SR 0x14 84 #define STM32H7_SPI_IFCR 0x18 85 #define STM32H7_SPI_TXDR 0x20 86 #define STM32H7_SPI_RXDR 0x30 87 #define STM32H7_SPI_I2SCFGR 0x50 88 89 /* STM32H7_SPI_CR1 bit fields */ 90 #define STM32H7_SPI_CR1_SPE BIT(0) 91 #define STM32H7_SPI_CR1_MASRX BIT(8) 92 #define STM32H7_SPI_CR1_CSTART BIT(9) 93 #define STM32H7_SPI_CR1_CSUSP BIT(10) 94 #define STM32H7_SPI_CR1_HDDIR BIT(11) 95 #define STM32H7_SPI_CR1_SSI BIT(12) 96 97 /* STM32H7_SPI_CR2 bit fields */ 98 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) 99 #define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0) 100 101 /* STM32H7_SPI_CFG1 bit fields */ 102 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) 103 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) 104 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14) 105 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15) 106 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) 107 #define STM32H7_SPI_CFG1_MBR_SHIFT 28 108 #define STM32H7_SPI_CFG1_MBR_MIN 0 109 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) 110 111 /* STM32H7_SPI_CFG2 bit fields */ 112 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) 113 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) 114 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19) 115 #define STM32H7_SPI_CFG2_MASTER BIT(22) 116 #define STM32H7_SPI_CFG2_LSBFRST BIT(23) 117 #define STM32H7_SPI_CFG2_CPHA BIT(24) 118 #define STM32H7_SPI_CFG2_CPOL BIT(25) 119 #define STM32H7_SPI_CFG2_SSM BIT(26) 120 #define STM32H7_SPI_CFG2_AFCNTR BIT(31) 121 122 /* STM32H7_SPI_IER bit fields */ 123 #define STM32H7_SPI_IER_RXPIE BIT(0) 124 #define STM32H7_SPI_IER_TXPIE BIT(1) 125 #define STM32H7_SPI_IER_DXPIE BIT(2) 126 #define STM32H7_SPI_IER_EOTIE BIT(3) 127 #define STM32H7_SPI_IER_TXTFIE BIT(4) 128 #define STM32H7_SPI_IER_OVRIE BIT(6) 129 #define STM32H7_SPI_IER_MODFIE BIT(9) 130 #define STM32H7_SPI_IER_ALL GENMASK(10, 0) 131 132 /* STM32H7_SPI_SR bit fields */ 133 #define STM32H7_SPI_SR_RXP BIT(0) 134 #define STM32H7_SPI_SR_TXP BIT(1) 135 #define STM32H7_SPI_SR_EOT BIT(3) 136 #define STM32H7_SPI_SR_OVR BIT(6) 137 #define STM32H7_SPI_SR_MODF BIT(9) 138 #define STM32H7_SPI_SR_SUSP BIT(11) 139 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) 140 #define STM32H7_SPI_SR_RXWNE BIT(15) 141 142 /* STM32H7_SPI_IFCR bit fields */ 143 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3) 144 145 /* STM32H7_SPI_I2SCFGR bit fields */ 146 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0) 147 148 /* STM32H7 SPI Master Baud Rate min/max divisor */ 149 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN) 150 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX) 151 152 /* STM32H7 SPI Communication mode */ 153 #define STM32H7_SPI_FULL_DUPLEX 0 154 #define STM32H7_SPI_SIMPLEX_TX 1 155 #define STM32H7_SPI_SIMPLEX_RX 2 156 #define STM32H7_SPI_HALF_DUPLEX 3 157 158 /* SPI Communication type */ 159 #define SPI_FULL_DUPLEX 0 160 #define SPI_SIMPLEX_TX 1 161 #define SPI_SIMPLEX_RX 2 162 #define SPI_3WIRE_TX 3 163 #define SPI_3WIRE_RX 4 164 165 #define STM32_SPI_AUTOSUSPEND_DELAY 1 /* 1 ms */ 166 167 /* 168 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers 169 * without fifo buffers. 170 */ 171 #define SPI_DMA_MIN_BYTES 16 172 173 /** 174 * struct stm32_spi_reg - stm32 SPI register & bitfield desc 175 * @reg: register offset 176 * @mask: bitfield mask 177 * @shift: left shift 178 */ 179 struct stm32_spi_reg { 180 int reg; 181 int mask; 182 int shift; 183 }; 184 185 /** 186 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data 187 * @en: enable register and SPI enable bit 188 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit 189 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit 190 * @cpol: clock polarity register and polarity bit 191 * @cpha: clock phase register and phase bit 192 * @lsb_first: LSB transmitted first register and bit 193 * @br: baud rate register and bitfields 194 * @rx: SPI RX data register 195 * @tx: SPI TX data register 196 */ 197 struct stm32_spi_regspec { 198 const struct stm32_spi_reg en; 199 const struct stm32_spi_reg dma_rx_en; 200 const struct stm32_spi_reg dma_tx_en; 201 const struct stm32_spi_reg cpol; 202 const struct stm32_spi_reg cpha; 203 const struct stm32_spi_reg lsb_first; 204 const struct stm32_spi_reg br; 205 const struct stm32_spi_reg rx; 206 const struct stm32_spi_reg tx; 207 }; 208 209 struct stm32_spi; 210 211 /** 212 * struct stm32_spi_cfg - stm32 compatible configuration data 213 * @regs: registers descriptions 214 * @get_fifo_size: routine to get fifo size 215 * @get_bpw_mask: routine to get bits per word mask 216 * @disable: routine to disable controller 217 * @config: routine to configure controller as SPI Master 218 * @set_bpw: routine to configure registers to for bits per word 219 * @set_mode: routine to configure registers to desired mode 220 * @set_data_idleness: optional routine to configure registers to desired idle 221 * time between frames (if driver has this functionality) 222 * @set_number_of_data: optional routine to configure registers to desired 223 * number of data (if driver has this functionality) 224 * @transfer_one_dma_start: routine to start transfer a single spi_transfer 225 * using DMA 226 * @dma_rx_cb: routine to call after DMA RX channel operation is complete 227 * @dma_tx_cb: routine to call after DMA TX channel operation is complete 228 * @transfer_one_irq: routine to configure interrupts for driver 229 * @irq_handler_event: Interrupt handler for SPI controller events 230 * @irq_handler_thread: thread of interrupt handler for SPI controller 231 * @baud_rate_div_min: minimum baud rate divisor 232 * @baud_rate_div_max: maximum baud rate divisor 233 * @has_fifo: boolean to know if fifo is used for driver 234 * @flags: compatible specific SPI controller flags used at registration time 235 */ 236 struct stm32_spi_cfg { 237 const struct stm32_spi_regspec *regs; 238 int (*get_fifo_size)(struct stm32_spi *spi); 239 int (*get_bpw_mask)(struct stm32_spi *spi); 240 void (*disable)(struct stm32_spi *spi); 241 int (*config)(struct stm32_spi *spi); 242 void (*set_bpw)(struct stm32_spi *spi); 243 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type); 244 void (*set_data_idleness)(struct stm32_spi *spi, u32 length); 245 int (*set_number_of_data)(struct stm32_spi *spi, u32 length); 246 void (*transfer_one_dma_start)(struct stm32_spi *spi); 247 void (*dma_rx_cb)(void *data); 248 void (*dma_tx_cb)(void *data); 249 int (*transfer_one_irq)(struct stm32_spi *spi); 250 irqreturn_t (*irq_handler_event)(int irq, void *dev_id); 251 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id); 252 unsigned int baud_rate_div_min; 253 unsigned int baud_rate_div_max; 254 bool has_fifo; 255 u16 flags; 256 }; 257 258 /** 259 * struct stm32_spi - private data of the SPI controller 260 * @dev: driver model representation of the controller 261 * @master: controller master interface 262 * @cfg: compatible configuration data 263 * @base: virtual memory area 264 * @clk: hw kernel clock feeding the SPI clock generator 265 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator 266 * @lock: prevent I/O concurrent access 267 * @irq: SPI controller interrupt line 268 * @fifo_size: size of the embedded fifo in bytes 269 * @cur_midi: master inter-data idleness in ns 270 * @cur_speed: speed configured in Hz 271 * @cur_bpw: number of bits in a single SPI data frame 272 * @cur_fthlv: fifo threshold level (data frames in a single data packet) 273 * @cur_comm: SPI communication mode 274 * @cur_xferlen: current transfer length in bytes 275 * @cur_usedma: boolean to know if dma is used