xref: /openbmc/linux/drivers/spi/spi-stm32.c (revision 150b2e86)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7 
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 #include <linux/spi/spi.h>
20 
21 #define DRIVER_NAME "spi_stm32"
22 
23 /* STM32F4 SPI registers */
24 #define STM32F4_SPI_CR1			0x00
25 #define STM32F4_SPI_CR2			0x04
26 #define STM32F4_SPI_SR			0x08
27 #define STM32F4_SPI_DR			0x0C
28 #define STM32F4_SPI_I2SCFGR		0x1C
29 
30 /* STM32F4_SPI_CR1 bit fields */
31 #define STM32F4_SPI_CR1_CPHA		BIT(0)
32 #define STM32F4_SPI_CR1_CPOL		BIT(1)
33 #define STM32F4_SPI_CR1_MSTR		BIT(2)
34 #define STM32F4_SPI_CR1_BR_SHIFT	3
35 #define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
36 #define STM32F4_SPI_CR1_SPE		BIT(6)
37 #define STM32F4_SPI_CR1_LSBFRST		BIT(7)
38 #define STM32F4_SPI_CR1_SSI		BIT(8)
39 #define STM32F4_SPI_CR1_SSM		BIT(9)
40 #define STM32F4_SPI_CR1_RXONLY		BIT(10)
41 #define STM32F4_SPI_CR1_DFF		BIT(11)
42 #define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
43 #define STM32F4_SPI_CR1_CRCEN		BIT(13)
44 #define STM32F4_SPI_CR1_BIDIOE		BIT(14)
45 #define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
46 #define STM32F4_SPI_CR1_BR_MIN		0
47 #define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
48 
49 /* STM32F4_SPI_CR2 bit fields */
50 #define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
51 #define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
52 #define STM32F4_SPI_CR2_SSOE		BIT(2)
53 #define STM32F4_SPI_CR2_FRF		BIT(4)
54 #define STM32F4_SPI_CR2_ERRIE		BIT(5)
55 #define STM32F4_SPI_CR2_RXNEIE		BIT(6)
56 #define STM32F4_SPI_CR2_TXEIE		BIT(7)
57 
58 /* STM32F4_SPI_SR bit fields */
59 #define STM32F4_SPI_SR_RXNE		BIT(0)
60 #define STM32F4_SPI_SR_TXE		BIT(1)
61 #define STM32F4_SPI_SR_CHSIDE		BIT(2)
62 #define STM32F4_SPI_SR_UDR		BIT(3)
63 #define STM32F4_SPI_SR_CRCERR		BIT(4)
64 #define STM32F4_SPI_SR_MODF		BIT(5)
65 #define STM32F4_SPI_SR_OVR		BIT(6)
66 #define STM32F4_SPI_SR_BSY		BIT(7)
67 #define STM32F4_SPI_SR_FRE		BIT(8)
68 
69 /* STM32F4_SPI_I2SCFGR bit fields */
70 #define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
71 
72 /* STM32F4 SPI Baud Rate min/max divisor */
73 #define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
74 #define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
75 
76 /* STM32H7 SPI registers */
77 #define STM32H7_SPI_CR1			0x00
78 #define STM32H7_SPI_CR2			0x04
79 #define STM32H7_SPI_CFG1		0x08
80 #define STM32H7_SPI_CFG2		0x0C
81 #define STM32H7_SPI_IER			0x10
82 #define STM32H7_SPI_SR			0x14
83 #define STM32H7_SPI_IFCR		0x18
84 #define STM32H7_SPI_TXDR		0x20
85 #define STM32H7_SPI_RXDR		0x30
86 #define STM32H7_SPI_I2SCFGR		0x50
87 
88 /* STM32H7_SPI_CR1 bit fields */
89 #define STM32H7_SPI_CR1_SPE		BIT(0)
90 #define STM32H7_SPI_CR1_MASRX		BIT(8)
91 #define STM32H7_SPI_CR1_CSTART		BIT(9)
92 #define STM32H7_SPI_CR1_CSUSP		BIT(10)
93 #define STM32H7_SPI_CR1_HDDIR		BIT(11)
94 #define STM32H7_SPI_CR1_SSI		BIT(12)
95 
96 /* STM32H7_SPI_CR2 bit fields */
97 #define STM32H7_SPI_CR2_TSIZE_SHIFT	0
98 #define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
99 
100 /* STM32H7_SPI_CFG1 bit fields */
101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
102 #define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
104 #define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT	28
108 #define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
109 #define STM32H7_SPI_CFG1_MBR_MIN	0
110 #define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
111 
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI_SHIFT	4
114 #define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
115 #define STM32H7_SPI_CFG2_COMM_SHIFT	17
116 #define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
117 #define STM32H7_SPI_CFG2_SP_SHIFT	19
118 #define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
119 #define STM32H7_SPI_CFG2_MASTER		BIT(22)
120 #define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
121 #define STM32H7_SPI_CFG2_CPHA		BIT(24)
122 #define STM32H7_SPI_CFG2_CPOL		BIT(25)
123 #define STM32H7_SPI_CFG2_SSM		BIT(26)
124 #define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
125 
126 /* STM32H7_SPI_IER bit fields */
127 #define STM32H7_SPI_IER_RXPIE		BIT(0)
128 #define STM32H7_SPI_IER_TXPIE		BIT(1)
129 #define STM32H7_SPI_IER_DXPIE		BIT(2)
130 #define STM32H7_SPI_IER_EOTIE		BIT(3)
131 #define STM32H7_SPI_IER_TXTFIE		BIT(4)
132 #define STM32H7_SPI_IER_OVRIE		BIT(6)
133 #define STM32H7_SPI_IER_MODFIE		BIT(9)
134 #define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
135 
136 /* STM32H7_SPI_SR bit fields */
137 #define STM32H7_SPI_SR_RXP		BIT(0)
138 #define STM32H7_SPI_SR_TXP		BIT(1)
139 #define STM32H7_SPI_SR_EOT		BIT(3)
140 #define STM32H7_SPI_SR_OVR		BIT(6)
141 #define STM32H7_SPI_SR_MODF		BIT(9)
142 #define STM32H7_SPI_SR_SUSP		BIT(11)
143 #define STM32H7_SPI_SR_RXPLVL_SHIFT	13
144 #define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
145 #define STM32H7_SPI_SR_RXWNE		BIT(15)
146 
147 /* STM32H7_SPI_IFCR bit fields */
148 #define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
149 
150 /* STM32H7_SPI_I2SCFGR bit fields */
151 #define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
152 
153 /* STM32H7 SPI Master Baud Rate min/max divisor */
154 #define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
155 #define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
156 
157 /* STM32H7 SPI Communication mode */
158 #define STM32H7_SPI_FULL_DUPLEX		0
159 #define STM32H7_SPI_SIMPLEX_TX		1
160 #define STM32H7_SPI_SIMPLEX_RX		2
161 #define STM32H7_SPI_HALF_DUPLEX		3
162 
163 /* SPI Communication type */
164 #define SPI_FULL_DUPLEX		0
165 #define SPI_SIMPLEX_TX		1
166 #define SPI_SIMPLEX_RX		2
167 #define SPI_3WIRE_TX		3
168 #define SPI_3WIRE_RX		4
169 
170 #define SPI_1HZ_NS		1000000000
171 
172 /*
173  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174  * without fifo buffers.
