1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // STMicroelectronics STM32 SPI Controller driver (master mode only) 4 // 5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved 6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. 7 8 #include <linux/debugfs.h> 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/dmaengine.h> 12 #include <linux/interrupt.h> 13 #include <linux/iopoll.h> 14 #include <linux/module.h> 15 #include <linux/of_platform.h> 16 #include <linux/pm_runtime.h> 17 #include <linux/reset.h> 18 #include <linux/spi/spi.h> 19 20 #define DRIVER_NAME "spi_stm32" 21 22 /* STM32F4 SPI registers */ 23 #define STM32F4_SPI_CR1 0x00 24 #define STM32F4_SPI_CR2 0x04 25 #define STM32F4_SPI_SR 0x08 26 #define STM32F4_SPI_DR 0x0C 27 #define STM32F4_SPI_I2SCFGR 0x1C 28 29 /* STM32F4_SPI_CR1 bit fields */ 30 #define STM32F4_SPI_CR1_CPHA BIT(0) 31 #define STM32F4_SPI_CR1_CPOL BIT(1) 32 #define STM32F4_SPI_CR1_MSTR BIT(2) 33 #define STM32F4_SPI_CR1_BR_SHIFT 3 34 #define STM32F4_SPI_CR1_BR GENMASK(5, 3) 35 #define STM32F4_SPI_CR1_SPE BIT(6) 36 #define STM32F4_SPI_CR1_LSBFRST BIT(7) 37 #define STM32F4_SPI_CR1_SSI BIT(8) 38 #define STM32F4_SPI_CR1_SSM BIT(9) 39 #define STM32F4_SPI_CR1_RXONLY BIT(10) 40 #define STM32F4_SPI_CR1_DFF BIT(11) 41 #define STM32F4_SPI_CR1_CRCNEXT BIT(12) 42 #define STM32F4_SPI_CR1_CRCEN BIT(13) 43 #define STM32F4_SPI_CR1_BIDIOE BIT(14) 44 #define STM32F4_SPI_CR1_BIDIMODE BIT(15) 45 #define STM32F4_SPI_CR1_BR_MIN 0 46 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3) 47 48 /* STM32F4_SPI_CR2 bit fields */ 49 #define STM32F4_SPI_CR2_RXDMAEN BIT(0) 50 #define STM32F4_SPI_CR2_TXDMAEN BIT(1) 51 #define STM32F4_SPI_CR2_SSOE BIT(2) 52 #define STM32F4_SPI_CR2_FRF BIT(4) 53 #define STM32F4_SPI_CR2_ERRIE BIT(5) 54 #define STM32F4_SPI_CR2_RXNEIE BIT(6) 55 #define STM32F4_SPI_CR2_TXEIE BIT(7) 56 57 /* STM32F4_SPI_SR bit fields */ 58 #define STM32F4_SPI_SR_RXNE BIT(0) 59 #define STM32F4_SPI_SR_TXE BIT(1) 60 #define STM32F4_SPI_SR_CHSIDE BIT(2) 61 #define STM32F4_SPI_SR_UDR BIT(3) 62 #define STM32F4_SPI_SR_CRCERR BIT(4) 63 #define STM32F4_SPI_SR_MODF BIT(5) 64 #define STM32F4_SPI_SR_OVR BIT(6) 65 #define STM32F4_SPI_SR_BSY BIT(7) 66 #define STM32F4_SPI_SR_FRE BIT(8) 67 68 /* STM32F4_SPI_I2SCFGR bit fields */ 69 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11) 70 71 /* STM32F4 SPI Baud Rate min/max divisor */ 72 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN) 73 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX) 74 75 /* STM32H7 SPI registers */ 76 #define STM32H7_SPI_CR1 0x00 77 #define STM32H7_SPI_CR2 0x04 78 #define STM32H7_SPI_CFG1 0x08 79 #define STM32H7_SPI_CFG2 0x0C 80 #define STM32H7_SPI_IER 0x10 81 #define STM32H7_SPI_SR 0x14 82 #define STM32H7_SPI_IFCR 0x18 83 #define STM32H7_SPI_TXDR 0x20 84 #define STM32H7_SPI_RXDR 0x30 85 #define STM32H7_SPI_I2SCFGR 0x50 86 87 /* STM32H7_SPI_CR1 bit fields */ 88 #define STM32H7_SPI_CR1_SPE BIT(0) 89 #define STM32H7_SPI_CR1_MASRX BIT(8) 90 #define STM32H7_SPI_CR1_CSTART BIT(9) 91 #define STM32H7_SPI_CR1_CSUSP BIT(10) 92 #define STM32H7_SPI_CR1_HDDIR BIT(11) 93 #define STM32H7_SPI_CR1_SSI BIT(12) 94 95 /* STM32H7_SPI_CR2 bit fields */ 96 #define STM32H7_SPI_CR2_TSIZE_SHIFT 0 97 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) 98 99 /* STM32H7_SPI_CFG1 bit fields */ 100 #define STM32H7_SPI_CFG1_DSIZE_SHIFT 0 101 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) 102 #define STM32H7_SPI_CFG1_FTHLV_SHIFT 5 103 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) 104 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14) 105 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15) 106 #define STM32H7_SPI_CFG1_MBR_SHIFT 28 107 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) 108 #define STM32H7_SPI_CFG1_MBR_MIN 0 109 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) 110 111 /* STM32H7_SPI_CFG2 bit fields */ 112 #define STM32H7_SPI_CFG2_MIDI_SHIFT 4 113 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) 114 #define STM32H7_SPI_CFG2_COMM_SHIFT 17 115 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) 116 #define STM32H7_SPI_CFG2_SP_SHIFT 19 117 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19) 118 #define STM32H7_SPI_CFG2_MASTER BIT(22) 119 #define STM32H7_SPI_CFG2_LSBFRST BIT(23) 120 #define STM32H7_SPI_CFG2_CPHA BIT(24) 121 #define STM32H7_SPI_CFG2_CPOL BIT(25) 122 #define STM32H7_SPI_CFG2_SSM BIT(26) 123 #define STM32H7_SPI_CFG2_AFCNTR BIT(31) 124 125 /* STM32H7_SPI_IER bit fields */ 126 #define STM32H7_SPI_IER_RXPIE BIT(0) 127 #define STM32H7_SPI_IER_TXPIE BIT(1) 128 #define STM32H7_SPI_IER_DXPIE BIT(2) 129 #define STM32H7_SPI_IER_EOTIE BIT(3) 130 #define STM32H7_SPI_IER_TXTFIE BIT(4) 131 #define STM32H7_SPI_IER_OVRIE BIT(6) 132 #define STM32H7_SPI_IER_MODFIE BIT(9) 133 #define STM32H7_SPI_IER_ALL GENMASK(10, 0) 134 135 /* STM32H7_SPI_SR bit fields */ 136 #define STM32H7_SPI_SR_RXP BIT(0) 137 #define STM32H7_SPI_SR_TXP BIT(1) 138 #define STM32H7_SPI_SR_EOT BIT(3) 139 #define STM32H7_SPI_SR_OVR BIT(6) 140 #define STM32H7_SPI_SR_MODF BIT(9) 141 #define STM32H7_SPI_SR_SUSP BIT(11) 142 #define STM32H7_SPI_SR_RXPLVL_SHIFT 13 143 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) 144 #define STM32H7_SPI_SR_RXWNE BIT(15) 145 146 /* STM32H7_SPI_IFCR bit fields */ 147 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3) 148 149 /* STM32H7_SPI_I2SCFGR bit fields */ 150 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0) 151 152 /* STM32H7 SPI Master Baud Rate min/max divisor */ 153 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN) 154 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX) 155 156 /* STM32H7 SPI Communication mode */ 157 #define STM32H7_SPI_FULL_DUPLEX 0 158 #define STM32H7_SPI_SIMPLEX_TX 1 159 #define STM32H7_SPI_SIMPLEX_RX 2 160 #define STM32H7_SPI_HALF_DUPLEX 3 161 162 /* SPI Communication type */ 163 #define SPI_FULL_DUPLEX 0 164 #define SPI_SIMPLEX_TX 1 165 #define SPI_SIMPLEX_RX 2 166 #define SPI_3WIRE_TX 3 167 #define SPI_3WIRE_RX 4 168 169 #define SPI_1HZ_NS 1000000000 170 171 /* 172 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers 173 * without fifo buffers. 174 */ 175 #define SPI_DMA_MIN_BYTES 16 176 177 /** 178 * struct stm32_spi_reg - stm32 SPI register & bitfield desc 179 * @reg: register offset 180 * @mask: bitfield mask 181 * @shift: left shift 182 */ 183 struct stm32_spi_reg { 184 int reg; 185 int mask; 186 int shift; 187 }; 188 189 /** 190 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data 191 * @en: enable register and SPI enable bit 192 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit 193 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit 194 * @cpol: clock polarity register and polarity bit 195 * @cpha: clock phase register and phase bit 196 * @lsb_first: LSB transmitted first register and bit 197 * @br: baud rate register and bitfields 198 * @rx: SPI RX data register 199 * @tx: SPI TX data register 200 */ 201 struct stm32_spi_regspec { 202 const struct stm32_spi_reg en; 203 const struct stm32_spi_reg dma_rx_en; 204 const struct stm32_spi_reg dma_tx_en; 205 const struct stm32_spi_reg cpol; 206 const struct stm32_spi_reg cpha; 207 const struct stm32_spi_reg lsb_first; 208 const struct stm32_spi_reg br; 209 const struct stm32_spi_reg rx; 210 const struct stm32_spi_reg tx; 211 }; 212 213 struct stm32_spi; 214 215 /** 216 * struct stm32_spi_cfg - stm32 compatible configuration data 217 * @regs: registers descriptions 218 * @get_fifo_size: routine to get fifo size 219 * @get_bpw_mask: routine to get bits per word mask 220 * @disable: routine to disable controller 221 * @config: routine to configure controller as SPI Master 222 * @set_bpw: routine to configure registers to for bits per word 223 * @set_mode: routine to configure registers to desired mode 224 * @set_data_idleness: optional routine to configure registers to desired idle 225 * time between frames (if driver has this functionality) 226 * @set_number_of_data: optional routine to configure registers to desired 227 * number of data (if driver has this functionality) 228 * @can_dma: routine to determine if the transfer is eligible for DMA use 229 * @transfer_one_dma_start: routine to start transfer a single spi_transfer 230 * using DMA 231 * @dma_rx_cb: routine to call after DMA RX channel operation is complete 232 * @dma_tx_cb: routine to call after DMA TX channel operation is complete 233 * @transfer_one_irq: routine to configure interrupts for driver 234 * @irq_handler_event: Interrupt handler for SPI controller events 235 * @irq_handler_thread: thread of interrupt handler for SPI controller 236 * @baud_rate_div_min: minimum baud rate divisor 237 * @baud_rate_div_max: maximum baud rate divisor 238 * @has_fifo: boolean to know if fifo is used for driver 239 * @has_startbit: boolean to know if start bit is used to start transfer 240 */ 241 struct stm32_spi_cfg { 242 const struct stm32_spi_regspec *regs; 243 int (*get_fifo_size)(struct stm32_spi *spi); 244 int (*get_bpw_mask)(struct stm32_spi *spi); 245 void (*disable)(struct stm32_spi *spi); 246 int (*config)(struct stm32_spi *spi); 247 void (*set_bpw)(struct stm32_spi *spi); 248 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type); 249 void (*set_data_idleness)(struct stm32_spi *spi, u32 length); 250 int (*set_number_of_data)(struct stm32_spi *spi, u32 length); 251 void (*transfer_one_dma_start)(struct stm32_spi *spi); 252 void (*dma_rx_cb)(void *data); 253 void (*dma_tx_cb)(void *data); 254 int (*transfer_one_irq)(struct stm32_spi *spi); 255 irqreturn_t (*irq_handler_event)(int irq, void *dev_id); 256 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id); 257 unsigned int baud_rate_div_min; 258 unsigned int baud_rate_div_max; 259 bool has_fifo; 260 }; 261 262 /** 263 * struct stm32_spi - private data of the SPI controller 264 * @dev: driver model representation of the controller 265 * @master: controller master interface 266 * @cfg: compatible configuration data 267 * @base: virtual memory area 268 * @clk: hw kernel clock feeding the SPI clock generator 269 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator 270 * @rst: SPI controller reset line 271 * @lock: prevent I/O concurrent access 272 * @irq: SPI controller interrupt line 273 * @fifo_size: size of the embedded fifo in bytes 274 * @cur_midi: master inter-data idleness in ns 275 * @cur_speed: speed configured in Hz 276 * @cur_bpw: number of bits in a single SPI data frame 277 * @cur_fthlv: fifo threshold level (data frames in a single data packet) 278 * @cur_comm: SPI communication mode 279 * @cur_xferlen: current transfer length in bytes 280 * @cur_usedma: boolean to know if dma is used in current transfer 281 * @tx_buf: data to be written, or NULL 282 * @rx_buf: data to be read, or NULL 283 * @tx_len: number of data to be written in bytes 284 * @rx_len: number of data to be read in bytes 285 * @dma_tx: dma channel for TX transfer 286 * @dma_rx: dma channel for RX transfer 287 * @phys_addr: SPI registers physical base address 288 */ 289 struct stm32_spi { 290 struct device *dev; 291 struct spi_master *master; 292 const struct stm32_spi_cfg *cfg; 293 void __iomem *base; 294 struct clk *clk; 295 u32 clk_rate; 296 struct reset_control *rst; 297 spinlock_t lock; /* prevent I/O concurrent access */ 298 int irq; 299 unsigned int fifo_size; 300 301 unsigned int cur_midi; 302 unsigned int cur_speed; 303 unsigned int cur_bpw; 304 unsigned int cur_fthlv; 305 unsigned int cur_comm; 306 unsigned int cur_xferlen; 307 bool cur_usedma; 308 309 const void *tx_buf; 310 void *rx_buf; 311 int tx_len; 312 int rx_len; 313 struct dma_chan *dma_tx; 314 struct dma_chan *dma_rx; 315 dma_addr_t phys_addr; 316 }; 317 318 static const struct stm32_spi_regspec stm32f4_spi_regspec = { 319 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE }, 320 321 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN }, 322 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN }, 323 324 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL }, 325 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA }, 326 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST }, 327 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT }, 328 329 .rx = { STM32F4_SPI_DR }, 330 .tx = { STM32F4_SPI_DR }, 331 }; 332 333 static const struct stm32_spi_regspec stm32h7_spi_regspec = { 334 /* SPI data transfer is enabled but spi_ker_ck is idle. 335 * CFG1 and CFG2 registers are write protected when SPE is enabled. 336 */ 337 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE }, 338 339 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN }, 340 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN }, 341 342 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL }, 343 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA }, 344 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST }, 345 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR, 346 STM32H7_SPI_CFG1_MBR_SHIFT }, 347 348 .rx = { STM32H7_SPI_RXDR }, 349 .tx = { STM32H7_SPI_TXDR }, 350 }; 351 352 static inline void stm32_spi_set_bits(struct stm32_spi *spi, 353 u32 offset, u32 bits) 354 { 355 writel_relaxed(readl_relaxed(spi->base + offset) | bits, 356 spi->base + offset); 357 } 358 359 static inline void stm32_spi_clr_bits(struct stm32_spi *spi, 360 u32 offset, u32 bits) 361 { 362 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits, 363 spi->base + offset); 364 } 365 366 /** 367 * stm32h7_spi_get_fifo_size - Return fifo size 368 * @spi: pointer to the spi controller data structure 369 */ 370 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi) 371 { 372 unsigned long flags; 373 u32 count = 0; 374 375 spin_lock_irqsave(&spi->lock, flags); 376 377 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 378 379 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP) 380 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR); 381 382 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 383 384 spin_unlock_irqrestore(&spi->lock, flags); 385 386 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count); 387 388 return count; 389 } 390 391 /** 392 * stm32f4_spi_get_bpw_mask - Return bits per word mask 393 * @spi: pointer to the spi controller data structure 394 */ 395 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi) 396 { 397 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n"); 398 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 399 } 400 401 /** 402 * stm32h7_spi_get_bpw_mask - Return bits per word mask 403 * @spi: pointer to the spi controller data structure 404 */ 405 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi) 406 { 407 unsigned long flags; 408 u32 cfg1, max_bpw; 409 410 spin_lock_irqsave(&spi->lock, flags); 411 412 /* 413 * The most significant bit at DSIZE bit field is reserved when the 414 * maximum data size of periperal instances is limited to 16-bit 415 */ 416 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); 417 418 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); 419 max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >> 420 STM32H7_SPI_CFG1_DSIZE_SHIFT; 421 max_bpw += 1; 422 423 spin_unlock_irqrestore(&spi->lock, flags); 424 425 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); 426 427 return SPI_BPW_RANGE_MASK(4, max_bpw); 428 } 429 430 /** 431 * stm32_spi_prepare_mbr - Determine baud rate divisor value 432 * @spi: pointer to the spi controller data structure 433 * @speed_hz: requested speed 434 * @min_div: minimum baud rate divisor 435 * @max_div: maximum baud rate divisor 436 * 437 * Return baud rate divisor value in case of success or -EINVAL 438 */ 439 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz, 440 u32 min_div, u32 max_div) 441 { 442 u32 div, mbrdiv; 443 444 div = DIV_ROUND_UP(spi->clk_rate, speed_hz); 445 446 /* 447 * SPI framework set xfer->speed_hz to master->max_speed_hz if 448 * xfer->speed_hz is greater than master->max_speed_hz, and it returns 449 * an error when xfer->speed_hz is lower than master->min_speed_hz, so 450 * no need to check it there. 451 * However, we need to ensure the following calculations. 