in current transfer 276 * @tx_buf: data to be written, or NULL 277 * @rx_buf: data to be read, or NULL 278 * @tx_len: number of data to be written in bytes 279 * @rx_len: number of data to be read in bytes 280 * @dma_tx: dma channel for TX transfer 281 * @dma_rx: dma channel for RX transfer 282 * @phys_addr: SPI registers physical base address 283 */ 284 struct stm32_spi { 285 struct device *dev; 286 struct spi_master *master; 287 const struct stm32_spi_cfg *cfg; 288 void __iomem *base; 289 struct clk *clk; 290 u32 clk_rate; 291 spinlock_t lock; /* prevent I/O concurrent access */ 292 int irq; 293 unsigned int fifo_size; 294 295 unsigned int cur_midi; 296 unsigned int cur_speed; 297 unsigned int cur_bpw; 298 unsigned int cur_fthlv; 299 unsigned int cur_comm; 300 unsigned int cur_xferlen; 301 bool cur_usedma; 302 303 const void *tx_buf; 304 void *rx_buf; 305 int tx_len; 306 int rx_len; 307 struct dma_chan *dma_tx; 308 struct dma_chan *dma_rx; 309 dma_addr_t phys_addr; 310 }; 311 312 static const struct stm32_spi_regspec stm32f4_spi_regspec = { 313 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE }, 314 315 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN }, 316 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN }, 317 318 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL }, 319 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA }, 320 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST }, 321 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT }, 322 323 .rx = { STM32F4_SPI_DR }, 324 .tx = { STM32F4_SPI_DR }, 325 }; 326 327 static const struct stm32_spi_regspec stm32h7_spi_regspec = { 328 /* SPI data transfer is enabled but spi_ker_ck is idle. 329 * CFG1 and CFG2 registers are write protected when SPE is enabled. 330 */ 331 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE }, 332 333 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN }, 334 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN }, 335 336 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL }, 337 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA }, 338 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST }, 339 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR, 340 STM32H7_SPI_CFG1_MBR_SHIFT }, 341 342 .rx = { STM32H7_SPI_RXDR }, 343 .tx = { STM32H7_SPI_TXDR }, 344 }; 345 346 static inline void stm32_spi_set_bits(struct stm32_spi *spi, 347 u32 offset, u32 bits) 348 { 349 writel_relaxed(readl_relaxed(spi->base + offset) | bits, 350 spi->base + offset); 351 } 352 353 static inline void stm32_spi_clr_bits(struct stm32_spi *spi, 354 u32 offset, u32 bits) 355 { 356 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits, 357 spi->base + offset); 358 } 359 360 /** 361 * stm32h7_spi_get_fifo_size - Return fifo size 362 * @spi: pointer to the spi controller data structure 363 */ 364 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi) 365 { 366 unsigned long flags; 367 u32 count = 0; 368 369 spin_lock_irqsave(&spi->lock, flags); 370 371 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 372 373 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP) 374 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR); 375 376 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 377 378 spin_unlock_irqrestore(&spi->lock, flags); 379 380 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count); 381 382 return count; 383 } 384 385 /** 386 * stm32f4_spi_get_bpw_mask - Return bits per word mask 387 * @spi: pointer to the spi controller data structure 388 */ 389 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi) 390 { 391 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n"); 392 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 393 } 394 395 /** 396 * stm32h7_spi_get_bpw_mask - Return bits per word mask 397 * @spi: pointer to the spi controller data structure 398 */ 399 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi) 400 { 401 unsigned long flags; 402 u32 cfg1, max_bpw; 403 404 spin_lock_irqsave(&spi->lock, flags); 405 406 /* 407 * The most significant bit at DSIZE bit field is reserved when the 408 * maximum data size of periperal instances is limited to 16-bit 409 */ 410 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); 411 412 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); 413 max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1; 414 415 spin_unlock_irqrestore(&spi->lock, flags); 416 417 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); 418 419 return SPI_BPW_RANGE_MASK(4, max_bpw); 420 } 421 422 /** 423 * stm32_spi_prepare_mbr - Determine baud rate divisor value 424 * @spi: pointer to the spi controller data structure 425 * @speed_hz: requested speed 426 * @min_div: minimum baud rate divisor 427 * @max_div: maximum baud rate divisor 428 * 429 * Return baud rate divisor value in case of success or -EINVAL 430 */ 431 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz, 432 u32 min_div, u32 max_div) 433 { 434 u32 div, mbrdiv; 435 436 /* Ensure spi->clk_rate is even */ 437 div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz); 438 439 /* 440 * SPI framework set xfer->speed_hz to master->max_speed_hz if 441 * xfer->speed_hz is greater than master->max_speed_hz, and it returns 442 * an error when xfer->speed_hz is lower than master->min_speed_hz, so 443 * no need to check it there. 444 * However, we need to ensure the following calculations. 445 */ 446 if ((div < min_div) || (div > max_div)) 447 return -EINVAL; 448 449 /* Determine the first power of 2 greater than or equal to div */ 450 if (div & (div - 1)) 451 mbrdiv = fls(div); 452 else 453 mbrdiv = fls(div) - 1; 454 455 spi->cur_speed = spi->clk_rate / (1 << mbrdiv); 456 457 return mbrdiv - 1; 458 } 459 460 /** 461 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level 462 * @spi: pointer to the spi controller data structure 463 * @xfer_len: length of the message to be transferred 464 */ 465 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len) 466 { 467 u32 packet, bpw; 468 469 /* data packet should not exceed 1/2 of fifo space */ 470 packet = clamp(xfer_len, 1U, spi->fifo_size / 2); 471 472 /* align packet size with data registers access */ 473 bpw = DIV_ROUND_UP(spi->cur_bpw, 8); 474 return DIV_ROUND_UP(packet, bpw); 475 } 476 477 /** 478 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register 479 * @spi: pointer to the spi controller data structure 480 * 481 * Read from tx_buf depends on remaining bytes to avoid to read beyond 482 * tx_buf end. 483 */ 484 static void stm32f4_spi_write_tx(struct stm32_spi *spi) 485 { 486 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 487 STM32F4_SPI_SR_TXE)) { 488 u32 offs = spi->cur_xferlen - spi->tx_len; 489 490 if (spi->cur_bpw == 16) { 491 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 492 493 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR); 494 spi->tx_len -= sizeof(u16); 495 } else { 496 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 497 498 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR); 499 spi->tx_len -= sizeof(u8); 500 } 501 } 502 503 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 504 } 505 506 /** 507 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register 508 * @spi: pointer to the spi controller data structure 509 * 510 * Read from tx_buf depends on remaining bytes to avoid to read beyond 511 * tx_buf end. 512 */ 513 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi) 514 { 515 while ((spi->tx_len > 0) && 516 (readl_relaxed(spi->base + STM32H7_SPI_SR) & 517 STM32H7_SPI_SR_TXP)) { 518 u32 offs = spi->cur_xferlen - spi->tx_len; 519 520 if (spi->tx_len >= sizeof(u32)) { 