175  */
176 #define SPI_DMA_MIN_BYTES	16
177 
178 /**
179  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180  * @reg:		register offset
181  * @mask:		bitfield mask
182  * @shift:		left shift
183  */
184 struct stm32_spi_reg {
185 	int reg;
186 	int mask;
187 	int shift;
188 };
189 
190 /**
191  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192  * @en: enable register and SPI enable bit
193  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195  * @cpol: clock polarity register and polarity bit
196  * @cpha: clock phase register and phase bit
197  * @lsb_first: LSB transmitted first register and bit
198  * @br: baud rate register and bitfields
199  * @rx: SPI RX data register
200  * @tx: SPI TX data register
201  */
202 struct stm32_spi_regspec {
203 	const struct stm32_spi_reg en;
204 	const struct stm32_spi_reg dma_rx_en;
205 	const struct stm32_spi_reg dma_tx_en;
206 	const struct stm32_spi_reg cpol;
207 	const struct stm32_spi_reg cpha;
208 	const struct stm32_spi_reg lsb_first;
209 	const struct stm32_spi_reg br;
210 	const struct stm32_spi_reg rx;
211 	const struct stm32_spi_reg tx;
212 };
213 
214 struct stm32_spi;
215 
216 /**
217  * struct stm32_spi_cfg - stm32 compatible configuration data
218  * @regs: registers descriptions
219  * @get_fifo_size: routine to get fifo size
220  * @get_bpw_mask: routine to get bits per word mask
221  * @disable: routine to disable controller
222  * @config: routine to configure controller as SPI Master
223  * @set_bpw: routine to configure registers to for bits per word
224  * @set_mode: routine to configure registers to desired mode
225  * @set_data_idleness: optional routine to configure registers to desired idle
226  * time between frames (if driver has this functionality)
227  * @set_number_of_data: optional routine to configure registers to desired
228  * number of data (if driver has this functionality)
229  * @can_dma: routine to determine if the transfer is eligible for DMA use
230  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231  * using DMA
232  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
233  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234  * @transfer_one_irq: routine to configure interrupts for driver
235  * @irq_handler_event: Interrupt handler for SPI controller events
236  * @irq_handler_thread: thread of interrupt handler for SPI controller
237  * @baud_rate_div_min: minimum baud rate divisor
238  * @baud_rate_div_max: maximum baud rate divisor
239  * @has_fifo: boolean to know if fifo is used for driver
240  * @has_startbit: boolean to know if start bit is used to start transfer
241  */
242 struct stm32_spi_cfg {
243 	const struct stm32_spi_regspec *regs;
244 	int (*get_fifo_size)(struct stm32_spi *spi);
245 	int (*get_bpw_mask)(struct stm32_spi *spi);
246 	void (*disable)(struct stm32_spi *spi);
247 	int (*config)(struct stm32_spi *spi);
248 	void (*set_bpw)(struct stm32_spi *spi);
249 	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250 	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251 	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252 	void (*transfer_one_dma_start)(struct stm32_spi *spi);
253 	void (*dma_rx_cb)(void *data);
254 	void (*dma_tx_cb)(void *data);
255 	int (*transfer_one_irq)(struct stm32_spi *spi);
256 	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257 	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258 	unsigned int baud_rate_div_min;
259 	unsigned int baud_rate_div_max;
260 	bool has_fifo;
261 };
262 
263 /**
264  * struct stm32_spi - private data of the SPI controller
265  * @dev: driver model representation of the controller
266  * @master: controller master interface
267  * @cfg: compatible configuration data
268  * @base: virtual memory area
269  * @clk: hw kernel clock feeding the SPI clock generator
270  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271  * @rst: SPI controller reset line
272  * @lock: prevent I/O concurrent access
273  * @irq: SPI controller interrupt line
274  * @fifo_size: size of the embedded fifo in bytes
275  * @cur_midi: master inter-data idleness in ns
276  * @cur_speed: speed configured in Hz
277  * @cur_bpw: number of bits in a single SPI data frame
278  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279  * @cur_comm: SPI communication mode
280  * @cur_xferlen: current transfer length in bytes
281  * @cur_usedma: boolean to know if dma is used in current transfer
282  * @tx_buf: data to be written, or NULL
283  * @rx_buf: data to be read, or NULL
284  * @tx_len: number of data to be written in bytes
285  * @rx_len: number of data to be read in bytes
286  * @dma_tx: dma channel for TX transfer
287  * @dma_rx: dma channel for RX transfer
288  * @phys_addr: SPI registers physical base address
289  */
290 struct stm32_spi {
291 	struct device *dev;
292 	struct spi_master *master;
293 	const struct stm32_spi_cfg *cfg;
294 	void __iomem *base;
295 	struct clk *clk;
296 	u32 clk_rate;
297 	struct reset_control *rst;
298 	spinlock_t lock; /* prevent I/O concurrent access */
299 	int irq;
300 	unsigned int fifo_size;
301 
302 	unsigned int cur_midi;
303 	unsigned int cur_speed;
304 	unsigned int cur_bpw;
305 	unsigned int cur_fthlv;
306 	unsigned int cur_comm;
307 	unsigned int cur_xferlen;
308 	bool cur_usedma;
309 
310 	const void *tx_buf;
311 	void *rx_buf;
312 	int tx_len;
313 	int rx_len;
314 	struct dma_chan *dma_tx;
315 	struct dma_chan *dma_rx;
316 	dma_addr_t phys_addr;
317 };
318 
319 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320 	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321 
322 	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323 	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324 
325 	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326 	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327 	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328 	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329 
330 	.rx = { STM32F4_SPI_DR },
331 	.tx = { STM32F4_SPI_DR },
332 };
333 
334 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335 	/* SPI data transfer is enabled but spi_ker_ck is idle.
336 	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
337 	 */
338 	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339 
340 	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341 	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342 
343 	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344 	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345 	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346 	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347 		STM32H7_SPI_CFG1_MBR_SHIFT },
348 
349 	.rx = { STM32H7_SPI_RXDR },
350 	.tx = { STM32H7_SPI_TXDR },
351 };
352 
353 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354 				      u32 offset, u32 bits)
355 {
356 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357 		       spi->base + offset);
358 }
359 
360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361 				      u32 offset, u32 bits)
362 {
363 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364 		       spi->base + offset);
365 }
366 
367 /**
368  * stm32h7_spi_get_fifo_size - Return fifo size
369  * @spi: pointer to the spi controller data structure
370  */
371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 {
373 	unsigned long flags;
374 	u32 count = 0;
375 
376 	spin_lock_irqsave(&spi->lock, flags);
377 
378 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379 
380 	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381 		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382 
383 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384 
385 	spin_unlock_irqrestore(&spi->lock, flags);
386 
387 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388 
389 	return count;
390 }
391 
392 /**
393  * stm32f4_spi_get_bpw_mask - Return bits per word mask
394  * @spi: pointer to the spi controller data structure
395  */
396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 {
398 	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399 	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
400 }
401 
402 /**
403  * stm32h7_spi_get_bpw_mask - Return bits per word mask
404  * @spi: pointer to the spi controller data structure
405  */
406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 {
408 	unsigned long flags;
409 	u32 cfg1, max_bpw;
410 
411 	spin_lock_irqsave(&spi->lock, flags);
412 
413 	/*
414 	 * The most significant bit at DSIZE bit field is reserved when the
415 	 * maximum data size of periperal instances is limited to 16-bit
416 	 */
417 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418 
419 	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420 	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421 		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
422 	max_bpw += 1;
423 
424 	spin_unlock_irqrestore(&spi->lock, flags);
425 
426 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427 
428 	return SPI_BPW_RANGE_MASK(4, max_bpw);
429 }
430 
431 /**
432  * stm32_spi_prepare_mbr - Determine baud rate divisor value
433  * @spi: pointer to the spi controller data structure
434  * @speed_hz: requested speed
435  * @min_div: minimum baud rate divisor
436  * @max_div: maximum baud rate divisor
437  *
438  * Return baud rate divisor value in case of success or -EINVAL
439  */
440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441 				 u32 min_div, u32 max_div)
442 {
443 	u32 div, mbrdiv;
444 
445 	/* Ensure spi->clk_rate is even */
446 	div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
447 
448 	/*
449 	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
450 	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
451 	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
452 	 * no need to check it there.
453 	 * However, we need to ensure the following calculations.
454 	 */
455 	if ((div < min_div) || (div > max_div))
456 		return -EINVAL;
457 
458 	/* Determine the first power of 2 greater than or equal to div */
459 	if (div & (div - 1))
460 		mbrdiv = fls(div);
461 	else
462 		mbrdiv = fls(div) - 1;
463 
464 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
465 
466 	return mbrdiv - 1;
467 }
468 
469 /**
470  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471  * @spi: pointer to the spi controller data structure
472  * @xfer_len: length of the message to be transferred
473  */
474 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475 {
476 	u32 fthlv, half_fifo, packet;
477 
478 	/* data packet should not exceed 1/2 of fifo space */
479 	half_fifo = (spi->fifo_size / 2);
480 
481 	/* data_packet should not exceed transfer length */
482 	if (half_fifo > xfer_len)
483 		packet = xfer_len;
484 	else
485 		packet = half_fifo;
486 
487 	if (spi->cur_bpw <= 8)
488 		fthlv = packet;
489 	else if (spi->cur_bpw <= 16)
490 		fthlv = packet / 2;
491 	else
492 		fthlv = packet / 4;
493 
494 	/* align packet size with data registers access */
495 	if (spi->cur_bpw > 8)
496 		fthlv -= (fthlv % 2); /* multiple of 2 */
497 	else
498 		fthlv -= (fthlv % 4); /* multiple of 4 */
499 
500 	if (!fthlv)
501 		fthlv = 1;
502 
503 	return fthlv;
504 }
505 
506 /**
507  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
508  * @spi: pointer to the spi controller data structure
509  *
510  * Read from tx_buf depends on remaining bytes to avoid to read beyond
511  * tx_buf end.