452 */ 453 if ((div < min_div) || (div > max_div)) 454 return -EINVAL; 455 456 /* Determine the first power of 2 greater than or equal to div */ 457 if (div & (div - 1)) 458 mbrdiv = fls(div); 459 else 460 mbrdiv = fls(div) - 1; 461 462 spi->cur_speed = spi->clk_rate / (1 << mbrdiv); 463 464 return mbrdiv - 1; 465 } 466 467 /** 468 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level 469 * @spi: pointer to the spi controller data structure 470 */ 471 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi) 472 { 473 u32 fthlv, half_fifo; 474 475 /* data packet should not exceed 1/2 of fifo space */ 476 half_fifo = (spi->fifo_size / 2); 477 478 if (spi->cur_bpw <= 8) 479 fthlv = half_fifo; 480 else if (spi->cur_bpw <= 16) 481 fthlv = half_fifo / 2; 482 else 483 fthlv = half_fifo / 4; 484 485 /* align packet size with data registers access */ 486 if (spi->cur_bpw > 8) 487 fthlv -= (fthlv % 2); /* multiple of 2 */ 488 else 489 fthlv -= (fthlv % 4); /* multiple of 4 */ 490 491 return fthlv; 492 } 493 494 /** 495 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register 496 * @spi: pointer to the spi controller data structure 497 * 498 * Read from tx_buf depends on remaining bytes to avoid to read beyond 499 * tx_buf end. 500 */ 501 static void stm32f4_spi_write_tx(struct stm32_spi *spi) 502 { 503 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 504 STM32F4_SPI_SR_TXE)) { 505 u32 offs = spi->cur_xferlen - spi->tx_len; 506 507 if (spi->cur_bpw == 16) { 508 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 509 510 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR); 511 spi->tx_len -= sizeof(u16); 512 } else { 513 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 514 515 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR); 516 spi->tx_len -= sizeof(u8); 517 } 518 } 519 520 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 521 } 522 523 /** 524 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register 525 * @spi: pointer to the spi controller data structure 526 * 527 * Read from tx_buf depends on remaining bytes to avoid to read beyond 528 * tx_buf end. 529 */ 530 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi) 531 { 532 while ((spi->tx_len > 0) && 533 (readl_relaxed(spi->base + STM32H7_SPI_SR) & 534 STM32H7_SPI_SR_TXP)) { 535 u32 offs = spi->cur_xferlen - spi->tx_len; 536 537 if (spi->tx_len >= sizeof(u32)) { 538 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs); 539 540 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR); 541 spi->tx_len -= sizeof(u32); 542 } else if (spi->tx_len >= sizeof(u16)) { 543 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); 544 545 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR); 546 spi->tx_len -= sizeof(u16); 547 } else { 548 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); 549 550 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR); 551 spi->tx_len -= sizeof(u8); 552 } 553 } 554 555 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); 556 } 557 558 /** 559 * stm32f4_spi_read_rx - Read bytes from Receive Data Register 560 * @spi: pointer to the spi controller data structure 561 * 562 * Write in rx_buf depends on remaining bytes to avoid to write beyond 563 * rx_buf end. 564 */ 565 static void stm32f4_spi_read_rx(struct stm32_spi *spi) 566 { 567 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) & 568 STM32F4_SPI_SR_RXNE)) { 569 u32 offs = spi->cur_xferlen - spi->rx_len; 570 571 if (spi->cur_bpw == 16) { 572 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 573 574 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR); 575 spi->rx_len -= sizeof(u16); 576 } else { 577 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 578 579 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR); 580 spi->rx_len -= sizeof(u8); 581 } 582 } 583 584 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len); 585 } 586 587 /** 588 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register 589 * @spi: pointer to the spi controller data structure 590 * @flush: boolean indicating that FIFO should be flushed 591 * 592 * Write in rx_buf depends on remaining bytes to avoid to write beyond 593 * rx_buf end. 594 */ 595 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush) 596 { 597 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 598 u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >> 599 STM32H7_SPI_SR_RXPLVL_SHIFT; 600 601 while ((spi->rx_len > 0) && 602 ((sr & STM32H7_SPI_SR_RXP) || 603 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) { 604 u32 offs = spi->cur_xferlen - spi->rx_len; 605 606 if ((spi->rx_len >= sizeof(u32)) || 607 (flush && (sr & STM32H7_SPI_SR_RXWNE))) { 608 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs); 609 610 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR); 611 spi->rx_len -= sizeof(u32); 612 } else if ((spi->rx_len >= sizeof(u16)) || 613 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) { 614 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); 615 616 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR); 617 spi->rx_len -= sizeof(u16); 618 } else { 619 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); 620 621 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR); 622 spi->rx_len -= sizeof(u8); 623 } 624 625 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 626 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >> 627 STM32H7_SPI_SR_RXPLVL_SHIFT; 628 } 629 630 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__, 631 flush ? "(flush)" : "", spi->rx_len); 632 } 633 634 /** 635 * stm32_spi_enable - Enable SPI controller 636 * @spi: pointer to the spi controller data structure 637 */ 638 static void stm32_spi_enable(struct stm32_spi *spi) 639 { 640 dev_dbg(spi->dev, "enable controller\n"); 641 642 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg, 643 spi->cfg->regs->en.mask); 644 } 645 646 /** 647 * stm32f4_spi_disable - Disable SPI controller 648 * @spi: pointer to the spi controller data structure 649 */ 650 static void stm32f4_spi_disable(struct stm32_spi *spi) 651 { 652 unsigned long flags; 653 u32 sr; 654 655 dev_dbg(spi->dev, "disable controller\n"); 656 657 spin_lock_irqsave(&spi->lock, flags); 658 659 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) & 660 STM32F4_SPI_CR1_SPE)) { 661 spin_unlock_irqrestore(&spi->lock, flags); 662 return; 663 } 664 665 /* Disable interrupts */ 666 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE | 667 STM32F4_SPI_CR2_RXNEIE | 668 STM32F4_SPI_CR2_ERRIE); 669 670 /* Wait until BSY = 0 */ 671 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR, 672 sr, !(sr & STM32F4_SPI_SR_BSY), 673 10, 100000) < 0) { 674 dev_warn(spi->dev, "disabling condition timeout\n"); 675 } 676 677 if (spi->cur_usedma && spi->dma_tx) 678 dmaengine_terminate_all(spi->dma_tx); 679 if (spi->cur_usedma && spi->dma_rx) 680 dmaengine_terminate_all(spi->dma_rx); 681 682 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE); 683 684 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN | 685 STM32F4_SPI_CR2_RXDMAEN); 686 687 /* Sequence to clear OVR flag */ 688 readl_relaxed(spi->base + STM32F4_SPI_DR); 689 readl_relaxed(spi->base + STM32F4_SPI_SR); 690 691 spin_unlock_irqrestore(&spi->lock, flags); 692 } 693 694 /** 695 * stm32h7_spi_disable - Disable SPI controller 696 * @spi: pointer to the spi controller data structure 697 * 698 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data 699 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in 700 * RX-Fifo. 701 * Normally, if TSIZE has been configured, we should relax the hardware at the 702 * reception of the EOT interrupt. But in case of error, EOT will not be 703 * raised. So the subsystem unprepare_message call allows us to properly 704 * complete the transfer from an hardware point of view. 705 */ 706 static void stm32h7_spi_disable(struct stm32_spi *spi) 707 { 708 unsigned long flags; 709 u32 cr1, sr; 710 711 dev_dbg(spi->dev, "disable controller\n"); 712 713 spin_lock_irqsave(&spi->lock, flags); 714 715 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1); 716 717 if (!(cr1 & STM32H7_SPI_CR1_SPE)) { 718 spin_unlock_irqrestore(&spi->lock, flags); 719 return; 720 } 721 722 /* Wait on EOT or suspend the flow */ 723 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR, 724 sr, !