521 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs); 522 523 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR); 524 spi->tx_len -= sizeof(u32); 525 } else if (spi->tx_len >= sizeof(u16)) { 526 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 527 528 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR); 529 spi->tx_len -= sizeof(u16); 530 } else { 531 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 532 533 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR); 534 spi->tx_len -= sizeof(u8); 535 } 536 } 537 538 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 539 } 540 541 /** 542 * stm32f4_spi_read_rx - Read bytes from Receive Data Register 543 * @spi: pointer to the spi controller data structure 544 * 545 * Write in rx_buf depends on remaining bytes to avoid to write beyond 546 * rx_buf end. 547 */ 548 static void stm32f4_spi_read_rx(struct stm32_spi *spi) 549 { 550 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 551 STM32F4_SPI_SR_RXNE)) { 552 u32 offs = spi->cur_xferlen - spi->rx_len; 553 554 if (spi->cur_bpw == 16) { 555 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 556 557 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR); 558 spi->rx_len -= sizeof(u16); 559 } else { 560 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 561 562 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR); 563 spi->rx_len -= sizeof(u8); 564 } 565 } 566 567 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len); 568 } 569 570 /** 571 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register 572 * @spi: pointer to the spi controller data structure 573 * 574 * Write in rx_buf depends on remaining bytes to avoid to write beyond 575 * rx_buf end. 576 */ 577 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi) 578 { 579 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 580 u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 581 582 while ((spi->rx_len > 0) && 583 ((sr & STM32H7_SPI_SR_RXP) || 584 ((sr & STM32H7_SPI_SR_EOT) && 585 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) { 586 u32 offs = spi->cur_xferlen - spi->rx_len; 587 588 if ((spi->rx_len >= sizeof(u32)) || 589 (sr & STM32H7_SPI_SR_RXWNE)) { 590 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs); 591 592 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR); 593 spi->rx_len -= sizeof(u32); 594 } else if ((spi->rx_len >= sizeof(u16)) || 595 (!(sr & STM32H7_SPI_SR_RXWNE) && 596 (rxplvl >= 2 || spi->cur_bpw > 8))) { 597 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 598 599 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR); 600 spi->rx_len -= sizeof(u16); 601 } else { 602 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 603 604 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR); 605 spi->rx_len -= sizeof(u8); 606 } 607 608 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 609 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr); 610 } 611 612 dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n", 613 __func__, spi->rx_len, sr); 614 } 615 616 /** 617 * stm32_spi_enable - Enable SPI controller 618 * @spi: pointer to the spi controller data structure 619 */ 620 static void stm32_spi_enable(struct stm32_spi *spi) 621 { 622 dev_dbg(spi->dev, "enable controller\n"); 623 624 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg, 625 spi->cfg->regs->en.mask); 626 } 627 628 /** 629 * stm32f4_spi_disable - Disable SPI controller 630 * @spi: pointer to the spi controller data structure 631 */ 632 static void stm32f4_spi_disable(struct stm32_spi *spi) 633 { 634 unsigned long flags; 635 u32 sr; 636 637 dev_dbg(spi->dev, "disable controller\n"); 638 639 spin_lock_irqsave(&spi->lock, flags); 640 641 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) & 642 STM32F4_SPI_CR1_SPE)) { 643 spin_unlock_irqrestore(&spi->lock, flags); 644 return; 645 } 646 647 /* Disable interrupts */ 648 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE | 649 STM32F4_SPI_CR2_RXNEIE | 650 STM32F4_SPI_CR2_ERRIE); 651 652 /* Wait until BSY = 0 */ 653 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR, 654 sr, !(sr & STM32F4_SPI_SR_BSY), 655 10, 100000) < 0) { 656 dev_warn(spi->dev, "disabling condition timeout\n"); 657 } 658 659 if (spi->cur_usedma && spi->dma_tx) 660 dmaengine_terminate_all(spi->dma_tx); 661 if (spi->cur_usedma && spi->dma_rx) 662 dmaengine_terminate_all(spi->dma_rx); 663 664 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE); 665 666 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN | 667 STM32F4_SPI_CR2_RXDMAEN); 668 669 /* Sequence to clear OVR flag */ 670 readl_relaxed(spi->base + STM32F4_SPI_DR); 671 readl_relaxed(spi->base + STM32F4_SPI_SR); 672 673 spin_unlock_irqrestore(&spi->lock, flags); 674 } 675 676 /** 677 * stm32h7_spi_disable - Disable SPI controller 678 * @spi: pointer to the spi controller data structure 679 * 680 * RX-Fifo is flushed when SPI controller is disabled. 681 */ 682 static void stm32h7_spi_disable(struct stm32_spi *spi) 683 { 684 unsigned long flags; 685 u32 cr1; 686 687 dev_dbg(spi->dev, "disable controller\n"); 688 689 spin_lock_irqsave(&spi->lock, flags); 690 691 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1); 692 693 if (!(cr1 & STM32H7_SPI_CR1_SPE)) { 694 spin_unlock_irqrestore(&spi->lock, flags); 695 return; 696 } 697 698 if (spi->cur_usedma && spi->dma_tx) 699 dmaengine_terminate_all(spi->dma_tx); 700 if (spi->cur_usedma && spi->dma_rx) 701 dmaengine_terminate_all(spi->dma_rx); 702 703 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 704 705 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN | 706 STM32H7_SPI_CFG1_RXDMAEN); 707 708 /* Disable interrupts and clear status flags */ 709 writel_relaxed(0, spi->base + STM32H7_SPI_IER); 710 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR); 711 712 spin_unlock_irqrestore(&spi->lock, flags); 713 } 714 715 /** 716 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use 717 * @master: controller master interface 718 * @spi_dev: pointer to the spi device 719 * @transfer: pointer to spi transfer 720 * 721 * If driver has fifo and the current transfer size is greater than fifo size, 722 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes. 723 */ 724 static bool stm32_spi_can_dma(struct spi_master *master, 725 struct spi_device *spi_dev, 726 struct spi_transfer *transfer) 727 { 728 unsigned int dma_size; 729 struct stm32_spi *spi = spi_master_get_devdata(master); 730 731 if (spi->cfg->has_fifo) 732 dma_size = spi->fifo_size; 733 else 734 dma_size = SPI_DMA_MIN_BYTES; 735 736 dev_dbg(spi->dev, "%s: %s\n", __func__, 737 (transfer->len > dma_size) ? "true" : "false"); 738 739 return (transfer->len > dma_size); 740 } 741 742 /** 743 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events 744 * @irq: interrupt line 745 * @dev_id: SPI controller master interface 746 */ 747 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id) 748 { 749 struct spi_master *master = dev_id; 750 struct stm32_spi *spi = spi_master_get_devdata(master); 751 u32 sr, mask = 0; 752 bool end = false; 753 754 spin_lock(&spi->lock); 755 756 sr = readl_relaxed(spi->base + STM32F4_SPI_SR); 757 /* 758 * BSY flag is not handled in interrupt but it is normal behavior when 759 * this flag is set. 760 */ 761 sr &= ~STM32F4_SPI_SR_BSY; 762 763 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX || 764 spi->cur_comm == SPI_3WIRE_TX)) { 765 /* OVR flag shouldn't be handled for TX only mode */ 766 sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE); 767 mask |= STM32F4_SPI_SR_TXE; 768 } 769 770 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX || 771 spi->cur_comm == SPI_SIMPLEX_RX || 772 spi->cur_comm == SPI_3WIRE_RX)) { 773 /* TXE flag is set and is handled when RXNE flag occurs */ 774 sr &= ~STM32F4_SPI_SR_TXE; 775 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR; 776 } 777 778 if (!