512  */
513 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
514 {
515 	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
516 				  STM32F4_SPI_SR_TXE)) {
517 		u32 offs = spi->cur_xferlen - spi->tx_len;
518 
519 		if (spi->cur_bpw == 16) {
520 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
521 
522 			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
523 			spi->tx_len -= sizeof(u16);
524 		} else {
525 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
526 
527 			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
528 			spi->tx_len -= sizeof(u8);
529 		}
530 	}
531 
532 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
533 }
534 
535 /**
536  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537  * @spi: pointer to the spi controller data structure
538  *
539  * Read from tx_buf depends on remaining bytes to avoid to read beyond
540  * tx_buf end.
541  */
542 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543 {
544 	while ((spi->tx_len > 0) &&
545 		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
546 			STM32H7_SPI_SR_TXP)) {
547 		u32 offs = spi->cur_xferlen - spi->tx_len;
548 
549 		if (spi->tx_len >= sizeof(u32)) {
550 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
551 
552 			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553 			spi->tx_len -= sizeof(u32);
554 		} else if (spi->tx_len >= sizeof(u16)) {
555 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
556 
557 			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558 			spi->tx_len -= sizeof(u16);
559 		} else {
560 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
561 
562 			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563 			spi->tx_len -= sizeof(u8);
564 		}
565 	}
566 
567 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
568 }
569 
570 /**
571  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
572  * @spi: pointer to the spi controller data structure
573  *
574  * Write in rx_buf depends on remaining bytes to avoid to write beyond
575  * rx_buf end.
576  */
577 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
578 {
579 	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
580 				  STM32F4_SPI_SR_RXNE)) {
581 		u32 offs = spi->cur_xferlen - spi->rx_len;
582 
583 		if (spi->cur_bpw == 16) {
584 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
585 
586 			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
587 			spi->rx_len -= sizeof(u16);
588 		} else {
589 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
590 
591 			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
592 			spi->rx_len -= sizeof(u8);
593 		}
594 	}
595 
596 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
597 }
598 
599 /**
600  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601  * @spi: pointer to the spi controller data structure
602  * @flush: boolean indicating that FIFO should be flushed
603  *
604  * Write in rx_buf depends on remaining bytes to avoid to write beyond
605  * rx_buf end.
606  */
607 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608 {
609 	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
610 	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
611 		     STM32H7_SPI_SR_RXPLVL_SHIFT;
612 
613 	while ((spi->rx_len > 0) &&
614 	       ((sr & STM32H7_SPI_SR_RXP) ||
615 		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616 		u32 offs = spi->cur_xferlen - spi->rx_len;
617 
618 		if ((spi->rx_len >= sizeof(u32)) ||
619 		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
621 
622 			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623 			spi->rx_len -= sizeof(u32);
624 		} else if ((spi->rx_len >= sizeof(u16)) ||
625 			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
626 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
627 
628 			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629 			spi->rx_len -= sizeof(u16);
630 		} else {
631 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
632 
633 			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634 			spi->rx_len -= sizeof(u8);
635 		}
636 
637 		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
638 		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
639 			 STM32H7_SPI_SR_RXPLVL_SHIFT;
640 	}
641 
642 	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
643 		flush ? "(flush)" : "", spi->rx_len);
644 }
645 
646 /**
647  * stm32_spi_enable - Enable SPI controller
648  * @spi: pointer to the spi controller data structure
649  */
650 static void stm32_spi_enable(struct stm32_spi *spi)
651 {
652 	dev_dbg(spi->dev, "enable controller\n");
653 
654 	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
655 			   spi->cfg->regs->en.mask);
656 }
657 
658 /**
659  * stm32f4_spi_disable - Disable SPI controller
660  * @spi: pointer to the spi controller data structure
661  */
662 static void stm32f4_spi_disable(struct stm32_spi *spi)
663 {
664 	unsigned long flags;
665 	u32 sr;
666 
667 	dev_dbg(spi->dev, "disable controller\n");
668 
669 	spin_lock_irqsave(&spi->lock, flags);
670 
671 	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
672 	      STM32F4_SPI_CR1_SPE)) {
673 		spin_unlock_irqrestore(&spi->lock, flags);
674 		return;
675 	}
676 
677 	/* Disable interrupts */
678 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
679 						 STM32F4_SPI_CR2_RXNEIE |
680 						 STM32F4_SPI_CR2_ERRIE);
681 
682 	/* Wait until BSY = 0 */
683 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
684 					      sr, !(sr & STM32F4_SPI_SR_BSY),
685 					      10, 100000) < 0) {
686 		dev_warn(spi->dev, "disabling condition timeout\n");
687 	}
688 
689 	if (spi->cur_usedma && spi->dma_tx)
690 		dmaengine_terminate_all(spi->dma_tx);
691 	if (spi->cur_usedma && spi->dma_rx)
692 		dmaengine_terminate_all(spi->dma_rx);
693 
694 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
695 
696 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
697 						 STM32F4_SPI_CR2_RXDMAEN);
698 
699 	/* Sequence to clear OVR flag */
700 	readl_relaxed(spi->base + STM32F4_SPI_DR);
701 	readl_relaxed(spi->base + STM32F4_SPI_SR);
702 
703 	spin_unlock_irqrestore(&spi->lock, flags);
704 }
705 
706 /**
707  * stm32h7_spi_disable - Disable SPI controller
708  * @spi: pointer to the spi controller data structure
709  *
710  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712  * RX-Fifo.
713  * Normally, if TSIZE has been configured, we should relax the hardware at the
714  * reception of the EOT interrupt. But in case of error, EOT will not be
715  * raised. So the subsystem unprepare_message call allows us to properly
716  * complete the transfer from an hardware point of view.
717  */
718 static void stm32h7_spi_disable(struct stm32_spi *spi)
719 {
720 	unsigned long flags;
721 	u32 cr1, sr;
722 
723 	dev_dbg(spi->dev, "disable controller\n");
724 
725 	spin_lock_irqsave(&spi->lock, flags);
726 
727 	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728 
729 	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730 		spin_unlock_irqrestore(&spi->lock, flags);
731 		return;
732 	}
733 
734 	/* Wait on EOT or suspend the flow */
735 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
736 					      sr, !(sr & STM32H7_SPI_SR_EOT),
737 					      10, 100000) < 0) {
738 		if (cr1 & STM32H7_SPI_CR1_CSTART) {
739 			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
740 				       spi->base + STM32H7_SPI_CR1);
741 			if (readl_relaxed_poll_timeout_atomic(
742 						spi->base + STM32H7_SPI_SR,
743 						sr, !(sr & STM32H7_SPI_SR_SUSP),
744 						10, 100000) < 0)
745 				dev_warn(spi->dev,
746 					 "Suspend request timeout\n");
747 		}
748 	}
749 
750 	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751 		stm32h7_spi_read_rxfifo(spi, true);
752 
753 	if (spi->cur_usedma && spi->dma_tx)
754 		dmaengine_terminate_all(spi->dma_tx);
755 	if (spi->cur_usedma && spi->dma_rx)
756 		dmaengine_terminate_all(spi->dma_rx);
757 
758 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759 
760 	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
761 						STM32H7_SPI_CFG1_RXDMAEN);
762 
763 	/* Disable interrupts and clear status flags */
764 	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
765 	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766 
767 	spin_unlock_irqrestore(&spi->lock, flags);
768 }
769 
770 /**
771  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772  * @master: controller master interface
773  * @spi_dev: pointer to the spi device
774  * @transfer: pointer to spi transfer
775  *
776  * If driver has fifo and the current transfer size is greater than fifo size,
777  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778  */
779 static bool stm32_spi_can_dma(struct spi_master *master,
780 			      struct spi_device *spi_dev,
781 			      struct spi_transfer *transfer)
782 {
783 	unsigned int dma_size;
784 	struct stm32_spi *spi = spi_master_get_devdata(master);
785 
786 	if (spi->cfg->has_fifo)
787 		dma_size = spi->fifo_size;
788 	else
789 		dma_size = SPI_DMA_MIN_BYTES;
790 
791 	dev_dbg(spi->dev, "%s: %s\n", __func__,
792 		(transfer->len > dma_size) ? "true" : "false");
793 
794 	return (transfer->len > dma_size);
795 }
796 
797 /**
798  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
799  * @irq: interrupt line
800  * @dev_id: SPI controller master interface
801  */
802 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
803 {
804 	struct spi_master *master = dev_id;
805 	struct stm32_spi *spi = spi_master_get_devdata(master);
806 	u32 sr, mask = 0;
807 	unsigned long flags;
808 	bool end = false;
809 
810 	spin_lock_irqsave(&spi->lock, flags);
811 
812 	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
813 	/*
814 	 * BSY flag is not handled in interrupt but it is normal behavior when
815 	 * this flag is set.