(sr & STM32H7_SPI_SR_EOT), 725 10, 100000) < 0) { 726 if (cr1 & STM32H7_SPI_CR1_CSTART) { 727 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP, 728 spi->base + STM32H7_SPI_CR1); 729 if (readl_relaxed_poll_timeout_atomic( 730 spi->base + STM32H7_SPI_SR, 731 sr, !(sr & STM32H7_SPI_SR_SUSP), 732 10, 100000) < 0) 733 dev_warn(spi->dev, 734 "Suspend request timeout\n"); 735 } 736 } 737 738 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0)) 739 stm32h7_spi_read_rxfifo(spi, true); 740 741 if (spi->cur_usedma && spi->dma_tx) 742 dmaengine_terminate_all(spi->dma_tx); 743 if (spi->cur_usedma && spi->dma_rx) 744 dmaengine_terminate_all(spi->dma_rx); 745 746 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE); 747 748 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN | 749 STM32H7_SPI_CFG1_RXDMAEN); 750 751 /* Disable interrupts and clear status flags */ 752 writel_relaxed(0, spi->base + STM32H7_SPI_IER); 753 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR); 754 755 spin_unlock_irqrestore(&spi->lock, flags); 756 } 757 758 /** 759 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use 760 * @master: controller master interface 761 * @spi_dev: pointer to the spi device 762 * @transfer: pointer to spi transfer 763 * 764 * If driver has fifo and the current transfer size is greater than fifo size, 765 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes. 766 */ 767 static bool stm32_spi_can_dma(struct spi_master *master, 768 struct spi_device *spi_dev, 769 struct spi_transfer *transfer) 770 { 771 unsigned int dma_size; 772 struct stm32_spi *spi = spi_master_get_devdata(master); 773 774 if (spi->cfg->has_fifo) 775 dma_size = spi->fifo_size; 776 else 777 dma_size = SPI_DMA_MIN_BYTES; 778 779 dev_dbg(spi->dev, "%s: %s\n", __func__, 780 (transfer->len > dma_size) ? "true" : "false"); 781 782 return (transfer->len > dma_size); 783 } 784 785 /** 786 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events 787 * @irq: interrupt line 788 * @dev_id: SPI controller master interface 789 */ 790 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id) 791 { 792 struct spi_master *master = dev_id; 793 struct stm32_spi *spi = spi_master_get_devdata(master); 794 u32 sr, mask = 0; 795 unsigned long flags; 796 bool end = false; 797 798 spin_lock_irqsave(&spi->lock, flags); 799 800 sr = readl_relaxed(spi->base + STM32F4_SPI_SR); 801 /* 802 * BSY flag is not handled in interrupt but it is normal behavior when 803 * this flag is set. 804 */ 805 sr &= ~STM32F4_SPI_SR_BSY; 806 807 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX || 808 spi->cur_comm == SPI_3WIRE_TX)) { 809 /* OVR flag shouldn't be handled for TX only mode */ 810 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE; 811 mask |= STM32F4_SPI_SR_TXE; 812 } 813 814 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX || 815 spi->cur_comm == SPI_SIMPLEX_RX || 816 spi->cur_comm == SPI_3WIRE_RX)) { 817 /* TXE flag is set and is handled when RXNE flag occurs */ 818 sr &= ~STM32F4_SPI_SR_TXE; 819 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR; 820 } 821 822 if (!(sr & mask)) { 823 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr); 824 spin_unlock_irqrestore(&spi->lock, flags); 825 return IRQ_NONE; 826 } 827 828 if (sr & STM32F4_SPI_SR_OVR) { 829 dev_warn(spi->dev, "Overrun: received value discarded\n"); 830 831 /* Sequence to clear OVR flag */ 832 readl_relaxed(spi->base + STM32F4_SPI_DR); 833 readl_relaxed(spi->base + STM32F4_SPI_SR); 834 835 /* 836 * If overrun is detected, it means that something went wrong, 837 * so stop the current transfer. Transfer can wait for next 838 * RXNE but DR is already read and end never happens. 839 */ 840 end = true; 841 goto end_irq; 842 } 843 844 if (sr & STM32F4_SPI_SR_TXE) { 845 if (spi->tx_buf) 846 stm32f4_spi_write_tx(spi); 847 if (spi->tx_len == 0) 848 end = true; 849 } 850 851 if (sr & STM32F4_SPI_SR_RXNE) { 852 stm32f4_spi_read_rx(spi); 853 if (spi->rx_len == 0) 854 end = true; 855 else if (spi->tx_buf)/* Load data for discontinuous mode */ 856 stm32f4_spi_write_tx(spi); 857 } 858 859 end_irq: 860 if (end) { 861 /* Immediately disable interrupts to do not generate new one */ 862 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, 863 STM32F4_SPI_CR2_TXEIE | 864 STM32F4_SPI_CR2_RXNEIE | 865 STM32F4_SPI_CR2_ERRIE); 866 spin_unlock_irqrestore(&spi->lock, flags); 867 return IRQ_WAKE_THREAD; 868 } 869 870 spin_unlock_irqrestore(&spi->lock, flags); 871 return IRQ_HANDLED; 872 } 873 874 /** 875 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller 876 * @irq: interrupt line 877 * @dev_id: SPI controller master interface 878 */ 879 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id) 880 { 881 struct spi_master *master = dev_id; 882 struct stm32_spi *spi = spi_master_get_devdata(master); 883 884 spi_finalize_current_transfer(master); 885 stm32f4_spi_disable(spi); 886 887 return IRQ_HANDLED; 888 } 889 890 /** 891 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller 892 * @irq: interrupt line 893 * @dev_id: SPI controller master interface 894 */ 895 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) 896 { 897 struct spi_master *master = dev_id; 898 struct stm32_spi *spi = spi_master_get_devdata(master); 899 u32 sr, ier, mask; 900 unsigned long flags; 901 bool end = false; 902 903 spin_lock_irqsave(&spi->lock, flags); 904 905 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 906 ier = readl_relaxed(spi->base + STM32H7_SPI_IER); 907 908 mask = ier; 909 /* EOTIE is triggered on EOT, SUSP and TXC events. */ 910 mask |= STM32H7_SPI_SR_SUSP; 911 /* 912 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of 913 * Full-Duplex, need to poll RXP event to know if there are remaining 914 * data, before disabling SPI. 915 */ 916 if (spi->rx_buf && !spi->cur_usedma) 917 mask |= STM32H7_SPI_SR_RXP; 918 919 if (!(sr & mask)) { 920 dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", 921 sr, ier); 922 spin_unlock_irqrestore(&spi->lock, flags); 923 return IRQ_NONE; 924 } 925 926 if (sr & STM32H7_SPI_SR_SUSP) { 927 dev_warn(spi->dev, "Communication suspended\n"); 928 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 929 stm32h7_spi_read_rxfifo(spi, false); 930 /* 931 * If communication is suspended while using DMA, it means 932 * that something went wrong, so stop the current transfer 933 */ 934 if (spi->cur_usedma) 935 end = true; 936 } 937 938 if (sr & STM32H7_SPI_SR_MODF) { 939 dev_warn(spi->dev, "Mode fault: transfer aborted\n"); 940 end = true; 941 } 942 943 if (sr & STM32H7_SPI_SR_OVR) { 944 dev_warn(spi->dev, "Overrun: received value discarded\n"); 945 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 946 stm32h7_spi_read_rxfifo(spi, false); 947 /* 948 * If overrun is detected while using DMA, it means that 949 * something went wrong, so stop the current transfer 950 */ 951 if (spi->cur_usedma) 952 end = true; 953 } 954 955 if (sr & STM32H7_SPI_SR_EOT) { 956 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 957 stm32h7_spi_read_rxfifo(spi, true); 958 end = true; 959 } 960 961 if (sr & STM32H7_SPI_SR_TXP) 962 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0))) 963 stm32h7_spi_write_txfifo(spi); 964 965 if (sr & STM32H7_SPI_SR_RXP) 966 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) 967 stm32h7_spi_read_rxfifo(spi, false); 968 969 writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR); 970 971 spin_unlock_irqrestore(&spi->lock, flags); 972 973 if (end) { 974 spi_finalize_current_transfer(master); 975 stm32h7_spi_disable(spi); 976 } 977 978 return IRQ_HANDLED; 979 } 980 981 /** 982 * stm32_spi_prepare_msg - set up the controller to transfer a single message 983 * @master: controller master interface 984 * @msg: pointer to spi message 985 */ 986 static int stm32_spi_prepare_msg(struct spi_master *master, 987 struct spi_message *msg) 988 { 989 struct stm32_spi *spi = spi_master_get_devdata(master); 990 struct spi_device *spi_dev = msg->spi; 991 struct device_node *np = spi_dev->dev.of_node; 992 unsigned long flags; 993 u32 clrb = 0, setb = 0; 994 995 /* SPI slave device may need time between data frames */ 996 spi->cur_midi = 0; 997 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi)) 998 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi); 999 1000 if (spi_dev->mode & SPI_CPOL) 1001 setb |= spi->cfg->regs->cpol.mask; 1002 else 1003 clrb |= spi->cfg->regs->cpol.mask; 1004 1005 if (spi_dev->mode & SPI_CPHA) 1006 setb |= spi->cfg->regs->cpha.mask; 1007 else 1008 clrb |= spi->cfg->regs->cpha.mask; 1009 1010 if (spi_dev->mode & SPI_LSB_FIRST) 1011 setb |= spi->cfg->regs->lsb_first.mask; 1012 else 1013 clrb |= spi->cfg->regs->lsb_first.mask; 1014 1015 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", 1016 spi_dev->mode & SPI_CPOL, 1017 spi_dev->mode & SPI_CPHA, 1018 spi_dev->mode & SPI_LSB_FIRST, 1019 spi_dev->mode & SPI_CS_HIGH); 1020 1021 spin_lock_irqsave(&spi->lock, flags); 1022 1023 /* CPOL, CPHA and LSB FIRST bits have common register */ 1024 if (clrb || setb) 1025 writel_relaxed( 1026 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) & 1027 ~clrb) | setb, 1028 spi->base + spi->cfg->regs->cpol.reg); 1029 1030 spin_unlock_irqrestore(&spi->lock, flags); 1031 1032 return 0; 1033 } 1034 1035 /** 1036 * stm32f4_spi_dma_tx_cb - dma callback 1037 * @data: pointer to the spi controller data structure 1038 * 1039 * DMA callback is called when the transfer is complete for DMA TX channel. 