(sr & mask)) { 779 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr); 780 spin_unlock(&spi->lock); 781 return IRQ_NONE; 782 } 783 784 if (sr & STM32F4_SPI_SR_OVR) { 785 dev_warn(spi->dev, "Overrun: received value discarded\n"); 786 787 /* Sequence to clear OVR flag */ 788 readl_relaxed(spi->base + STM32F4_SPI_DR); 789 readl_relaxed(spi->base + STM32F4_SPI_SR); 790 791 /* 792 * If overrun is detected, it means that something went wrong, 793 * so stop the current transfer. Transfer can wait for next 794 * RXNE but DR is already read and end never happens. 795 */ 796 end = true; 797 goto end_irq; 798 } 799 800 if (sr & STM32F4_SPI_SR_TXE) { 801 if (spi->tx_buf) 802 stm32f4_spi_write_tx(spi); 803 if (spi->tx_len == 0) 804 end = true; 805 } 806 807 if (sr & STM32F4_SPI_SR_RXNE) { 808 stm32f4_spi_read_rx(spi); 809 if (spi->rx_len == 0) 810 end = true; 811 else if (spi->tx_buf)/* Load data for discontinuous mode */ 812 stm32f4_spi_write_tx(spi); 813 } 814 815 end_irq: 816 if (end) { 817 /* Immediately disable interrupts to do not generate new one */ 818 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, 819 STM32F4_SPI_CR2_TXEIE | 820 STM32F4_SPI_CR2_RXNEIE | 821 STM32F4_SPI_CR2_ERRIE); 822 spin_unlock(&spi->lock); 823 return IRQ_WAKE_THREAD; 824 } 825 826 spin_unlock(&spi->lock); 827 return IRQ_HANDLED; 828 } 829 830 /** 831 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller 832 * @irq: interrupt line 833 * @dev_id: SPI controller master interface 834 */ 835 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id) 836 { 837 struct spi_master *master = dev_id; 838 struct stm32_spi *spi = spi_master_get_devdata(master); 839 840 spi_finalize_current_transfer(master); 841 stm32f4_spi_disable(spi); 842 843 return IRQ_HANDLED; 844 } 845 846 /** 847 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller 848 * @irq: interrupt line 849 * @dev_id: SPI controller master interface 850 */ 851 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) 852 { 853 struct spi_master *master = dev_id; 854 struct stm32_spi *spi = spi_master_get_devdata(master); 855 u32 sr, ier, mask; 856 unsigned long flags; 857 bool end = false; 858 859 spin_lock_irqsave(&spi->lock, flags); 860 861 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 862 ier = readl_relaxed(spi->base + STM32H7_SPI_IER); 863 864 mask = ier; 865 /* 866 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set 867 * SUSP to acknowledge it later. TXC is automatically cleared 868 */ 869 870 mask |= STM32H7_SPI_SR_SUSP; 871 /* 872 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP 873 * are set. So in case of Full-Duplex, need to poll TXP and RXP event. 874 */ 875 if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma) 876 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP; 877 878 if (!(sr & mask)) { 879 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", 880 sr, ier); 881 spin_unlock_irqrestore(&spi->lock, flags); 882 return IRQ_NONE; 883 } 884 885 if (sr & STM32H7_SPI_SR_SUSP) { 886 static DEFINE_RATELIMIT_STATE(rs, 887 DEFAULT_RATELIMIT_INTERVAL * 10, 888 1); 889 if (__ratelimit(&rs)) 890 dev_dbg_ratelimited(spi->dev, "Communication suspended\n"); 891 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 892 stm32h7_spi_read_rxfifo(spi); 893 /* 894 * If communication is suspended while using DMA, it means 895 * that something went wrong, so stop the current transfer 896 */ 897 if (spi->cur_usedma) 898 end = true; 899 } 900 901 if (sr & STM32H7_SPI_SR_MODF) { 902 dev_warn(spi->dev, "Mode fault: transfer aborted\n"); 903 end = true; 904 } 905 906 if (sr & STM32H7_SPI_SR_OVR) { 907 dev_err(spi->dev, "Overrun: RX data lost\n"); 908 end = true; 909 } 910 911 if (sr & STM32H7_SPI_SR_EOT) { 912 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 913 stm32h7_spi_read_rxfifo(spi); 914 if (!spi->cur_usedma || 915 (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)) 916 end = true; 917 } 918 919 if (sr & STM32H7_SPI_SR_TXP) 920 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0))) 921 stm32h7_spi_write_txfifo(spi); 922 923 if (sr & STM32H7_SPI_SR_RXP) 924 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 925 stm32h7_spi_read_rxfifo(spi); 926 927 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR); 928 929 spin_unlock_irqrestore(&spi->lock, flags); 930 931 if (end) { 932 stm32h7_spi_disable(spi); 933 spi_finalize_current_transfer(master); 934 } 935 936 return IRQ_HANDLED; 937 } 938 939 /** 940 * stm32_spi_prepare_msg - set up the controller to transfer a single message 941 * @master: controller master interface 942 * @msg: pointer to spi message 943 */ 944 static int stm32_spi_prepare_msg(struct spi_master *master, 945 struct spi_message *msg) 946 { 947 struct stm32_spi *spi = spi_master_get_devdata(master); 948 struct spi_device *spi_dev = msg->spi; 949 struct device_node *np = spi_dev->dev.of_node; 950 unsigned long flags; 951 u32 clrb = 0, setb = 0; 952 953 /* SPI slave device may need time between data frames */ 954 spi->cur_midi = 0; 955 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi)) 956 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi); 957 958 if (spi_dev->mode & SPI_CPOL) 959 setb |= spi->cfg->regs->cpol.mask; 960 else 961 clrb |= spi->cfg->regs->cpol.mask; 962 963 if (spi_dev->mode & SPI_CPHA) 964 setb |= spi->cfg->regs->cpha.mask; 965 else 966 clrb |= spi->cfg->regs->cpha.mask; 967 968 if (spi_dev->mode & SPI_LSB_FIRST) 969 setb |= spi->cfg->regs->lsb_first.mask; 970 else 971 clrb |= spi->cfg->regs->lsb_first.mask; 972 973 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", 974 !!(spi_dev->mode & SPI_CPOL), 975 !!(spi_dev->mode & SPI_CPHA), 976 !!(spi_dev->mode & SPI_LSB_FIRST), 977 !!(spi_dev->mode & SPI_CS_HIGH)); 978 979 /* On STM32H7, messages should not exceed a maximum size setted 980 * afterward via the set_number_of_data function. In order to 981 * ensure that, split large messages into several messages 982 */ 983 if (spi->cfg->set_number_of_data) { 984 int ret; 985 986 ret = spi_split_transfers_maxsize(master, msg, 987 STM32H7_SPI_TSIZE_MAX, 988 GFP_KERNEL | GFP_DMA); 989 if (ret) 990 return ret; 991 } 992 993 spin_lock_irqsave(&spi->lock, flags); 994 995 /* CPOL, CPHA and LSB FIRST bits have common register */ 996 if (clrb || setb) 997 writel_relaxed( 998 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) & 999 ~clrb) | setb, 1000 spi->base + spi->cfg->regs->cpol.reg); 1001 1002 spin_unlock_irqrestore(&spi->lock, flags); 1003 1004 return 0; 1005 } 1006 1007 /** 1008 * stm32f4_spi_dma_tx_cb - dma callback 1009 * @data: pointer to the spi controller data structure 1010 * 1011 * DMA callback is called when the transfer is complete for DMA TX channel. 1012 */ 1013 static void stm32f4_spi_dma_tx_cb(void *data) 1014 { 1015 struct stm32_spi *spi = data; 1016 1017 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1018 spi_finalize_current_transfer(spi->master); 1019 stm32f4_spi_disable(spi); 1020 } 1021 } 1022 1023 /** 1024 * stm32_spi_dma_rx_cb - dma callback 1025 * @data: pointer to the spi controller data structure 1026 * 1027 * DMA callback is called when the transfer is complete for DMA RX channel. 