816 	 */
817 	sr &= ~STM32F4_SPI_SR_BSY;
818 
819 	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
820 				 spi->cur_comm == SPI_3WIRE_TX)) {
821 		/* OVR flag shouldn't be handled for TX only mode */
822 		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
823 		mask |= STM32F4_SPI_SR_TXE;
824 	}
825 
826 	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
827 				spi->cur_comm == SPI_SIMPLEX_RX ||
828 				spi->cur_comm == SPI_3WIRE_RX)) {
829 		/* TXE flag is set and is handled when RXNE flag occurs */
830 		sr &= ~STM32F4_SPI_SR_TXE;
831 		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
832 	}
833 
834 	if (!(sr & mask)) {
835 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
836 		spin_unlock_irqrestore(&spi->lock, flags);
837 		return IRQ_NONE;
838 	}
839 
840 	if (sr & STM32F4_SPI_SR_OVR) {
841 		dev_warn(spi->dev, "Overrun: received value discarded\n");
842 
843 		/* Sequence to clear OVR flag */
844 		readl_relaxed(spi->base + STM32F4_SPI_DR);
845 		readl_relaxed(spi->base + STM32F4_SPI_SR);
846 
847 		/*
848 		 * If overrun is detected, it means that something went wrong,
849 		 * so stop the current transfer. Transfer can wait for next
850 		 * RXNE but DR is already read and end never happens.
851 		 */
852 		end = true;
853 		goto end_irq;
854 	}
855 
856 	if (sr & STM32F4_SPI_SR_TXE) {
857 		if (spi->tx_buf)
858 			stm32f4_spi_write_tx(spi);
859 		if (spi->tx_len == 0)
860 			end = true;
861 	}
862 
863 	if (sr & STM32F4_SPI_SR_RXNE) {
864 		stm32f4_spi_read_rx(spi);
865 		if (spi->rx_len == 0)
866 			end = true;
867 		else if (spi->tx_buf)/* Load data for discontinuous mode */
868 			stm32f4_spi_write_tx(spi);
869 	}
870 
871 end_irq:
872 	if (end) {
873 		/* Immediately disable interrupts to do not generate new one */
874 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
875 					STM32F4_SPI_CR2_TXEIE |
876 					STM32F4_SPI_CR2_RXNEIE |
877 					STM32F4_SPI_CR2_ERRIE);
878 		spin_unlock_irqrestore(&spi->lock, flags);
879 		return IRQ_WAKE_THREAD;
880 	}
881 
882 	spin_unlock_irqrestore(&spi->lock, flags);
883 	return IRQ_HANDLED;
884 }
885 
886 /**
887  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
888  * @irq: interrupt line
889  * @dev_id: SPI controller master interface
890  */
891 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
892 {
893 	struct spi_master *master = dev_id;
894 	struct stm32_spi *spi = spi_master_get_devdata(master);
895 
896 	spi_finalize_current_transfer(master);
897 	stm32f4_spi_disable(spi);
898 
899 	return IRQ_HANDLED;
900 }
901 
902 /**
903  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
904  * @irq: interrupt line
905  * @dev_id: SPI controller master interface
906  */
907 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
908 {
909 	struct spi_master *master = dev_id;
910 	struct stm32_spi *spi = spi_master_get_devdata(master);
911 	u32 sr, ier, mask;
912 	unsigned long flags;
913 	bool end = false;
914 
915 	spin_lock_irqsave(&spi->lock, flags);
916 
917 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
918 	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
919 
920 	mask = ier;
921 	/* EOTIE is triggered on EOT, SUSP and TXC events. */
922 	mask |= STM32H7_SPI_SR_SUSP;
923 	/*
924 	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
925 	 * Full-Duplex, need to poll RXP event to know if there are remaining
926 	 * data, before disabling SPI.
927 	 */
928 	if (spi->rx_buf && !spi->cur_usedma)
929 		mask |= STM32H7_SPI_SR_RXP;
930 
931 	if (!(sr & mask)) {
932 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
933 			sr, ier);
934 		spin_unlock_irqrestore(&spi->lock, flags);
935 		return IRQ_NONE;
936 	}
937 
938 	if (sr & STM32H7_SPI_SR_SUSP) {
939 		dev_warn(spi->dev, "Communication suspended\n");
940 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
941 			stm32h7_spi_read_rxfifo(spi, false);
942 		/*
943 		 * If communication is suspended while using DMA, it means
944 		 * that something went wrong, so stop the current transfer
945 		 */
946 		if (spi->cur_usedma)
947 			end = true;
948 	}
949 
950 	if (sr & STM32H7_SPI_SR_MODF) {
951 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
952 		end = true;
953 	}
954 
955 	if (sr & STM32H7_SPI_SR_OVR) {
956 		dev_warn(spi->dev, "Overrun: received value discarded\n");
957 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
958 			stm32h7_spi_read_rxfifo(spi, false);
959 		/*
960 		 * If overrun is detected while using DMA, it means that
961 		 * something went wrong, so stop the current transfer
962 		 */
963 		if (spi->cur_usedma)
964 			end = true;
965 	}
966 
967 	if (sr & STM32H7_SPI_SR_EOT) {
968 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
969 			stm32h7_spi_read_rxfifo(spi, true);
970 		end = true;
971 	}
972 
973 	if (sr & STM32H7_SPI_SR_TXP)
974 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
975 			stm32h7_spi_write_txfifo(spi);
976 
977 	if (sr & STM32H7_SPI_SR_RXP)
978 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
979 			stm32h7_spi_read_rxfifo(spi, false);
980 
981 	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
982 
983 	spin_unlock_irqrestore(&spi->lock, flags);
984 
985 	if (end) {
986 		stm32h7_spi_disable(spi);
987 		spi_finalize_current_transfer(master);
988 	}
989 
990 	return IRQ_HANDLED;
991 }
992 
993 /**
994  * stm32_spi_prepare_msg - set up the controller to transfer a single message
995  * @master: controller master interface
996  * @msg: pointer to spi message
997  */
998 static int stm32_spi_prepare_msg(struct spi_master *master,
999 				 struct spi_message *msg)
1000 {
1001 	struct stm32_spi *spi = spi_master_get_devdata(master);
1002 	struct spi_device *spi_dev = msg->spi;
1003 	struct device_node *np = spi_dev->dev.of_node;
1004 	unsigned long flags;
1005 	u32 clrb = 0, setb = 0;
1006 
1007 	/* SPI slave device may need time between data frames */
1008 	spi->cur_midi = 0;
1009 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1010 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1011 
1012 	if (spi_dev->mode & SPI_CPOL)
1013 		setb |= spi->cfg->regs->cpol.mask;
1014 	else
1015 		clrb |= spi->cfg->regs->cpol.mask;
1016 
1017 	if (spi_dev->mode & SPI_CPHA)
1018 		setb |= spi->cfg->regs->cpha.mask;
1019 	else
1020 		clrb |= spi->cfg->regs->cpha.mask;
1021 
1022 	if (spi_dev->mode & SPI_LSB_FIRST)
1023 		setb |= spi->cfg->regs->lsb_first.mask;
1024 	else
1025 		clrb |= spi->cfg->regs->lsb_first.mask;
1026 
1027 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1028 		spi_dev->mode & SPI_CPOL,
1029 		spi_dev->mode & SPI_CPHA,
1030 		spi_dev->mode & SPI_LSB_FIRST,
1031 		spi_dev->mode & SPI_CS_HIGH);
1032 
1033 	spin_lock_irqsave(&spi->lock, flags);
1034 
1035 	/* CPOL, CPHA and LSB FIRST bits have common register */
1036 	if (clrb || setb)
1037 		writel_relaxed(
1038 			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1039 			 ~clrb) | setb,
1040 			spi->base + spi->cfg->regs->cpol.reg);
1041 
1042 	spin_unlock_irqrestore(&spi->lock, flags);
1043 
1044 	return 0;
1045 }
1046 
1047 /**
1048  * stm32f4_spi_dma_tx_cb - dma callback
1049  * @data: pointer to the spi controller data structure
1050  *
1051  * DMA callback is called when the transfer is complete for DMA TX channel.