1040 */ 1041 static void stm32f4_spi_dma_tx_cb(void *data) 1042 { 1043 struct stm32_spi *spi = data; 1044 1045 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1046 spi_finalize_current_transfer(spi->master); 1047 stm32f4_spi_disable(spi); 1048 } 1049 } 1050 1051 /** 1052 * stm32f4_spi_dma_rx_cb - dma callback 1053 * @data: pointer to the spi controller data structure 1054 * 1055 * DMA callback is called when the transfer is complete for DMA RX channel. 1056 */ 1057 static void stm32f4_spi_dma_rx_cb(void *data) 1058 { 1059 struct stm32_spi *spi = data; 1060 1061 spi_finalize_current_transfer(spi->master); 1062 stm32f4_spi_disable(spi); 1063 } 1064 1065 /** 1066 * stm32h7_spi_dma_cb - dma callback 1067 * @data: pointer to the spi controller data structure 1068 * 1069 * DMA callback is called when the transfer is complete or when an error 1070 * occurs. If the transfer is complete, EOT flag is raised. 1071 */ 1072 static void stm32h7_spi_dma_cb(void *data) 1073 { 1074 struct stm32_spi *spi = data; 1075 unsigned long flags; 1076 u32 sr; 1077 1078 spin_lock_irqsave(&spi->lock, flags); 1079 1080 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); 1081 1082 spin_unlock_irqrestore(&spi->lock, flags); 1083 1084 if (!(sr & STM32H7_SPI_SR_EOT)) 1085 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr); 1086 1087 /* Now wait for EOT, or SUSP or OVR in case of error */ 1088 } 1089 1090 /** 1091 * stm32_spi_dma_config - configure dma slave channel depending on current 1092 * transfer bits_per_word. 1093 * @spi: pointer to the spi controller data structure 1094 * @dma_conf: pointer to the dma_slave_config structure 1095 * @dir: direction of the dma transfer 1096 */ 1097 static void stm32_spi_dma_config(struct stm32_spi *spi, 1098 struct dma_slave_config *dma_conf, 1099 enum dma_transfer_direction dir) 1100 { 1101 enum dma_slave_buswidth buswidth; 1102 u32 maxburst; 1103 1104 if (spi->cur_bpw <= 8) 1105 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1106 else if (spi->cur_bpw <= 16) 1107 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1108 else 1109 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1110 1111 if (spi->cfg->has_fifo) { 1112 /* Valid for DMA Half or Full Fifo threshold */ 1113 if (spi->cur_fthlv == 2) 1114 maxburst = 1; 1115 else 1116 maxburst = spi->cur_fthlv; 1117 } else { 1118 maxburst = 1; 1119 } 1120 1121 memset(dma_conf, 0, sizeof(struct dma_slave_config)); 1122 dma_conf->direction = dir; 1123 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */ 1124 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg; 1125 dma_conf->src_addr_width = buswidth; 1126 dma_conf->src_maxburst = maxburst; 1127 1128 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n", 1129 buswidth, maxburst); 1130 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */ 1131 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg; 1132 dma_conf->dst_addr_width = buswidth; 1133 dma_conf->dst_maxburst = maxburst; 1134 1135 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n", 1136 buswidth, maxburst); 1137 } 1138 } 1139 1140 /** 1141 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using 1142 * interrupts 1143 * @spi: pointer to the spi controller data structure 1144 * 1145 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1146 * in progress. 1147 */ 1148 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi) 1149 { 1150 unsigned long flags; 1151 u32 cr2 = 0; 1152 1153 /* Enable the interrupts relative to the current communication mode */ 1154 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { 1155 cr2 |= STM32F4_SPI_CR2_TXEIE; 1156 } else if (spi->cur_comm == SPI_FULL_DUPLEX || 1157 spi->cur_comm == SPI_SIMPLEX_RX || 1158 spi->cur_comm == SPI_3WIRE_RX) { 1159 /* In transmit-only mode, the OVR flag is set in the SR register 1160 * since the received data are never read. Therefore set OVR 1161 * interrupt only when rx buffer is available. 1162 */ 1163 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE; 1164 } else { 1165 return -EINVAL; 1166 } 1167 1168 spin_lock_irqsave(&spi->lock, flags); 1169 1170 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2); 1171 1172 stm32_spi_enable(spi); 1173 1174 /* starting data transfer when buffer is loaded */ 1175 if (spi->tx_buf) 1176 stm32f4_spi_write_tx(spi); 1177 1178 spin_unlock_irqrestore(&spi->lock, flags); 1179 1180 return 1; 1181 } 1182 1183 /** 1184 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using 1185 * interrupts 1186 * @spi: pointer to the spi controller data structure 1187 * 1188 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1189 * in progress. 1190 */ 1191 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi) 1192 { 1193 unsigned long flags; 1194 u32 ier = 0; 1195 1196 /* Enable the interrupts relative to the current communication mode */ 1197 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */ 1198 ier |= STM32H7_SPI_IER_DXPIE; 1199 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */ 1200 ier |= STM32H7_SPI_IER_TXPIE; 1201 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */ 1202 ier |= STM32H7_SPI_IER_RXPIE; 1203 1204 /* Enable the interrupts relative to the end of transfer */ 1205 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE | 1206 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE; 1207 1208 spin_lock_irqsave(&spi->lock, flags); 1209 1210 stm32_spi_enable(spi); 1211 1212 /* Be sure to have data in fifo before starting data transfer */ 1213 if (spi->tx_buf) 1214 stm32h7_spi_write_txfifo(spi); 1215 1216 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1217 1218 writel_relaxed(ier, spi->base + STM32H7_SPI_IER); 1219 1220 spin_unlock_irqrestore(&spi->lock, flags); 1221 1222 return 1; 1223 } 1224 1225 /** 1226 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start 1227 * transfer using DMA 1228 * @spi: pointer to the spi controller data structure 1229 */ 1230 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi) 1231 { 1232 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */ 1233 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX || 1234 spi->cur_comm == SPI_FULL_DUPLEX) { 1235 /* 1236 * In transmit-only mode, the OVR flag is set in the SR register 1237 * since the received data are never read. Therefore set OVR 1238 * interrupt only when rx buffer is available. 1239 */ 1240 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE); 1241 } 1242 1243 stm32_spi_enable(spi); 1244 } 1245 1246 /** 1247 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start 1248 * transfer using DMA 1249 * @spi: pointer to the spi controller data structure 1250 */ 1251 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi) 1252 { 1253 /* Enable the interrupts relative to the end of transfer */ 1254 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE | 1255 STM32H7_SPI_IER_TXTFIE | 1256 STM32H7_SPI_IER_OVRIE | 1257 STM32H7_SPI_IER_MODFIE); 1258 1259 stm32_spi_enable(spi); 1260 1261 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART); 1262 } 1263 1264 /** 1265 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA 1266 * @spi: pointer to the spi controller data structure 1267 * @xfer: pointer to the spi_transfer structure 1268 * 1269 * It must returns 0 if the transfer is finished or 1 if the transfer is still 1270 * in progress. 