1028 */ 1029 static void stm32_spi_dma_rx_cb(void *data) 1030 { 1031 struct stm32_spi *spi = data; 1032 1033 spi_finalize_current_transfer(spi->master); 1034 spi->cfg->disable(spi); 1035 } 1036 1037 /** 1038 * stm32_spi_dma_config - configure dma slave channel depending on current 1039 * transfer bits_per_word. 1040 * @spi: pointer to the spi controller data structure 1041 * @dma_conf: pointer to the dma_slave_config structure 1042 * @dir: direction of the dma transfer 1043 */ 1044 static void stm32_spi_dma_config(struct stm32_spi *spi, 1045 struct dma_slave_config *dma_conf, 1046 enum dma_transfer_direction dir) 1047 { 1048 enum dma_slave_buswidth buswidth; 1049 u32 maxburst; 1050 1051 if (spi->cur_bpw <= 8) 1052 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1053 else if (spi->cur_bpw <= 16) 1054 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1055 else 1056 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1057 1058 if (spi->cfg->has_fifo) { 1059 /* Valid for DMA Half or Full Fifo threshold */ 1060 if (spi->cur_fthlv == 2) 1061 maxburst = 1; 1062 else 1063 maxburst = spi->cur_fthlv; 1064 } else { 1065 maxburst = 1; 1066 } 1067 1068 memset(dma_conf, 0, sizeof(struct dma_slave_config)); 1069 dma_conf->direction = dir; 1070 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */ 1071 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg; 1072 dma_conf->src_addr_width = buswidth; 1073 dma_conf->src_maxburst = maxburst; 1074 1075 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n", 1076 buswidth, maxburst); 1077 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */ 1078 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg; 1079 dma_conf->dst_addr_width = buswidth; 1080 dma_conf->dst_maxburst = maxburst; 1081 1082 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n", 1083 buswidth, maxburst); 1084 } 1085 } 1086 1087 /** 1088 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using 1089 * interrupts 1090 * @spi: pointer to the spi controller data structure 1091 * 1092 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1093 * in progress. 1094 */ 1095 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi) 1096 { 1097 unsigned long flags; 1098 u32 cr2 = 0; 1099 1100 /* Enable the interrupts relative to the current communication mode */ 1101 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1102 cr2 |= STM32F4_SPI_CR2_TXEIE; 1103 } else if (spi->cur_comm == SPI_FULL_DUPLEX || 1104 spi->cur_comm == SPI_SIMPLEX_RX || 1105 spi->cur_comm == SPI_3WIRE_RX) { 1106 /* In transmit-only mode, the OVR flag is set in the SR register 1107 * since the received data are never read. Therefore set OVR 1108 * interrupt only when rx buffer is available. 1109 */ 1110 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE; 1111 } else { 1112 return -EINVAL; 1113 } 1114 1115 spin_lock_irqsave(&spi->lock, flags); 1116 1117 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2); 1118 1119 stm32_spi_enable(spi); 1120 1121 /* starting data transfer when buffer is loaded */ 1122 if (spi->tx_buf) 1123 stm32f4_spi_write_tx(spi); 1124 1125 spin_unlock_irqrestore(&spi->lock, flags); 1126 1127 return 1; 1128 } 1129 1130 /** 1131 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using 1132 * interrupts 1133 * @spi: pointer to the spi controller data structure 1134 * 1135 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1136 * in progress. 1137 */ 1138 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi) 1139 { 1140 unsigned long flags; 1141 u32 ier = 0; 1142 1143 /* Enable the interrupts relative to the current communication mode */ 1144 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */ 1145 ier |= STM32H7_SPI_IER_DXPIE; 1146 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */ 1147 ier |= STM32H7_SPI_IER_TXPIE; 1148 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */ 1149 ier |= STM32H7_SPI_IER_RXPIE; 1150 1151 /* Enable the interrupts relative to the end of transfer */ 1152 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE | 1153 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1154 1155 spin_lock_irqsave(&spi->lock, flags); 1156 1157 stm32_spi_enable(spi); 1158 1159 /* Be sure to have data in fifo before starting data transfer */ 1160 if (spi->tx_buf) 1161 stm32h7_spi_write_txfifo(spi); 1162 1163 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1164 1165 writel_relaxed(ier, spi->base + STM32H7_SPI_IER); 1166 1167 spin_unlock_irqrestore(&spi->lock, flags); 1168 1169 return 1; 1170 } 1171 1172 /** 1173 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start 1174 * transfer using DMA 1175 * @spi: pointer to the spi controller data structure 1176 */ 1177 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi) 1178 { 1179 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */ 1180 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX || 1181 spi->cur_comm == SPI_FULL_DUPLEX) { 1182 /* 1183 * In transmit-only mode, the OVR flag is set in the SR register 1184 * since the received data are never read. Therefore set OVR 1185 * interrupt only when rx buffer is available. 1186 */ 1187 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE); 1188 } 1189 1190 stm32_spi_enable(spi); 1191 } 1192 1193 /** 1194 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start 1195 * transfer using DMA 1196 * @spi: pointer to the spi controller data structure 1197 */ 1198 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi) 1199 { 1200 uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1201 1202 /* Enable the interrupts */ 1203 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) 1204 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE; 1205 1206 stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier); 1207 1208 stm32_spi_enable(spi); 1209 1210 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1211 } 1212 1213 /** 1214 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA 1215 * @spi: pointer to the spi controller data structure 1216 * @xfer: pointer to the spi_transfer structure 1217 * 1218 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1219 * in progress. 1220 */ 1221 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi, 1222 struct spi_transfer *xfer) 1223 { 1224 struct dma_slave_config tx_dma_conf, rx_dma_conf; 1225 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc; 1226 unsigned long flags; 1227 1228 spin_lock_irqsave(&spi->lock, flags); 1229 1230 rx_dma_desc = NULL; 1231 if (spi->rx_buf && spi->dma_rx) { 1232 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM); 1233 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); 1234 1235 /* Enable Rx DMA request */ 1236 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1237 spi->cfg->regs->dma_rx_en.mask); 1238 1239 rx_dma_desc = dmaengine_prep_slave_sg( 1240 spi->dma_rx, xfer->rx_sg.sgl, 1241 xfer->rx_sg.nents, 1242 rx_dma_conf.direction, 1243 DMA_PREP_INTERRUPT); 1244 } 1245 1246 tx_dma_desc = NULL; 1247 if (spi->tx_buf && spi->dma_tx) { 1248 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV); 1249 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf); 1250 1251 tx_dma_desc = dmaengine_prep_slave_sg( 1252 spi->dma_tx, xfer->tx_sg.sgl, 1253 xfer->tx_sg.nents, 1254 tx_dma_conf.direction, 1255 DMA_PREP_INTERRUPT); 1256 } 1257 1258 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) || 1259 (spi->rx_buf && spi->dma_rx && !rx_dma_desc)) 1260 goto dma_desc_error; 1261 1262 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc)) 1263 goto dma_desc_error; 1264 1265 if (rx_dma_desc) { 1266 rx_dma_desc->callback = spi->cfg->dma_rx_cb; 1267 rx_dma_desc->callback_param = spi; 1268 1269 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) { 1270 dev_err(spi->dev, "Rx DMA submit failed\n"); 1271 goto dma_desc_error; 1272 } 1273 /* Enable Rx DMA channel */ 1274 dma_async_issue_pending(spi->dma_rx); 1275 } 1276 1277 if (tx_dma_desc) { 