1052  */
1053 static void stm32f4_spi_dma_tx_cb(void *data)
1054 {
1055 	struct stm32_spi *spi = data;
1056 
1057 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1058 		spi_finalize_current_transfer(spi->master);
1059 		stm32f4_spi_disable(spi);
1060 	}
1061 }
1062 
1063 /**
1064  * stm32f4_spi_dma_rx_cb - dma callback
1065  * @data: pointer to the spi controller data structure
1066  *
1067  * DMA callback is called when the transfer is complete for DMA RX channel.
1068  */
1069 static void stm32f4_spi_dma_rx_cb(void *data)
1070 {
1071 	struct stm32_spi *spi = data;
1072 
1073 	spi_finalize_current_transfer(spi->master);
1074 	stm32f4_spi_disable(spi);
1075 }
1076 
1077 /**
1078  * stm32h7_spi_dma_cb - dma callback
1079  * @data: pointer to the spi controller data structure
1080  *
1081  * DMA callback is called when the transfer is complete or when an error
1082  * occurs. If the transfer is complete, EOT flag is raised.
1083  */
1084 static void stm32h7_spi_dma_cb(void *data)
1085 {
1086 	struct stm32_spi *spi = data;
1087 	unsigned long flags;
1088 	u32 sr;
1089 
1090 	spin_lock_irqsave(&spi->lock, flags);
1091 
1092 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1093 
1094 	spin_unlock_irqrestore(&spi->lock, flags);
1095 
1096 	if (!(sr & STM32H7_SPI_SR_EOT))
1097 		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1098 
1099 	/* Now wait for EOT, or SUSP or OVR in case of error */
1100 }
1101 
1102 /**
1103  * stm32_spi_dma_config - configure dma slave channel depending on current
1104  *			  transfer bits_per_word.
1105  * @spi: pointer to the spi controller data structure
1106  * @dma_conf: pointer to the dma_slave_config structure
1107  * @dir: direction of the dma transfer
1108  */
1109 static void stm32_spi_dma_config(struct stm32_spi *spi,
1110 				 struct dma_slave_config *dma_conf,
1111 				 enum dma_transfer_direction dir)
1112 {
1113 	enum dma_slave_buswidth buswidth;
1114 	u32 maxburst;
1115 
1116 	if (spi->cur_bpw <= 8)
1117 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118 	else if (spi->cur_bpw <= 16)
1119 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1120 	else
1121 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1122 
1123 	if (spi->cfg->has_fifo) {
1124 		/* Valid for DMA Half or Full Fifo threshold */
1125 		if (spi->cur_fthlv == 2)
1126 			maxburst = 1;
1127 		else
1128 			maxburst = spi->cur_fthlv;
1129 	} else {
1130 		maxburst = 1;
1131 	}
1132 
1133 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1134 	dma_conf->direction = dir;
1135 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1136 		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1137 		dma_conf->src_addr_width = buswidth;
1138 		dma_conf->src_maxburst = maxburst;
1139 
1140 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1141 			buswidth, maxburst);
1142 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1143 		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1144 		dma_conf->dst_addr_width = buswidth;
1145 		dma_conf->dst_maxburst = maxburst;
1146 
1147 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1148 			buswidth, maxburst);
1149 	}
1150 }
1151 
1152 /**
1153  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1154  *				  interrupts
1155  * @spi: pointer to the spi controller data structure
1156  *
1157  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1158  * in progress.
1159  */
1160 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1161 {
1162 	unsigned long flags;
1163 	u32 cr2 = 0;
1164 
1165 	/* Enable the interrupts relative to the current communication mode */
1166 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1167 		cr2 |= STM32F4_SPI_CR2_TXEIE;
1168 	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1169 				spi->cur_comm == SPI_SIMPLEX_RX ||
1170 				spi->cur_comm == SPI_3WIRE_RX) {
1171 		/* In transmit-only mode, the OVR flag is set in the SR register
1172 		 * since the received data are never read. Therefore set OVR
1173 		 * interrupt only when rx buffer is available.
1174 		 */
1175 		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1176 	} else {
1177 		return -EINVAL;
1178 	}
1179 
1180 	spin_lock_irqsave(&spi->lock, flags);
1181 
1182 	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1183 
1184 	stm32_spi_enable(spi);
1185 
1186 	/* starting data transfer when buffer is loaded */
1187 	if (spi->tx_buf)
1188 		stm32f4_spi_write_tx(spi);
1189 
1190 	spin_unlock_irqrestore(&spi->lock, flags);
1191 
1192 	return 1;
1193 }
1194 
1195 /**
1196  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1197  *				  interrupts
1198  * @spi: pointer to the spi controller data structure
1199  *
1200  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1201  * in progress.
1202  */
1203 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1204 {
1205 	unsigned long flags;
1206 	u32 ier = 0;
1207 
1208 	/* Enable the interrupts relative to the current communication mode */
1209 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1210 		ier |= STM32H7_SPI_IER_DXPIE;
1211 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1212 		ier |= STM32H7_SPI_IER_TXPIE;
1213 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1214 		ier |= STM32H7_SPI_IER_RXPIE;
1215 
1216 	/* Enable the interrupts relative to the end of transfer */
1217 	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1218 	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1219 
1220 	spin_lock_irqsave(&spi->lock, flags);
1221 
1222 	stm32_spi_enable(spi);
1223 
1224 	/* Be sure to have data in fifo before starting data transfer */
1225 	if (spi->tx_buf)
1226 		stm32h7_spi_write_txfifo(spi);
1227 
1228 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1229 
1230 	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1231 
1232 	spin_unlock_irqrestore(&spi->lock, flags);
1233 
1234 	return 1;
1235 }
1236 
1237 /**
1238  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1239  *					transfer using DMA
1240  * @spi: pointer to the spi controller data structure
1241  */
1242 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1243 {
1244 	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1245 	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1246 	    spi->cur_comm == SPI_FULL_DUPLEX) {
1247 		/*
1248 		 * In transmit-only mode, the OVR flag is set in the SR register
1249 		 * since the received data are never read. Therefore set OVR
1250 		 * interrupt only when rx buffer is available.
1251 		 */
1252 		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1253 	}
1254 
1255 	stm32_spi_enable(spi);
1256 }
1257 
1258 /**
1259  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1260  *					transfer using DMA
1261  * @spi: pointer to the spi controller data structure
1262  */
1263 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1264 {
1265 	/* Enable the interrupts relative to the end of transfer */
1266 	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1267 						 STM32H7_SPI_IER_TXTFIE |
1268 						 STM32H7_SPI_IER_OVRIE |
1269 						 STM32H7_SPI_IER_MODFIE);
1270 
1271 	stm32_spi_enable(spi);
1272 
1273 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1274 }
1275 
1276 /**
1277  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1278  * @spi: pointer to the spi controller data structure
1279  * @xfer: pointer to the spi_transfer structure
1280  *
1281  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1282  * in progress.