1271 */ 1272 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi, 1273 struct spi_transfer *xfer) 1274 { 1275 struct dma_slave_config tx_dma_conf, rx_dma_conf; 1276 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc; 1277 unsigned long flags; 1278 1279 spin_lock_irqsave(&spi->lock, flags); 1280 1281 rx_dma_desc = NULL; 1282 if (spi->rx_buf && spi->dma_rx) { 1283 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM); 1284 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); 1285 1286 /* Enable Rx DMA request */ 1287 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1288 spi->cfg->regs->dma_rx_en.mask); 1289 1290 rx_dma_desc = dmaengine_prep_slave_sg( 1291 spi->dma_rx, xfer->rx_sg.sgl, 1292 xfer->rx_sg.nents, 1293 rx_dma_conf.direction, 1294 DMA_PREP_INTERRUPT); 1295 } 1296 1297 tx_dma_desc = NULL; 1298 if (spi->tx_buf && spi->dma_tx) { 1299 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV); 1300 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf); 1301 1302 tx_dma_desc = dmaengine_prep_slave_sg( 1303 spi->dma_tx, xfer->tx_sg.sgl, 1304 xfer->tx_sg.nents, 1305 tx_dma_conf.direction, 1306 DMA_PREP_INTERRUPT); 1307 } 1308 1309 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) || 1310 (spi->rx_buf && spi->dma_rx && !rx_dma_desc)) 1311 goto dma_desc_error; 1312 1313 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc)) 1314 goto dma_desc_error; 1315 1316 if (rx_dma_desc) { 1317 rx_dma_desc->callback = spi->cfg->dma_rx_cb; 1318 rx_dma_desc->callback_param = spi; 1319 1320 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) { 1321 dev_err(spi->dev, "Rx DMA submit failed\n"); 1322 goto dma_desc_error; 1323 } 1324 /* Enable Rx DMA channel */ 1325 dma_async_issue_pending(spi->dma_rx); 1326 } 1327 1328 if (tx_dma_desc) { 1329 if (spi->cur_comm == SPI_SIMPLEX_TX || 1330 spi->cur_comm == SPI_3WIRE_TX) { 1331 tx_dma_desc->callback = spi->cfg->dma_tx_cb; 1332 tx_dma_desc->callback_param = spi; 1333 } 1334 1335 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) { 1336 dev_err(spi->dev, "Tx DMA submit failed\n"); 1337 goto dma_submit_error; 1338 } 1339 /* Enable Tx DMA channel */ 1340 dma_async_issue_pending(spi->dma_tx); 1341 1342 /* Enable Tx DMA request */ 1343 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg, 1344 spi->cfg->regs->dma_tx_en.mask); 1345 } 1346 1347 spi->cfg->transfer_one_dma_start(spi); 1348 1349 spin_unlock_irqrestore(&spi->lock, flags); 1350 1351 return 1; 1352 1353 dma_submit_error: 1354 if (spi->dma_rx) 1355 dmaengine_terminate_all(spi->dma_rx); 1356 1357 dma_desc_error: 1358 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg, 1359 spi->cfg->regs->dma_rx_en.mask); 1360 1361 spin_unlock_irqrestore(&spi->lock, flags); 1362 1363 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n"); 1364 1365 spi->cur_usedma = false; 1366 return spi->cfg->transfer_one_irq(spi); 1367 } 1368 1369 /** 1370 * stm32f4_spi_set_bpw - Configure bits per word 1371 * @spi: pointer to the spi controller data structure 1372 */ 1373 static void stm32f4_spi_set_bpw(struct stm32_spi *spi) 1374 { 1375 if (spi->cur_bpw == 16) 1376 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1377 else 1378 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF); 1379 } 1380 1381 /** 1382 * stm32h7_spi_set_bpw - configure bits per word 1383 * @spi: pointer to the spi controller data structure 1384 */ 1385 static void stm32h7_spi_set_bpw(struct stm32_spi *spi) 1386 { 1387 u32 bpw, fthlv; 1388 u32 cfg1_clrb = 0, cfg1_setb = 0; 1389 1390 bpw = spi->cur_bpw - 1; 1391 1392 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; 1393 cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) & 1394 STM32H7_SPI_CFG1_DSIZE; 1395 1396 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi); 1397 fthlv = spi->cur_fthlv - 1; 1398 1399 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; 1400 cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) & 1401 STM32H7_SPI_CFG1_FTHLV; 1402 1403 writel_relaxed( 1404 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) & 1405 ~cfg1_clrb) | cfg1_setb, 1406 spi->base + STM32H7_SPI_CFG1); 1407 } 1408 1409 /** 1410 * stm32_spi_set_mbr - Configure baud rate divisor in master mode 1411 * @spi: pointer to the spi controller data structure 1412 * @mbrdiv: baud rate divisor value 1413 */ 1414 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv) 1415 { 1416 u32 clrb = 0, setb = 0; 1417 1418 clrb |= spi->cfg->regs->br.mask; 1419 setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) & 1420 spi->cfg->regs->br.mask; 1421 1422 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & 1423 ~clrb) | setb, 1424 spi->base + spi->cfg->regs->br.reg); 1425 } 1426 1427 /** 1428 * stm32_spi_communication_type - return transfer communication type 1429 * @spi_dev: pointer to the spi device 1430 * @transfer: pointer to spi transfer 1431 */ 1432 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev, 1433 struct spi_transfer *transfer) 1434 { 1435 unsigned int type = SPI_FULL_DUPLEX; 1436 1437 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */ 1438 /* 1439 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL 1440 * is forbidden and unvalidated by SPI subsystem so depending 1441 * on the valid buffer, we can determine the direction of the 1442 * transfer. 1443 */ 1444 if (!transfer->tx_buf) 1445 type = SPI_3WIRE_RX; 1446 else 1447 type = SPI_3WIRE_TX; 1448 } else { 1449 if (!transfer->tx_buf) 1450 type = SPI_SIMPLEX_RX; 1451 else if (!transfer->rx_buf) 1452 type = SPI_SIMPLEX_TX; 1453 } 1454 1455 return type; 1456 } 1457 1458 /** 1459 * stm32f4_spi_set_mode - configure communication mode 1460 * @spi: pointer to the spi controller data structure 1461 * @comm_type: type of communication to configure 1462 */ 1463 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1464 { 1465 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) { 1466 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1467 STM32F4_SPI_CR1_BIDIMODE | 1468 STM32F4_SPI_CR1_BIDIOE); 1469 } else if (comm_type == SPI_FULL_DUPLEX || 1470 comm_type == SPI_SIMPLEX_RX) { 1471 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1472 STM32F4_SPI_CR1_BIDIMODE | 1473 STM32F4_SPI_CR1_BIDIOE); 1474 } else if (comm_type == SPI_3WIRE_RX) { 1475 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, 1476 STM32F4_SPI_CR1_BIDIMODE); 1477 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, 1478 STM32F4_SPI_CR1_BIDIOE); 1479 } else { 1480 return -EINVAL; 1481 } 1482 1483 return 0; 1484 } 1485 1486 /** 1487 * stm32h7_spi_set_mode - configure communication mode 1488 * @spi: pointer to the spi controller data structure 1489 * @comm_type: type of communication to configure 1490 */ 1491 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) 1492 { 1493 u32 mode; 1494 u32 cfg2_clrb = 0, cfg2_setb = 0; 1495 1496 if (comm_type == SPI_3WIRE_RX) { 1497 mode = STM32H7_SPI_HALF_DUPLEX; 1498 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1499 } else if (comm_type == SPI_3WIRE_TX) { 1500 mode = STM32H7_SPI_HALF_DUPLEX; 1501 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR); 1502 } else if (comm_type == SPI_SIMPLEX_RX) { 1503 mode = STM32H7_SPI_SIMPLEX_RX; 1504 } else if (comm_type == SPI_SIMPLEX_TX) { 1505 mode = STM32H7_SPI_SIMPLEX_TX; 1506 } else { 1507 mode = STM32H7_SPI_FULL_DUPLEX; 1508 } 1509 1510 cfg2_clrb |= STM32H7_SPI_CFG2_COMM; 1511 cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) & 1512 STM32H7_SPI_CFG2_COMM; 1513 1514 writel_relaxed( 1515 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1516 ~cfg2_clrb) | cfg2_setb, 1517 spi->base + STM32H7_SPI_CFG2); 1518 1519 return 0; 1520 } 1521 1522 /** 1523 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two 1524 * consecutive data frames in master mode 1525 * @spi: pointer to the spi controller data structure 1526 * @len: transfer len 1527 */ 1528 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len) 