1278 if (spi->cur_comm == SPI_SIMPLEX_TX || 1279 spi->cur_comm == SPI_3WIRE_TX) { 1280 tx_dma_desc->callback = spi->cfg->dma_tx_cb; 1281 tx_dma_desc->callback_param = spi; 1282 } 1283 1284 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) { 1285 dev_err(spi->dev, "Tx DMA submit failed\n"); 1286 goto dma_submit_error; 1287 } 1288 /* Enable Tx DMA channel */ 1289 dma_async_issue_pending(spi->dma_tx); 1290 1291 /* Enable Tx DMA request */ 1292 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg, 1293 spi->cfg->regs->dma_tx_en.mask); 1294 } 1295 1296 spi->cfg->transfer_one_dma_start(spi); 1297 1298 spin_unlock_irqrestore(&spi->lock, flags); 1299 1300 return 1; 1301 1302 dma_submit_error: 1303 if (spi->dma_rx) 1304 dmaengine_terminate_all(spi->dma_rx); 1305 1306 dma_desc_error: 1307 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1308 spi->cfg->regs->dma_rx_en.mask); 1309 1310 spin_unlock_irqrestore(&spi->lock, flags); 1311 1312 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n"); 1313 1314 spi->cur_usedma = false; 1315 return spi->cfg->transfer_one_irq(spi); 1316 } 1317 1318 /** 1319 * stm32f4_spi_set_bpw - Configure bits per word 1320 * @spi: pointer to the spi controller data structure 1321 */ 1322 static void stm32f4_spi_set_bpw(struct stm32_spi *spi) 1323 { 1324 if (spi->cur_bpw == 16) 1325 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1326 else 1327 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1328 } 1329 1330 /** 1331 * stm32h7_spi_set_bpw - configure bits per word 1332 * @spi: pointer to the spi controller data structure 1333 */ 1334 static void stm32h7_spi_set_bpw(struct stm32_spi *spi) 1335 { 1336 u32 bpw, fthlv; 1337 u32 cfg1_clrb = 0, cfg1_setb = 0; 1338 1339 bpw = spi->cur_bpw - 1; 1340 1341 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; 1342 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw); 1343 1344 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen); 1345 fthlv = spi->cur_fthlv - 1; 1346 1347 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; 1348 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv); 1349 1350 writel_relaxed( 1351 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) & 1352 ~cfg1_clrb) | cfg1_setb, 1353 spi->base + STM32H7_SPI_CFG1); 1354 } 1355 1356 /** 1357 * stm32_spi_set_mbr - Configure baud rate divisor in master mode 1358 * @spi: pointer to the spi controller data structure 1359 * @mbrdiv: baud rate divisor value 1360 */ 1361 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv) 1362 { 1363 u32 clrb = 0, setb = 0; 1364 1365 clrb |= spi->cfg->regs->br.mask; 1366 setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask; 1367 1368 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & 1369 ~clrb) | setb, 1370 spi->base + spi->cfg->regs->br.reg); 1371 } 1372 1373 /** 1374 * stm32_spi_communication_type - return transfer communication type 1375 * @spi_dev: pointer to the spi device 1376 * @transfer: pointer to spi transfer 1377 */ 1378 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev, 1379 struct spi_transfer *transfer) 1380 { 1381 unsigned int type = SPI_FULL_DUPLEX; 1382 1383 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */ 1384 /* 1385 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL 1386 * is forbidden and unvalidated by SPI subsystem so depending 1387 * on the valid buffer, we can determine the direction of the 1388 * transfer. 1389 */ 1390 if (!transfer->tx_buf) 1391 type = SPI_3WIRE_RX; 1392 else 1393 type = SPI_3WIRE_TX; 1394 } else { 1395 if (!transfer->tx_buf) 1396 type = SPI_SIMPLEX_RX; 1397 else if (!transfer->rx_buf) 1398 type = SPI_SIMPLEX_TX; 1399 } 1400 1401 return type; 1402 } 1403 1404 /** 1405 * stm32f4_spi_set_mode - configure communication mode 1406 * @spi: pointer to the spi controller data structure 1407 * @comm_type: type of communication to configure 1408 */ 1409 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1410 { 1411 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) { 1412 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1413 STM32F4_SPI_CR1_BIDIMODE | 1414 STM32F4_SPI_CR1_BIDIOE); 1415 } else if (comm_type == SPI_FULL_DUPLEX || 1416 comm_type == SPI_SIMPLEX_RX) { 1417 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1418 STM32F4_SPI_CR1_BIDIMODE | 1419 STM32F4_SPI_CR1_BIDIOE); 1420 } else if (comm_type == SPI_3WIRE_RX) { 1421 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1422 STM32F4_SPI_CR1_BIDIMODE); 1423 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1424 STM32F4_SPI_CR1_BIDIOE); 1425 } else { 1426 return -EINVAL; 1427 } 1428 1429 return 0; 1430 } 1431 1432 /** 1433 * stm32h7_spi_set_mode - configure communication mode 1434 * @spi: pointer to the spi controller data structure 1435 * @comm_type: type of communication to configure 1436 */ 1437 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1438 { 1439 u32 mode; 1440 u32 cfg2_clrb = 0, cfg2_setb = 0; 1441 1442 if (comm_type == SPI_3WIRE_RX) { 1443 mode = STM32H7_SPI_HALF_DUPLEX; 1444 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1445 } else if (comm_type == SPI_3WIRE_TX) { 1446 mode = STM32H7_SPI_HALF_DUPLEX; 1447 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1448 } else if (comm_type == SPI_SIMPLEX_RX) { 1449 mode = STM32H7_SPI_SIMPLEX_RX; 1450 } else if (comm_type == SPI_SIMPLEX_TX) { 1451 mode = STM32H7_SPI_SIMPLEX_TX; 1452 } else { 1453 mode = STM32H7_SPI_FULL_DUPLEX; 1454 } 1455 1456 cfg2_clrb |= STM32H7_SPI_CFG2_COMM; 1457 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode); 1458 1459 writel_relaxed( 1460 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1461 ~cfg2_clrb) | cfg2_setb, 1462 spi->base + STM32H7_SPI_CFG2); 1463 1464 return 0; 1465 } 1466 1467 /** 1468 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two 1469 * consecutive data frames in master mode 1470 * @spi: pointer to the spi controller data structure 1471 * @len: transfer len 1472 */ 1473 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len) 1474 { 1475 u32 cfg2_clrb = 0, cfg2_setb = 0; 1476 1477 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; 1478 if ((len > 1) && (spi->cur_midi > 0)) { 1479 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed); 1480 u32 midi = min_t(u32, 1481 DIV_ROUND_UP(spi->cur_midi, sck_period_ns), 1482 FIELD_GET(STM32H7_SPI_CFG2_MIDI, 1483 STM32H7_SPI_CFG2_MIDI)); 1484 1485 1486 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", 1487 sck_period_ns, midi, midi * sck_period_ns); 1488 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi); 1489 } 1490 1491 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1492 ~cfg2_clrb) | cfg2_setb, 1493 spi->base + STM32H7_SPI_CFG2); 1494 } 1495 1496 /** 1497 * stm32h7_spi_number_of_data - configure number of data at current transfer 1498 * @spi: pointer to the spi controller data structure 1499 * @nb_words: transfer length (in words) 1500 */ 1501 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) 1502 { 1503 if (nb_words <= STM32H7_SPI_TSIZE_MAX) { 1504 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words), 1505 spi->base + STM32H7_SPI_CR2); 1506 } else { 1507 return -EMSGSIZE; 1508 } 1509 1510 return 0; 1511 } 1512 1513 /** 1514 * stm32_spi_transfer_one_setup - common setup to transfer a single 1515 * spi_transfer either using DMA or 1516 * interrupts. 