1283  */
1284 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1285 				      struct spi_transfer *xfer)
1286 {
1287 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1288 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1289 	unsigned long flags;
1290 
1291 	spin_lock_irqsave(&spi->lock, flags);
1292 
1293 	rx_dma_desc = NULL;
1294 	if (spi->rx_buf && spi->dma_rx) {
1295 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1296 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1297 
1298 		/* Enable Rx DMA request */
1299 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1300 				   spi->cfg->regs->dma_rx_en.mask);
1301 
1302 		rx_dma_desc = dmaengine_prep_slave_sg(
1303 					spi->dma_rx, xfer->rx_sg.sgl,
1304 					xfer->rx_sg.nents,
1305 					rx_dma_conf.direction,
1306 					DMA_PREP_INTERRUPT);
1307 	}
1308 
1309 	tx_dma_desc = NULL;
1310 	if (spi->tx_buf && spi->dma_tx) {
1311 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1312 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1313 
1314 		tx_dma_desc = dmaengine_prep_slave_sg(
1315 					spi->dma_tx, xfer->tx_sg.sgl,
1316 					xfer->tx_sg.nents,
1317 					tx_dma_conf.direction,
1318 					DMA_PREP_INTERRUPT);
1319 	}
1320 
1321 	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1322 	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1323 		goto dma_desc_error;
1324 
1325 	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1326 		goto dma_desc_error;
1327 
1328 	if (rx_dma_desc) {
1329 		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1330 		rx_dma_desc->callback_param = spi;
1331 
1332 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1333 			dev_err(spi->dev, "Rx DMA submit failed\n");
1334 			goto dma_desc_error;
1335 		}
1336 		/* Enable Rx DMA channel */
1337 		dma_async_issue_pending(spi->dma_rx);
1338 	}
1339 
1340 	if (tx_dma_desc) {
1341 		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1342 		    spi->cur_comm == SPI_3WIRE_TX) {
1343 			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1344 			tx_dma_desc->callback_param = spi;
1345 		}
1346 
1347 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1348 			dev_err(spi->dev, "Tx DMA submit failed\n");
1349 			goto dma_submit_error;
1350 		}
1351 		/* Enable Tx DMA channel */
1352 		dma_async_issue_pending(spi->dma_tx);
1353 
1354 		/* Enable Tx DMA request */
1355 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1356 				   spi->cfg->regs->dma_tx_en.mask);
1357 	}
1358 
1359 	spi->cfg->transfer_one_dma_start(spi);
1360 
1361 	spin_unlock_irqrestore(&spi->lock, flags);
1362 
1363 	return 1;
1364 
1365 dma_submit_error:
1366 	if (spi->dma_rx)
1367 		dmaengine_terminate_all(spi->dma_rx);
1368 
1369 dma_desc_error:
1370 	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1371 			   spi->cfg->regs->dma_rx_en.mask);
1372 
1373 	spin_unlock_irqrestore(&spi->lock, flags);
1374 
1375 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1376 
1377 	spi->cur_usedma = false;
1378 	return spi->cfg->transfer_one_irq(spi);
1379 }
1380 
1381 /**
1382  * stm32f4_spi_set_bpw - Configure bits per word
1383  * @spi: pointer to the spi controller data structure
1384  */
1385 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1386 {
1387 	if (spi->cur_bpw == 16)
1388 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1389 	else
1390 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1391 }
1392 
1393 /**
1394  * stm32h7_spi_set_bpw - configure bits per word
1395  * @spi: pointer to the spi controller data structure
1396  */
1397 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1398 {
1399 	u32 bpw, fthlv;
1400 	u32 cfg1_clrb = 0, cfg1_setb = 0;
1401 
1402 	bpw = spi->cur_bpw - 1;
1403 
1404 	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1405 	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1406 		     STM32H7_SPI_CFG1_DSIZE;
1407 
1408 	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1409 	fthlv = spi->cur_fthlv - 1;
1410 
1411 	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1412 	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1413 		     STM32H7_SPI_CFG1_FTHLV;
1414 
1415 	writel_relaxed(
1416 		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1417 		 ~cfg1_clrb) | cfg1_setb,
1418 		spi->base + STM32H7_SPI_CFG1);
1419 }
1420 
1421 /**
1422  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1423  * @spi: pointer to the spi controller data structure
1424  * @mbrdiv: baud rate divisor value
1425  */
1426 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1427 {
1428 	u32 clrb = 0, setb = 0;
1429 
1430 	clrb |= spi->cfg->regs->br.mask;
1431 	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1432 		spi->cfg->regs->br.mask;
1433 
1434 	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1435 			~clrb) | setb,
1436 		       spi->base + spi->cfg->regs->br.reg);
1437 }
1438 
1439 /**
1440  * stm32_spi_communication_type - return transfer communication type
1441  * @spi_dev: pointer to the spi device
1442  * @transfer: pointer to spi transfer
1443  */
1444 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1445 						 struct spi_transfer *transfer)
1446 {
1447 	unsigned int type = SPI_FULL_DUPLEX;
1448 
1449 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1450 		/*
1451 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1452 		 * is forbidden and unvalidated by SPI subsystem so depending
1453 		 * on the valid buffer, we can determine the direction of the
1454 		 * transfer.
1455 		 */
1456 		if (!transfer->tx_buf)
1457 			type = SPI_3WIRE_RX;
1458 		else
1459 			type = SPI_3WIRE_TX;
1460 	} else {
1461 		if (!transfer->tx_buf)
1462 			type = SPI_SIMPLEX_RX;
1463 		else if (!transfer->rx_buf)
1464 			type = SPI_SIMPLEX_TX;
1465 	}
1466 
1467 	return type;
1468 }
1469 
1470 /**
1471  * stm32f4_spi_set_mode - configure communication mode
1472  * @spi: pointer to the spi controller data structure
1473  * @comm_type: type of communication to configure
1474  */
1475 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1476 {
1477 	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1478 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1479 					STM32F4_SPI_CR1_BIDIMODE |
1480 					STM32F4_SPI_CR1_BIDIOE);
1481 	} else if (comm_type == SPI_FULL_DUPLEX ||
1482 				comm_type == SPI_SIMPLEX_RX) {
1483 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1484 					STM32F4_SPI_CR1_BIDIMODE |
1485 					STM32F4_SPI_CR1_BIDIOE);
1486 	} else if (comm_type == SPI_3WIRE_RX) {
1487 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1488 					STM32F4_SPI_CR1_BIDIMODE);
1489 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1490 					STM32F4_SPI_CR1_BIDIOE);
1491 	} else {
1492 		return -EINVAL;
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 /**
1499  * stm32h7_spi_set_mode - configure communication mode
1500  * @spi: pointer to the spi controller data structure
1501  * @comm_type: type of communication to configure
1502  */
1503 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1504 {
1505 	u32 mode;
1506 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1507 
1508 	if (comm_type == SPI_3WIRE_RX) {
1509 		mode = STM32H7_SPI_HALF_DUPLEX;
1510 		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1511 	} else if (comm_type == SPI_3WIRE_TX) {
1512 		mode = STM32H7_SPI_HALF_DUPLEX;
1513 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1514 	} else if (comm_type == SPI_SIMPLEX_RX) {
1515 		mode = STM32H7_SPI_SIMPLEX_RX;
1516 	} else if (comm_type == SPI_SIMPLEX_TX) {
1517 		mode = STM32H7_SPI_SIMPLEX_TX;
1518 	} else {
1519 		mode = STM32H7_SPI_FULL_DUPLEX;
1520 	}
1521 
1522 	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1523 	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1524 		     STM32H7_SPI_CFG2_COMM;
1525 
1526 	writel_relaxed(
1527 		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1528 		 ~cfg2_clrb) | cfg2_setb,
1529 		spi->base + STM32H7_SPI_CFG2);
1530 
1531 	return 0;
1532 }
1533 
1534 /**
1535  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1536  *			       consecutive data frames in master mode
1537  * @spi: pointer to the spi controller data structure
1538  * @len: transfer len
1539  */
1540 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1541 {
1542 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1543 
1544 	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1545 	if ((len > 1) && (spi->cur_midi > 0)) {
1546 		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1547 		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1548 			       (u32)STM32H7_SPI_CFG2_MIDI >>
1549 			       STM32H7_SPI_CFG2_MIDI_SHIFT);
1550 
1551 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1552 			sck_period_ns, midi, midi * sck_period_ns);
1553 		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1554 			     STM32H7_SPI_CFG2_MIDI;
1555 	}
1556 
1557 	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1558 			~cfg2_clrb) | cfg2_setb,
1559 		       spi->base + STM32H7_SPI_CFG2);
1560 }
1561 
1562 /**
1563  * stm32h7_spi_number_of_data - configure number of data at current transfer
1564  * @spi: pointer to the spi controller data structure
1565  * @nb_words: transfer length (in words)
1566  */
1567 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1568 {
1569 	u32 cr2_clrb = 0, cr2_setb = 0;
1570 
1571 	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1572 			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1573 		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1574 		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1575 		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1576 				~cr2_clrb) | cr2_setb,
1577 			       spi->base + STM32H7_SPI_CR2);
1578 	} else {
1579 		return -EMSGSIZE;
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 /**
1586  * stm32_spi_transfer_one_setup - common setup to transfer a single
1587  *				  spi_transfer either using DMA or
1588  *				  interrupts.