1529 { 1530 u32 cfg2_clrb = 0, cfg2_setb = 0; 1531 1532 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; 1533 if ((len > 1) && (spi->cur_midi > 0)) { 1534 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed); 1535 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns), 1536 (u32)STM32H7_SPI_CFG2_MIDI >> 1537 STM32H7_SPI_CFG2_MIDI_SHIFT); 1538 1539 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", 1540 sck_period_ns, midi, midi * sck_period_ns); 1541 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) & 1542 STM32H7_SPI_CFG2_MIDI; 1543 } 1544 1545 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & 1546 ~cfg2_clrb) | cfg2_setb, 1547 spi->base + STM32H7_SPI_CFG2); 1548 } 1549 1550 /** 1551 * stm32h7_spi_number_of_data - configure number of data at current transfer 1552 * @spi: pointer to the spi controller data structure 1553 * @nb_words: transfer length (in words) 1554 */ 1555 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) 1556 { 1557 u32 cr2_clrb = 0, cr2_setb = 0; 1558 1559 if (nb_words <= (STM32H7_SPI_CR2_TSIZE >> 1560 STM32H7_SPI_CR2_TSIZE_SHIFT)) { 1561 cr2_clrb |= STM32H7_SPI_CR2_TSIZE; 1562 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT; 1563 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) & 1564 ~cr2_clrb) | cr2_setb, 1565 spi->base + STM32H7_SPI_CR2); 1566 } else { 1567 return -EMSGSIZE; 1568 } 1569 1570 return 0; 1571 } 1572 1573 /** 1574 * stm32_spi_transfer_one_setup - common setup to transfer a single 1575 * spi_transfer either using DMA or 1576 * interrupts. 1577 * @spi: pointer to the spi controller data structure 1578 * @spi_dev: pointer to the spi device 1579 * @transfer: pointer to spi transfer 1580 */ 1581 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi, 1582 struct spi_device *spi_dev, 1583 struct spi_transfer *transfer) 1584 { 1585 unsigned long flags; 1586 unsigned int comm_type; 1587 int nb_words, ret = 0; 1588 1589 spin_lock_irqsave(&spi->lock, flags); 1590 1591 if (spi->cur_bpw != transfer->bits_per_word) { 1592 spi->cur_bpw = transfer->bits_per_word; 1593 spi->cfg->set_bpw(spi); 1594 } 1595 1596 if (spi->cur_speed != transfer->speed_hz) { 1597 int mbr; 1598 1599 /* Update spi->cur_speed with real clock speed */ 1600 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz, 1601 spi->cfg->baud_rate_div_min, 1602 spi->cfg->baud_rate_div_max); 1603 if (mbr < 0) { 1604 ret = mbr; 1605 goto out; 1606 } 1607 1608 transfer->speed_hz = spi->cur_speed; 1609 stm32_spi_set_mbr(spi, mbr); 1610 } 1611 1612 comm_type = stm32_spi_communication_type(spi_dev, transfer); 1613 if (spi->cur_comm != comm_type) { 1614 ret = spi->cfg->set_mode(spi, comm_type); 1615 1616 if (ret < 0) 1617 goto out; 1618 1619 spi->cur_comm = comm_type; 1620 } 1621 1622 if (spi->cfg->set_data_idleness) 1623 spi->cfg->set_data_idleness(spi, transfer->len); 1624 1625 if (spi->cur_bpw <= 8) 1626 nb_words = transfer->len; 1627 else if (spi->cur_bpw <= 16) 1628 nb_words = DIV_ROUND_UP(transfer->len * 8, 16); 1629 else 1630 nb_words = DIV_ROUND_UP(transfer->len * 8, 32); 1631 1632 if (spi->cfg->set_number_of_data) { 1633 ret = spi->cfg->set_number_of_data(spi, nb_words); 1634 if (ret < 0) 1635 goto out; 1636 } 1637 1638 spi->cur_xferlen = transfer->len; 1639 1640 dev_dbg(spi->dev, "transfer communication mode set to %d\n", 1641 spi->cur_comm); 1642 dev_dbg(spi->dev, 1643 "data frame of %d-bit, data packet of %d data frames\n", 1644 spi->cur_bpw, spi->cur_fthlv); 1645 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed); 1646 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n", 1647 spi->cur_xferlen, nb_words); 1648 dev_dbg(spi->dev, "dma %s\n", 1649 (spi->cur_usedma) ? "enabled" : "disabled"); 1650 1651 out: 1652 spin_unlock_irqrestore(&spi->lock, flags); 1653 1654 return ret; 1655 } 1656 1657 /** 1658 * stm32_spi_transfer_one - transfer a single spi_transfer 1659 * @master: controller master interface 1660 * @spi_dev: pointer to the spi device 1661 * @transfer: pointer to spi transfer 1662 * 1663 * It must return 0 if the transfer is finished or 1 if the transfer is still 1664 * in progress. 1665 */ 1666 static int stm32_spi_transfer_one(struct spi_master *master, 1667 struct spi_device *spi_dev, 1668 struct spi_transfer *transfer) 1669 { 1670 struct stm32_spi *spi = spi_master_get_devdata(master); 1671 int ret; 1672 1673 spi->tx_buf = transfer->tx_buf; 1674 spi->rx_buf = transfer->rx_buf; 1675 spi->tx_len = spi->tx_buf ? transfer->len : 0; 1676 spi->rx_len = spi->rx_buf ? transfer->len : 0; 1677 1678 spi->cur_usedma = (master->can_dma && 1679 master->can_dma(master, spi_dev, transfer)); 1680 1681 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer); 1682 if (ret) { 1683 dev_err(spi->dev, "SPI transfer setup failed\n"); 1684 return ret; 1685 } 1686 1687 if (spi->cur_usedma) 1688 return stm32_spi_transfer_one_dma(spi, transfer); 1689 else 1690 return spi->cfg->transfer_one_irq(spi); 1691 } 1692 1693 /** 1694 * stm32_spi_unprepare_msg - relax the hardware 1695 * @master: controller master interface 1696 * @msg: pointer to the spi message 1697 */ 1698 static int stm32_spi_unprepare_msg(struct spi_master *master, 1699 struct spi_message *msg) 1700 { 1701 struct stm32_spi *spi = spi_master_get_devdata(master); 1702 1703 spi->cfg->disable(spi); 1704 1705 return 0; 1706 } 1707 1708 /** 1709 * stm32f4_spi_config - Configure SPI controller as SPI master 1710 * @spi: pointer to the spi controller data structure 1711 */ 1712 static int stm32f4_spi_config(struct stm32_spi *spi) 1713 { 1714 unsigned long flags; 1715 1716 spin_lock_irqsave(&spi->lock, flags); 1717 1718 /* Ensure I2SMOD bit is kept cleared */ 1719 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR, 1720 STM32F4_SPI_I2SCFGR_I2SMOD); 1721 1722 /* 1723 * - SS input value high 1724 * - transmitter half duplex direction 1725 * - Set the master mode (default Motorola mode) 1726 * - Consider 1 master/n slaves configuration and 1727 * SS input value is determined by the SSI bit 1728 */ 1729 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI | 1730 STM32F4_SPI_CR1_BIDIOE | 1731 STM32F4_SPI_CR1_MSTR | 1732 STM32F4_SPI_CR1_SSM); 1733 1734 spin_unlock_irqrestore(&spi->lock, flags); 1735 1736 return 0; 1737 } 1738 1739 /** 1740 * stm32h7_spi_config - Configure SPI controller as SPI master 1741 * @spi: pointer to the spi controller data structure 1742 */ 1743 static int stm32h7_spi_config(struct stm32_spi *spi) 1744 { 1745 unsigned long flags; 1746 1747 spin_lock_irqsave(&spi->lock, flags); 1748 1749 /* Ensure I2SMOD bit is kept cleared */ 1750 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR, 1751 STM32H7_SPI_I2SCFGR_I2SMOD); 1752 1753 /* 1754 * - SS input value high 1755 * - transmitter half duplex direction 1756 * - automatic communication suspend when RX-Fifo is full 1757 */ 1758 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI | 1759 STM32H7_SPI_CR1_HDDIR | 1760 STM32H7_SPI_CR1_MASRX); 1761 1762 /* 1763 * - Set the master mode (default Motorola mode) 1764 * - Consider 1 master/n slaves configuration and 1765 * SS input value is determined by the SSI bit 1766 * - keep control of all associated GPIOs 1767 */ 1768 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER | 1769 STM32H7_SPI_CFG2_SSM | 1770 STM32H7_SPI_CFG2_AFCNTR); 1771 1772 spin_unlock_irqrestore(&spi->lock, flags); 1773 1774 return 0; 1775 } 1776 1777 static const struct stm32_spi_cfg stm32f4_spi_cfg = { 1778 .regs = &stm32f4_spi_regspec, 1779 .get_bpw_mask = stm32f4_spi_get_bpw_mask, 1780 .disable = stm32f4_spi_disable, 1781 .config = stm32f4_spi_config, 1782 .set_bpw = stm32f4_spi_set_bpw, 1783 .set_mode = stm32f4_spi_set_mode, 1784 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start, 1785 .dma_tx_cb = stm32f4_spi_dma_tx_cb, 1786 .dma_rx_cb = stm32f4_spi_dma_rx_cb, 1787 .transfer_one_irq = stm32f4_spi_transfer_one_irq, 1788 .irq_handler_event = stm32f4_spi_irq_event, 1789 .irq_handler_thread = stm32f4_spi_irq_thread, 1790 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN, 1791 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX, 1792 .has_fifo = false, 1793 }; 1794 1795 static const struct stm32_spi_cfg