1517 * @spi: pointer to the spi controller data structure 1518 * @spi_dev: pointer to the spi device 1519 * @transfer: pointer to spi transfer 1520 */ 1521 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi, 1522 struct spi_device *spi_dev, 1523 struct spi_transfer *transfer) 1524 { 1525 unsigned long flags; 1526 unsigned int comm_type; 1527 int nb_words, ret = 0; 1528 int mbr; 1529 1530 spin_lock_irqsave(&spi->lock, flags); 1531 1532 spi->cur_xferlen = transfer->len; 1533 1534 spi->cur_bpw = transfer->bits_per_word; 1535 spi->cfg->set_bpw(spi); 1536 1537 /* Update spi->cur_speed with real clock speed */ 1538 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz, 1539 spi->cfg->baud_rate_div_min, 1540 spi->cfg->baud_rate_div_max); 1541 if (mbr < 0) { 1542 ret = mbr; 1543 goto out; 1544 } 1545 1546 transfer->speed_hz = spi->cur_speed; 1547 stm32_spi_set_mbr(spi, mbr); 1548 1549 comm_type = stm32_spi_communication_type(spi_dev, transfer); 1550 ret = spi->cfg->set_mode(spi, comm_type); 1551 if (ret < 0) 1552 goto out; 1553 1554 spi->cur_comm = comm_type; 1555 1556 if (spi->cfg->set_data_idleness) 1557 spi->cfg->set_data_idleness(spi, transfer->len); 1558 1559 if (spi->cur_bpw <= 8) 1560 nb_words = transfer->len; 1561 else if (spi->cur_bpw <= 16) 1562 nb_words = DIV_ROUND_UP(transfer->len * 8, 16); 1563 else 1564 nb_words = DIV_ROUND_UP(transfer->len * 8, 32); 1565 1566 if (spi->cfg->set_number_of_data) { 1567 ret = spi->cfg->set_number_of_data(spi, nb_words); 1568 if (ret < 0) 1569 goto out; 1570 } 1571 1572 dev_dbg(spi->dev, "transfer communication mode set to %d\n", 1573 spi->cur_comm); 1574 dev_dbg(spi->dev, 1575 "data frame of %d-bit, data packet of %d data frames\n", 1576 spi->cur_bpw, spi->cur_fthlv); 1577 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed); 1578 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n", 1579 spi->cur_xferlen, nb_words); 1580 dev_dbg(spi->dev, "dma %s\n", 1581 (spi->cur_usedma) ? "enabled" : "disabled"); 1582 1583 out: 1584 spin_unlock_irqrestore(&spi->lock, flags); 1585 1586 return ret; 1587 } 1588 1589 /** 1590 * stm32_spi_transfer_one - transfer a single spi_transfer 1591 * @master: controller master interface 1592 * @spi_dev: pointer to the spi device 1593 * @transfer: pointer to spi transfer 1594 * 1595 * It must return 0 if the transfer is finished or 1 if the transfer is still 1596 * in progress. 1597 */ 1598 static int stm32_spi_transfer_one(struct spi_master *master, 1599 struct spi_device *spi_dev, 1600 struct spi_transfer *transfer) 1601 { 1602 struct stm32_spi *spi = spi_master_get_devdata(master); 1603 int ret; 1604 1605 spi->tx_buf = transfer->tx_buf; 1606 spi->rx_buf = transfer->rx_buf; 1607 spi->tx_len = spi->tx_buf ? transfer->len : 0; 1608 spi->rx_len = spi->rx_buf ? transfer->len : 0; 1609 1610 spi->cur_usedma = (master->can_dma && 1611 master->can_dma(master, spi_dev, transfer)); 1612 1613 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer); 1614 if (ret) { 1615 dev_err(spi->dev, "SPI transfer setup failed\n"); 1616 return ret; 1617 } 1618 1619 if (spi->cur_usedma) 1620 return stm32_spi_transfer_one_dma(spi, transfer); 1621 else 1622 return spi->cfg->transfer_one_irq(spi); 1623 } 1624 1625 /** 1626 * stm32_spi_unprepare_msg - relax the hardware 1627 * @master: controller master interface 1628 * @msg: pointer to the spi message 1629 */ 1630 static int stm32_spi_unprepare_msg(struct spi_master *master, 1631 struct spi_message *msg) 1632 { 1633 struct stm32_spi *spi = spi_master_get_devdata(master); 1634 1635 spi->cfg->disable(spi); 1636 1637 return 0; 1638 } 1639 1640 /** 1641 * stm32f4_spi_config - Configure SPI controller as SPI master 1642 * @spi: pointer to the spi controller data structure 1643 */ 1644 static int stm32f4_spi_config(struct stm32_spi *spi) 1645 { 1646 unsigned long flags; 1647 1648 spin_lock_irqsave(&spi->lock, flags); 1649 1650 /* Ensure I2SMOD bit is kept cleared */ 1651 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR, 1652 STM32F4_SPI_I2SCFGR_I2SMOD); 1653 1654 /* 1655 * - SS input value high 1656 * - transmitter half duplex direction 1657 * - Set the master mode (default Motorola mode) 1658 * - Consider 1 master/n slaves configuration and 1659 * SS input value is determined by the SSI bit 1660 */ 1661 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI | 1662 STM32F4_SPI_CR1_BIDIOE | 1663 STM32F4_SPI_CR1_MSTR | 1664 STM32F4_SPI_CR1_SSM); 1665 1666 spin_unlock_irqrestore(&spi->lock, flags); 1667 1668 return 0; 1669 } 1670 1671 /** 1672 * stm32h7_spi_config - Configure SPI controller as SPI master 1673 * @spi: pointer to the spi controller data structure 1674 */ 1675 static int stm32h7_spi_config(struct stm32_spi *spi) 1676 { 1677 unsigned long flags; 1678 1679 spin_lock_irqsave(&spi->lock, flags); 1680 1681 /* Ensure I2SMOD bit is kept cleared */ 1682 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR, 1683 STM32H7_SPI_I2SCFGR_I2SMOD); 1684 1685 /* 1686 * - SS input value high 1687 * - transmitter half duplex direction 1688 * - automatic communication suspend when RX-Fifo is full 1689 */ 1690 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI | 1691 STM32H7_SPI_CR1_HDDIR | 1692 STM32H7_SPI_CR1_MASRX); 1693 1694 /* 1695 * - Set the master mode (default Motorola mode) 1696 * - Consider 1 master/n slaves configuration and 1697 * SS input value is determined by the SSI bit 1698 * - keep control of all associated GPIOs 1699 */ 1700 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER | 1701 STM32H7_SPI_CFG2_SSM | 1702 STM32H7_SPI_CFG2_AFCNTR); 1703 1704 spin_unlock_irqrestore(&spi->lock, flags); 1705 1706 return 0; 1707 } 1708 1709 static const struct stm32_spi_cfg stm32f4_spi_cfg = { 1710 .regs = &stm32f4_spi_regspec, 1711 .get_bpw_mask = stm32f4_spi_get_bpw_mask, 1712 .disable = stm32f4_spi_disable, 1713 .config = stm32f4_spi_config, 1714 .set_bpw = stm32f4_spi_set_bpw, 1715 .set_mode = stm32f4_spi_set_mode, 1716 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start, 1717 .dma_tx_cb = stm32f4_spi_dma_tx_cb, 1718 .dma_rx_cb = stm32_spi_dma_rx_cb, 1719 .transfer_one_irq = stm32f4_spi_transfer_one_irq, 1720 .irq_handler_event = stm32f4_spi_irq_event, 1721 .irq_handler_thread = stm32f4_spi_irq_thread, 1722 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN, 1723 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX, 1724 .has_fifo = false, 1725 .flags = SPI_MASTER_MUST_TX, 1726 }; 1727 1728 static const struct stm32_spi_cfg stm32h7_spi_cfg = { 1729 .regs = &stm32h7_spi_regspec, 1730 .get_fifo_size = stm32h7_spi_get_fifo_size, 1731 .get_bpw_mask = stm32h7_spi_get_bpw_mask, 1732 .disable = stm32h7_spi_disable, 1733 .config = stm32h7_spi_config, 1734 .set_bpw = stm32h7_spi_set_bpw, 1735 .set_mode = stm32h7_spi_set_mode, 1736 .set_data_idleness = stm32h7_spi_data_idleness, 1737 .set_number_of_data = stm32h7_spi_number_of_data, 1738 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start, 1739 .dma_rx_cb = stm32_spi_dma_rx_cb, 1740 /* 1741 * dma_tx_cb is not necessary since in case of TX, dma is followed by 1742 * SPI access hence handling is performed within the SPI interrupt 1743 */ 1744 .transfer_one_irq = stm32h7_spi_transfer_one_irq, 1745 .irq_handler_thread = stm32h7_spi_irq_thread, 1746 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN, 1747 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX, 1748 .has_fifo = true, 1749 }; 1750 1751 static const struct of_device_id stm32_spi_of_match[] = { 1752 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg }, 1753 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg }, 1754 {}, 1755 }; 1756 MODULE_DEVICE_TABLE(of, stm32_spi_of_match); 1757 1758 static int stm32_spi_probe(struct platform_device *pdev) 1759 { 1760 struct spi_master *master; 1761 struct stm32_spi *spi; 1762 struct resource *res; 1763 struct reset_control *rst; 1764 int ret; 1765 1766 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); 1767 if (!master) { 1768 