1589  * @spi: pointer to the spi controller data structure
1590  * @spi_dev: pointer to the spi device
1591  * @transfer: pointer to spi transfer
1592  */
1593 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1594 					struct spi_device *spi_dev,
1595 					struct spi_transfer *transfer)
1596 {
1597 	unsigned long flags;
1598 	unsigned int comm_type;
1599 	int nb_words, ret = 0;
1600 	int mbr;
1601 
1602 	spin_lock_irqsave(&spi->lock, flags);
1603 
1604 	spi->cur_xferlen = transfer->len;
1605 
1606 	spi->cur_bpw = transfer->bits_per_word;
1607 	spi->cfg->set_bpw(spi);
1608 
1609 	/* Update spi->cur_speed with real clock speed */
1610 	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1611 				    spi->cfg->baud_rate_div_min,
1612 				    spi->cfg->baud_rate_div_max);
1613 	if (mbr < 0) {
1614 		ret = mbr;
1615 		goto out;
1616 	}
1617 
1618 	transfer->speed_hz = spi->cur_speed;
1619 	stm32_spi_set_mbr(spi, mbr);
1620 
1621 	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1622 	ret = spi->cfg->set_mode(spi, comm_type);
1623 	if (ret < 0)
1624 		goto out;
1625 
1626 	spi->cur_comm = comm_type;
1627 
1628 	if (spi->cfg->set_data_idleness)
1629 		spi->cfg->set_data_idleness(spi, transfer->len);
1630 
1631 	if (spi->cur_bpw <= 8)
1632 		nb_words = transfer->len;
1633 	else if (spi->cur_bpw <= 16)
1634 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1635 	else
1636 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1637 
1638 	if (spi->cfg->set_number_of_data) {
1639 		ret = spi->cfg->set_number_of_data(spi, nb_words);
1640 		if (ret < 0)
1641 			goto out;
1642 	}
1643 
1644 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1645 		spi->cur_comm);
1646 	dev_dbg(spi->dev,
1647 		"data frame of %d-bit, data packet of %d data frames\n",
1648 		spi->cur_bpw, spi->cur_fthlv);
1649 	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1650 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1651 		spi->cur_xferlen, nb_words);
1652 	dev_dbg(spi->dev, "dma %s\n",
1653 		(spi->cur_usedma) ? "enabled" : "disabled");
1654 
1655 out:
1656 	spin_unlock_irqrestore(&spi->lock, flags);
1657 
1658 	return ret;
1659 }
1660 
1661 /**
1662  * stm32_spi_transfer_one - transfer a single spi_transfer
1663  * @master: controller master interface
1664  * @spi_dev: pointer to the spi device
1665  * @transfer: pointer to spi transfer
1666  *
1667  * It must return 0 if the transfer is finished or 1 if the transfer is still
1668  * in progress.
1669  */
1670 static int stm32_spi_transfer_one(struct spi_master *master,
1671 				  struct spi_device *spi_dev,
1672 				  struct spi_transfer *transfer)
1673 {
1674 	struct stm32_spi *spi = spi_master_get_devdata(master);
1675 	int ret;
1676 
1677 	spi->tx_buf = transfer->tx_buf;
1678 	spi->rx_buf = transfer->rx_buf;
1679 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1680 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1681 
1682 	spi->cur_usedma = (master->can_dma &&
1683 			   master->can_dma(master, spi_dev, transfer));
1684 
1685 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1686 	if (ret) {
1687 		dev_err(spi->dev, "SPI transfer setup failed\n");
1688 		return ret;
1689 	}
1690 
1691 	if (spi->cur_usedma)
1692 		return stm32_spi_transfer_one_dma(spi, transfer);
1693 	else
1694 		return spi->cfg->transfer_one_irq(spi);
1695 }
1696 
1697 /**
1698  * stm32_spi_unprepare_msg - relax the hardware
1699  * @master: controller master interface
1700  * @msg: pointer to the spi message
1701  */
1702 static int stm32_spi_unprepare_msg(struct spi_master *master,
1703 				   struct spi_message *msg)
1704 {
1705 	struct stm32_spi *spi = spi_master_get_devdata(master);
1706 
1707 	spi->cfg->disable(spi);
1708 
1709 	return 0;
1710 }
1711 
1712 /**
1713  * stm32f4_spi_config - Configure SPI controller as SPI master
1714  * @spi: pointer to the spi controller data structure
1715  */
1716 static int stm32f4_spi_config(struct stm32_spi *spi)
1717 {
1718 	unsigned long flags;
1719 
1720 	spin_lock_irqsave(&spi->lock, flags);
1721 
1722 	/* Ensure I2SMOD bit is kept cleared */
1723 	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1724 			   STM32F4_SPI_I2SCFGR_I2SMOD);
1725 
1726 	/*
1727 	 * - SS input value high
1728 	 * - transmitter half duplex direction
1729 	 * - Set the master mode (default Motorola mode)
1730 	 * - Consider 1 master/n slaves configuration and
1731 	 *   SS input value is determined by the SSI bit
1732 	 */
1733 	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1734 						 STM32F4_SPI_CR1_BIDIOE |
1735 						 STM32F4_SPI_CR1_MSTR |
1736 						 STM32F4_SPI_CR1_SSM);
1737 
1738 	spin_unlock_irqrestore(&spi->lock, flags);
1739 
1740 	return 0;
1741 }
1742 
1743 /**
1744  * stm32h7_spi_config - Configure SPI controller as SPI master
1745  * @spi: pointer to the spi controller data structure
1746  */
1747 static int stm32h7_spi_config(struct stm32_spi *spi)
1748 {
1749 	unsigned long flags;
1750 
1751 	spin_lock_irqsave(&spi->lock, flags);
1752 
1753 	/* Ensure I2SMOD bit is kept cleared */
1754 	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1755 			   STM32H7_SPI_I2SCFGR_I2SMOD);
1756 
1757 	/*
1758 	 * - SS input value high
1759 	 * - transmitter half duplex direction
1760 	 * - automatic communication suspend when RX-Fifo is full
1761 	 */
1762 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1763 						 STM32H7_SPI_CR1_HDDIR |
1764 						 STM32H7_SPI_CR1_MASRX);
1765 
1766 	/*
1767 	 * - Set the master mode (default Motorola mode)
1768 	 * - Consider 1 master/n slaves configuration and
1769 	 *   SS input value is determined by the SSI bit
1770 	 * - keep control of all associated GPIOs
1771 	 */
1772 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1773 						  STM32H7_SPI_CFG2_SSM |
1774 						  STM32H7_SPI_CFG2_AFCNTR);
1775 
1776 	spin_unlock_irqrestore(&spi->lock, flags);
1777 
1778 	return 0;
1779 }
1780 
1781 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1782 	.regs = &stm32f4_spi_regspec,
1783 	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1784 	.disable = stm32f4_spi_disable,
1785 	.config = stm32f4_spi_config,
1786 	.set_bpw = stm32f4_spi_set_bpw,
1787 	.set_mode = stm32f4_spi_set_mode,
1788 	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1789 	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1790 	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
1791 	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1792 	.irq_handler_event = stm32f4_spi_irq_event,
1793 	.irq_handler_thread = stm32f4_spi_irq_thread,
1794 	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1795 	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1796 	.has_fifo = false,
1797 };
1798 
1799 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1800 	.regs = &stm32h7_spi_regspec,
1801 	.get_fifo_size = stm32h7_spi_get_fifo_size,
1802 	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1803 	.disable = stm32h7_spi_disable,
1804 	.config = stm32h7_spi_config,
1805 	.set_bpw = stm32h7_spi_set_bpw,
1806 	.set_mode = stm32h7_spi_set_mode,
1807 	.set_data_idleness = stm32h7_spi_data_idleness,
1808 	.set_number_of_data = stm32h7_spi_number_of_data,
1809 	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1810 	.dma_rx_cb = stm32h7_spi_dma_cb,
1811 	.dma_tx_cb = stm32h7_spi_dma_cb,
1812 	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1813 	.irq_handler_thread = stm32h7_spi_irq_thread,
1814 	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1815 	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1816 	.has_fifo = true,
1817 };
1818 
1819 static const struct of_device_id stm32_spi_of_match[] = {
1820 	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1821 	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1822 	{},
1823 };
1824 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1825 