stm32h7_spi_cfg = { 1796 .regs = &stm32h7_spi_regspec, 1797 .get_fifo_size = stm32h7_spi_get_fifo_size, 1798 .get_bpw_mask = stm32h7_spi_get_bpw_mask, 1799 .disable = stm32h7_spi_disable, 1800 .config = stm32h7_spi_config, 1801 .set_bpw = stm32h7_spi_set_bpw, 1802 .set_mode = stm32h7_spi_set_mode, 1803 .set_data_idleness = stm32h7_spi_data_idleness, 1804 .set_number_of_data = stm32h7_spi_number_of_data, 1805 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start, 1806 .dma_rx_cb = stm32h7_spi_dma_cb, 1807 .dma_tx_cb = stm32h7_spi_dma_cb, 1808 .transfer_one_irq = stm32h7_spi_transfer_one_irq, 1809 .irq_handler_thread = stm32h7_spi_irq_thread, 1810 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN, 1811 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX, 1812 .has_fifo = true, 1813 }; 1814 1815 static const struct of_device_id stm32_spi_of_match[] = { 1816 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg }, 1817 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg }, 1818 {}, 1819 }; 1820 MODULE_DEVICE_TABLE(of, stm32_spi_of_match); 1821 1822 static int stm32_spi_probe(struct platform_device *pdev) 1823 { 1824 struct spi_master *master; 1825 struct stm32_spi *spi; 1826 struct resource *res; 1827 int ret; 1828 1829 master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); 1830 if (!master) { 1831 dev_err(&pdev->dev, "spi master allocation failed\n"); 1832 return -ENOMEM; 1833 } 1834 platform_set_drvdata(pdev, master); 1835 1836 spi = spi_master_get_devdata(master); 1837 spi->dev = &pdev->dev; 1838 spi->master = master; 1839 spin_lock_init(&spi->lock); 1840 1841 spi->cfg = (const struct stm32_spi_cfg *) 1842 of_match_device(pdev->dev.driver->of_match_table, 1843 &pdev->dev)->data; 1844 1845 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1846 spi->base = devm_ioremap_resource(&pdev->dev, res); 1847 if (IS_ERR(spi->base)) { 1848 ret = PTR_ERR(spi->base); 1849 goto err_master_put; 1850 } 1851 1852 spi->phys_addr = (dma_addr_t)res->start; 1853 1854 spi->irq = platform_get_irq(pdev, 0); 1855 if (spi->irq <= 0) { 1856 ret = spi->irq; 1857 if (ret != -EPROBE_DEFER) 1858 dev_err(&pdev->dev, "failed to get irq: %d\n", ret); 1859 goto err_master_put; 1860 } 1861 ret = devm_request_threaded_irq(&pdev->dev, spi->irq, 1862 spi->cfg->irq_handler_event, 1863 spi->cfg->irq_handler_thread, 1864 IRQF_ONESHOT, pdev->name, master); 1865 if (ret) { 1866 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq, 1867 ret); 1868 goto err_master_put; 1869 } 1870 1871 spi->clk = devm_clk_get(&pdev->dev, NULL); 1872 if (IS_ERR(spi->clk)) { 1873 ret = PTR_ERR(spi->clk); 1874 dev_err(&pdev->dev, "clk get failed: %d\n", ret); 1875 goto err_master_put; 1876 } 1877 1878 ret = clk_prepare_enable(spi->clk); 1879 if (ret) { 1880 dev_err(&pdev->dev, "clk enable failed: %d\n", ret); 1881 goto err_master_put; 1882 } 1883 spi->clk_rate = clk_get_rate(spi->clk); 1884 if (!spi->clk_rate) { 1885 dev_err(&pdev->dev, "clk rate = 0\n"); 1886 ret = -EINVAL; 1887 goto err_clk_disable; 1888 } 1889 1890 spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL); 1891 if (!IS_ERR(spi->rst)) { 1892 reset_control_assert(spi->rst); 1893 udelay(2); 1894 reset_control_deassert(spi->rst); 1895 } 1896 1897 if (spi->cfg->has_fifo) 1898 spi->fifo_size = spi->cfg->get_fifo_size(spi); 1899 1900 ret = spi->cfg->config(spi); 1901 if (ret) { 1902 dev_err(&pdev->dev, "controller configuration failed: %d\n", 1903 ret); 1904 goto err_clk_disable; 1905 } 1906 1907 master->dev.of_node = pdev->dev.of_node; 1908 master->auto_runtime_pm = true; 1909 master->bus_num = pdev->id; 1910 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | 1911 SPI_3WIRE; 1912 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi); 1913 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min; 1914 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max; 1915 master->use_gpio_descriptors = true; 1916 master->prepare_message = stm32_spi_prepare_msg; 1917 master->transfer_one = stm32_spi_transfer_one; 1918 master->unprepare_message = stm32_spi_unprepare_msg; 1919 master->flags = SPI_MASTER_MUST_TX; 1920 1921 spi->dma_tx = dma_request_chan(spi->dev, "tx"); 1922 if (IS_ERR(spi->dma_tx)) { 1923 ret = PTR_ERR(spi->dma_tx); 1924 spi->dma_tx = NULL; 1925 if (ret == -EPROBE_DEFER) 1926 goto err_clk_disable; 1927 1928 dev_warn(&pdev->dev, "failed to request tx dma channel\n"); 1929 } else { 1930 master->dma_tx = spi->dma_tx; 1931 } 1932 1933 spi->dma_rx = dma_request_chan(spi->dev, "rx"); 1934 if (IS_ERR(spi->dma_rx)) { 1935 ret = PTR_ERR(spi->dma_rx); 1936 spi->dma_rx = NULL; 1937 if (ret == -EPROBE_DEFER) 1938 goto err_dma_release; 1939 1940 dev_warn(&pdev->dev, "failed to request rx dma channel\n"); 1941 } else { 1942 master->dma_rx = spi->dma_rx; 1943 } 1944 1945 if (spi->dma_tx || spi->dma_rx) 1946 master->can_dma = stm32_spi_can_dma; 1947 1948 pm_runtime_set_active(&pdev->dev); 1949 pm_runtime_enable(&pdev->dev); 1950 1951 ret = devm_spi_register_master(&pdev->dev, master); 1952 if (ret) { 1953 dev_err(&pdev->dev, "spi master registration failed: %d\n", 1954 ret); 1955 goto err_pm_disable; 1956 } 1957 1958 if (!master->cs_gpiods) { 1959 dev_err(&pdev->dev, "no CS gpios available\n"); 1960 ret = -EINVAL; 1961 goto err_pm_disable; 1962 } 1963 1964 dev_info(&pdev->dev, "driver initialized\n"); 1965 1966 return 0; 1967 1968 err_pm_disable: 1969 pm_runtime_disable(&pdev->dev); 1970 err_dma_release: 1971 if (spi->dma_tx) 1972 dma_release_channel(spi->dma_tx); 1973 if (spi->dma_rx) 1974 dma_release_channel(spi->dma_rx); 1975 err_clk_disable: 1976 clk_disable_unprepare(spi->clk); 1977 err_master_put: 1978 spi_master_put(master); 1979 1980 return ret; 1981 } 1982 1983 static int stm32_spi_remove(struct platform_device *pdev) 1984 { 1985 struct spi_master *master = platform_get_drvdata(pdev); 1986 struct stm32_spi *spi = spi_master_get_devdata(master); 1987 1988 spi->cfg->disable(spi); 1989 1990 if (master->dma_tx) 1991 dma_release_channel(master->dma_tx); 1992 if (master->dma_rx) 1993 dma_release_channel(master->dma_rx); 1994 1995 clk_disable_unprepare(spi->clk); 1996 1997 pm_runtime_disable(&pdev->dev); 1998 1999 return 0; 2000 } 2001 2002 #ifdef CONFIG_PM 2003 static int stm32_spi_runtime_suspend(struct device *dev) 2004 { 2005 struct spi_master *master = dev_get_drvdata(dev); 2006 struct stm32_spi *spi = spi_master_get_devdata(master); 2007 2008 clk_disable_unprepare(spi->clk); 2009 2010 return 0; 2011 } 2012 2013 static int stm32_spi_runtime_resume(struct device *dev) 2014 { 2015 struct spi_master *master = dev_get_drvdata(dev); 2016 struct stm32_spi *spi = spi_master_get_devdata(master); 2017 2018 return clk_prepare_enable(spi->clk); 2019 } 2020 #endif 2021 2022 #ifdef CONFIG_PM_SLEEP 2023 static int stm32_spi_suspend(struct device *dev) 2024 { 2025 struct spi_master *master = dev_get_drvdata(dev); 2026 int ret; 2027 2028 ret = spi_master_suspend(master); 2029 if (ret) 2030 return ret; 2031 2032 return pm_runtime_force_suspend(dev); 2033 } 2034 2035 static int stm32_spi_resume(struct device *dev) 2036 { 2037 struct spi_master *master = dev_get_drvdata(dev); 2038 struct stm32_spi *spi = spi_master_get_devdata(master); 2039 int ret; 2040 2041 ret = pm_runtime_force_resume(dev); 2042 if (ret) 2043 return ret; 2044 2045 ret = spi_master_resume(master); 2046 if (ret) 2047 clk_disable_unprepare(spi->clk); 2048 2049 return ret; 2050 } 2051 #endif 2052 2053 static const struct dev_pm_ops stm32_spi_pm_ops = { 2054 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume) 2055 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend, 2056 stm32_spi_runtime_resume, NULL) 2057 }; 2058 2059 static struct platform_driver stm32_spi_driver = { 2060 .probe = stm32_spi_probe, 2061 .remove = stm32_spi_remove, 2062 .driver = { 2063 .name = DRIVER_NAME, 2064 .pm = &stm32_spi_pm_ops, 2065 .of_match_table = stm32_spi_of_match, 2066 }, 2067 }; 2068 2069 module_platform_driver(stm32_spi_driver); 2070 2071 MODULE_ALIAS("platform:" DRIVER_NAME); 2072 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver"); 2073 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); 2074 MODULE_LICENSE("GPL v2"); 2075