dev_err(&pdev->dev, "spi master allocation failed\n"); 1769 return -ENOMEM; 1770 } 1771 platform_set_drvdata(pdev, master); 1772 1773 spi = spi_master_get_devdata(master); 1774 spi->dev = &pdev->dev; 1775 spi->master = master; 1776 spin_lock_init(&spi->lock); 1777 1778 spi->cfg = (const struct stm32_spi_cfg *) 1779 of_match_device(pdev->dev.driver->of_match_table, 1780 &pdev->dev)->data; 1781 1782 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1783 spi->base = devm_ioremap_resource(&pdev->dev, res); 1784 if (IS_ERR(spi->base)) 1785 return PTR_ERR(spi->base); 1786 1787 spi->phys_addr = (dma_addr_t)res->start; 1788 1789 spi->irq = platform_get_irq(pdev, 0); 1790 if (spi->irq <= 0) 1791 return dev_err_probe(&pdev->dev, spi->irq, 1792 "failed to get irq\n"); 1793 1794 ret = devm_request_threaded_irq(&pdev->dev, spi->irq, 1795 spi->cfg->irq_handler_event, 1796 spi->cfg->irq_handler_thread, 1797 IRQF_ONESHOT, pdev->name, master); 1798 if (ret) { 1799 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq, 1800 ret); 1801 return ret; 1802 } 1803 1804 spi->clk = devm_clk_get(&pdev->dev, NULL); 1805 if (IS_ERR(spi->clk)) { 1806 ret = PTR_ERR(spi->clk); 1807 dev_err(&pdev->dev, "clk get failed: %d\n", ret); 1808 return ret; 1809 } 1810 1811 ret = clk_prepare_enable(spi->clk); 1812 if (ret) { 1813 dev_err(&pdev->dev, "clk enable failed: %d\n", ret); 1814 return ret; 1815 } 1816 spi->clk_rate = clk_get_rate(spi->clk); 1817 if (!spi->clk_rate) { 1818 dev_err(&pdev->dev, "clk rate = 0\n"); 1819 ret = -EINVAL; 1820 goto err_clk_disable; 1821 } 1822 1823 rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); 1824 if (rst) { 1825 if (IS_ERR(rst)) { 1826 ret = dev_err_probe(&pdev->dev, PTR_ERR(rst), 1827 "failed to get reset\n"); 1828 goto err_clk_disable; 1829 } 1830 1831 reset_control_assert(rst); 1832 udelay(2); 1833 reset_control_deassert(rst); 1834 } 1835 1836 if (spi->cfg->has_fifo) 1837 spi->fifo_size = spi->cfg->get_fifo_size(spi); 1838 1839 ret = spi->cfg->config(spi); 1840 if (ret) { 1841 dev_err(&pdev->dev, "controller configuration failed: %d\n", 1842 ret); 1843 goto err_clk_disable; 1844 } 1845 1846 master->dev.of_node = pdev->dev.of_node; 1847 master->auto_runtime_pm = true; 1848 master->bus_num = pdev->id; 1849 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | 1850 SPI_3WIRE; 1851 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi); 1852 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min; 1853 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max; 1854 master->use_gpio_descriptors = true; 1855 master->prepare_message = stm32_spi_prepare_msg; 1856 master->transfer_one = stm32_spi_transfer_one; 1857 master->unprepare_message = stm32_spi_unprepare_msg; 1858 master->flags = spi->cfg->flags; 1859 1860 spi->dma_tx = dma_request_chan(spi->dev, "tx"); 1861 if (IS_ERR(spi->dma_tx)) { 1862 ret = PTR_ERR(spi->dma_tx); 1863 spi->dma_tx = NULL; 1864 if (ret == -EPROBE_DEFER) 1865 goto err_clk_disable; 1866 1867 dev_warn(&pdev->dev, "failed to request tx dma channel\n"); 1868 } else { 1869 master->dma_tx = spi->dma_tx; 1870 } 1871 1872 spi->dma_rx = dma_request_chan(spi->dev, "rx"); 1873 if (IS_ERR(spi->dma_rx)) { 1874 ret = PTR_ERR(spi->dma_rx); 1875 spi->dma_rx = NULL; 1876 if (ret == -EPROBE_DEFER) 1877 goto err_dma_release; 1878 1879 dev_warn(&pdev->dev, "failed to request rx dma channel\n"); 1880 } else { 1881 master->dma_rx = spi->dma_rx; 1882 } 1883 1884 if (spi->dma_tx || spi->dma_rx) 1885 master->can_dma = stm32_spi_can_dma; 1886 1887 pm_runtime_set_autosuspend_delay(&pdev->dev, 1888 STM32_SPI_AUTOSUSPEND_DELAY); 1889 pm_runtime_use_autosuspend(&pdev->dev); 1890 pm_runtime_set_active(&pdev->dev); 1891 pm_runtime_get_noresume(&pdev->dev); 1892 pm_runtime_enable(&pdev->dev); 1893 1894 ret = spi_register_master(master); 1895 if (ret) { 1896 dev_err(&pdev->dev, "spi master registration failed: %d\n", 1897 ret); 1898 goto err_pm_disable; 1899 } 1900 1901 pm_runtime_mark_last_busy(&pdev->dev); 1902 pm_runtime_put_autosuspend(&pdev->dev); 1903 1904 dev_info(&pdev->dev, "driver initialized\n"); 1905 1906 return 0; 1907 1908 err_pm_disable: 1909 pm_runtime_disable(&pdev->dev); 1910 pm_runtime_put_noidle(&pdev->dev); 1911 pm_runtime_set_suspended(&pdev->dev); 1912 pm_runtime_dont_use_autosuspend(&pdev->dev); 1913 err_dma_release: 1914 if (spi->dma_tx) 1915 dma_release_channel(spi->dma_tx); 1916 if (spi->dma_rx) 1917 dma_release_channel(spi->dma_rx); 1918 err_clk_disable: 1919 clk_disable_unprepare(spi->clk); 1920 1921 return ret; 1922 } 1923 1924 static int stm32_spi_remove(struct platform_device *pdev) 1925 { 1926 struct spi_master *master = platform_get_drvdata(pdev); 1927 struct stm32_spi *spi = spi_master_get_devdata(master); 1928 1929 pm_runtime_get_sync(&pdev->dev); 1930 1931 spi_unregister_master(master); 1932 spi->cfg->disable(spi); 1933 1934 pm_runtime_disable(&pdev->dev); 1935 pm_runtime_put_noidle(&pdev->dev); 1936 pm_runtime_set_suspended(&pdev->dev); 1937 pm_runtime_dont_use_autosuspend(&pdev->dev); 1938 1939 if (master->dma_tx) 1940 dma_release_channel(master->dma_tx); 1941 if (master->dma_rx) 1942 dma_release_channel(master->dma_rx); 1943 1944 clk_disable_unprepare(spi->clk); 1945 1946 1947 pinctrl_pm_select_sleep_state(&pdev->dev); 1948 1949 return 0; 1950 } 1951 1952 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev) 1953 { 1954 struct spi_master *master = dev_get_drvdata(dev); 1955 struct stm32_spi *spi = spi_master_get_devdata(master); 1956 1957 clk_disable_unprepare(spi->clk); 1958 1959 return pinctrl_pm_select_sleep_state(dev); 1960 } 1961 1962 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev) 1963 { 1964 struct spi_master *master = dev_get_drvdata(dev); 1965 struct stm32_spi *spi = spi_master_get_devdata(master); 1966 int ret; 1967 1968 ret = pinctrl_pm_select_default_state(dev); 1969 if (ret) 1970 return ret; 1971 1972 return clk_prepare_enable(spi->clk); 1973 } 1974 1975 static int __maybe_unused stm32_spi_suspend(struct device *dev) 1976 { 1977 struct spi_master *master = dev_get_drvdata(dev); 1978 int ret; 1979 1980 ret = spi_master_suspend(master); 1981 if (ret) 1982 return ret; 1983 1984 return pm_runtime_force_suspend(dev); 1985 } 1986 1987 static int __maybe_unused stm32_spi_resume(struct device *dev) 1988 { 1989 struct spi_master *master = dev_get_drvdata(dev); 1990 struct stm32_spi *spi = spi_master_get_devdata(master); 1991 int ret; 1992 1993 ret = pm_runtime_force_resume(dev); 1994 if (ret) 1995 return ret; 1996 1997 ret = spi_master_resume(master); 1998 if (ret) { 1999 clk_disable_unprepare(spi->clk); 2000 return ret; 2001 } 2002 2003 ret = pm_runtime_resume_and_get(dev); 2004 if (ret < 0) { 2005 dev_err(dev, "Unable to power device:%d\n", ret); 2006 return ret; 2007 } 2008 2009 spi->cfg->config(spi); 2010 2011 pm_runtime_mark_last_busy(dev); 2012 pm_runtime_put_autosuspend(dev); 2013 2014 return 0; 2015 } 2016 2017 static const struct dev_pm_ops stm32_spi_pm_ops = { 2018 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume) 2019 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend, 2020 stm32_spi_runtime_resume, NULL) 2021 }; 2022 2023 static struct platform_driver stm32_spi_driver = { 2024 .probe = stm32_spi_probe, 2025 .remove = stm32_spi_remove, 2026 .driver = { 2027 .name = DRIVER_NAME, 2028 .pm = &stm32_spi_pm_ops, 2029 .of_match_table = stm32_spi_of_match, 2030 }, 2031 }; 2032 2033 module_platform_driver(stm32_spi_driver); 2034 2035 MODULE_ALIAS("platform:" DRIVER_NAME); 2036 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver"); 2037 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); 2038 MODULE_LICENSE("GPL v2"); 2039