1826 static int stm32_spi_probe(struct platform_device *pdev)
1827 {
1828 	struct spi_master *master;
1829 	struct stm32_spi *spi;
1830 	struct resource *res;
1831 	int ret;
1832 
1833 	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1834 	if (!master) {
1835 		dev_err(&pdev->dev, "spi master allocation failed\n");
1836 		return -ENOMEM;
1837 	}
1838 	platform_set_drvdata(pdev, master);
1839 
1840 	spi = spi_master_get_devdata(master);
1841 	spi->dev = &pdev->dev;
1842 	spi->master = master;
1843 	spin_lock_init(&spi->lock);
1844 
1845 	spi->cfg = (const struct stm32_spi_cfg *)
1846 		of_match_device(pdev->dev.driver->of_match_table,
1847 				&pdev->dev)->data;
1848 
1849 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1850 	spi->base = devm_ioremap_resource(&pdev->dev, res);
1851 	if (IS_ERR(spi->base)) {
1852 		ret = PTR_ERR(spi->base);
1853 		goto err_master_put;
1854 	}
1855 
1856 	spi->phys_addr = (dma_addr_t)res->start;
1857 
1858 	spi->irq = platform_get_irq(pdev, 0);
1859 	if (spi->irq <= 0) {
1860 		ret = spi->irq;
1861 		if (ret != -EPROBE_DEFER)
1862 			dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1863 		goto err_master_put;
1864 	}
1865 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1866 					spi->cfg->irq_handler_event,
1867 					spi->cfg->irq_handler_thread,
1868 					IRQF_ONESHOT, pdev->name, master);
1869 	if (ret) {
1870 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1871 			ret);
1872 		goto err_master_put;
1873 	}
1874 
1875 	spi->clk = devm_clk_get(&pdev->dev, NULL);
1876 	if (IS_ERR(spi->clk)) {
1877 		ret = PTR_ERR(spi->clk);
1878 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1879 		goto err_master_put;
1880 	}
1881 
1882 	ret = clk_prepare_enable(spi->clk);
1883 	if (ret) {
1884 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1885 		goto err_master_put;
1886 	}
1887 	spi->clk_rate = clk_get_rate(spi->clk);
1888 	if (!spi->clk_rate) {
1889 		dev_err(&pdev->dev, "clk rate = 0\n");
1890 		ret = -EINVAL;
1891 		goto err_clk_disable;
1892 	}
1893 
1894 	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1895 	if (!IS_ERR(spi->rst)) {
1896 		reset_control_assert(spi->rst);
1897 		udelay(2);
1898 		reset_control_deassert(spi->rst);
1899 	}
1900 
1901 	if (spi->cfg->has_fifo)
1902 		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1903 
1904 	ret = spi->cfg->config(spi);
1905 	if (ret) {
1906 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1907 			ret);
1908 		goto err_clk_disable;
1909 	}
1910 
1911 	master->dev.of_node = pdev->dev.of_node;
1912 	master->auto_runtime_pm = true;
1913 	master->bus_num = pdev->id;
1914 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1915 			    SPI_3WIRE;
1916 	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1917 	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1918 	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1919 	master->use_gpio_descriptors = true;
1920 	master->prepare_message = stm32_spi_prepare_msg;
1921 	master->transfer_one = stm32_spi_transfer_one;
1922 	master->unprepare_message = stm32_spi_unprepare_msg;
1923 	master->flags = SPI_MASTER_MUST_TX;
1924 
1925 	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1926 	if (IS_ERR(spi->dma_tx)) {
1927 		ret = PTR_ERR(spi->dma_tx);
1928 		spi->dma_tx = NULL;
1929 		if (ret == -EPROBE_DEFER)
1930 			goto err_clk_disable;
1931 
1932 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1933 	} else {
1934 		master->dma_tx = spi->dma_tx;
1935 	}
1936 
1937 	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1938 	if (IS_ERR(spi->dma_rx)) {
1939 		ret = PTR_ERR(spi->dma_rx);
1940 		spi->dma_rx = NULL;
1941 		if (ret == -EPROBE_DEFER)
1942 			goto err_dma_release;
1943 
1944 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1945 	} else {
1946 		master->dma_rx = spi->dma_rx;
1947 	}
1948 
1949 	if (spi->dma_tx || spi->dma_rx)
1950 		master->can_dma = stm32_spi_can_dma;
1951 
1952 	pm_runtime_set_active(&pdev->dev);
1953 	pm_runtime_enable(&pdev->dev);
1954 
1955 	ret = devm_spi_register_master(&pdev->dev, master);
1956 	if (ret) {
1957 		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1958 			ret);
1959 		goto err_pm_disable;
1960 	}
1961 
1962 	if (!master->cs_gpiods) {
1963 		dev_err(&pdev->dev, "no CS gpios available\n");
1964 		ret = -EINVAL;
1965 		goto err_pm_disable;
1966 	}
1967 
1968 	dev_info(&pdev->dev, "driver initialized\n");
1969 
1970 	return 0;
1971 
1972 err_pm_disable:
1973 	pm_runtime_disable(&pdev->dev);
1974 err_dma_release:
1975 	if (spi->dma_tx)
1976 		dma_release_channel(spi->dma_tx);
1977 	if (spi->dma_rx)
1978 		dma_release_channel(spi->dma_rx);
1979 err_clk_disable:
1980 	clk_disable_unprepare(spi->clk);
1981 err_master_put:
1982 	spi_master_put(master);
1983 
1984 	return ret;
1985 }
1986 
1987 static int stm32_spi_remove(struct platform_device *pdev)
1988 {
1989 	struct spi_master *master = platform_get_drvdata(pdev);
1990 	struct stm32_spi *spi = spi_master_get_devdata(master);
1991 
1992 	spi->cfg->disable(spi);
1993 
1994 	if (master->dma_tx)
1995 		dma_release_channel(master->dma_tx);
1996 	if (master->dma_rx)
1997 		dma_release_channel(master->dma_rx);
1998 
1999 	clk_disable_unprepare(spi->clk);
2000 
2001 	pm_runtime_disable(&pdev->dev);
2002 
2003 	pinctrl_pm_select_sleep_state(&pdev->dev);
2004 
2005 	return 0;
2006 }
2007 
2008 #ifdef CONFIG_PM
2009 static int stm32_spi_runtime_suspend(struct device *dev)
2010 {
2011 	struct spi_master *master = dev_get_drvdata(dev);
2012 	struct stm32_spi *spi = spi_master_get_devdata(master);
2013 
2014 	clk_disable_unprepare(spi->clk);
2015 
2016 	return pinctrl_pm_select_sleep_state(dev);
2017 }
2018 
2019 static int stm32_spi_runtime_resume(struct device *dev)
2020 {
2021 	struct spi_master *master = dev_get_drvdata(dev);
2022 	struct stm32_spi *spi = spi_master_get_devdata(master);
2023 	int ret;
2024 
2025 	ret = pinctrl_pm_select_default_state(dev);
2026 	if (ret)
2027 		return ret;
2028 
2029 	return clk_prepare_enable(spi->clk);
2030 }
2031 #endif
2032 
2033 #ifdef CONFIG_PM_SLEEP
2034 static int stm32_spi_suspend(struct device *dev)
2035 {
2036 	struct spi_master *master = dev_get_drvdata(dev);
2037 	int ret;
2038 
2039 	ret = spi_master_suspend(master);
2040 	if (ret)
2041 		return ret;
2042 
2043 	return pm_runtime_force_suspend(dev);
2044 }
2045 
2046 static int stm32_spi_resume(struct device *dev)
2047 {
2048 	struct spi_master *master = dev_get_drvdata(dev);
2049 	struct stm32_spi *spi = spi_master_get_devdata(master);
2050 	int ret;
2051 
2052 	ret = pm_runtime_force_resume(dev);
2053 	if (ret)
2054 		return ret;
2055 
2056 	ret = spi_master_resume(master);
2057 	if (ret) {
2058 		clk_disable_unprepare(spi->clk);
2059 		return ret;
2060 	}
2061 
2062 	ret = pm_runtime_get_sync(dev);
2063 	if (ret) {
2064 		dev_err(dev, "Unable to power device:%d\n", ret);
2065 		return ret;
2066 	}
2067 
2068 	spi->cfg->config(spi);
2069 
2070 	pm_runtime_mark_last_busy(dev);
2071 	pm_runtime_put_autosuspend(dev);
2072 
2073 	return 0;
2074 }
2075 #endif
2076 
2077 static const struct dev_pm_ops stm32_spi_pm_ops = {
2078 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2079 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2080 			   stm32_spi_runtime_resume, NULL)
2081 };
2082 
2083 static struct platform_driver stm32_spi_driver = {
2084 	.probe = stm32_spi_probe,
2085 	.remove = stm32_spi_remove,
2086 	.driver = {
2087 		.name = DRIVER_NAME,
2088 		.pm = &stm32_spi_pm_ops,
2089 		.of_match_table = stm32_spi_of_match,
2090 	},
2091 };
2092 
2093 module_platform_driver(stm32_spi_driver);
2094 
2095 MODULE_ALIAS("platform:" DRIVER_NAME);
2096 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2097 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2098 MODULE_LICENSE("GPL v2");
2099