xref: /openbmc/linux/drivers/spi/spi-stm32-qspi.c (revision 867e6d38)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4  * Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics.
5  */
6 #include <linux/bitfield.h>
7 #include <linux/clk.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/errno.h>
11 #include <linux/io.h>
12 #include <linux/iopoll.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/platform_device.h>
21 #include <linux/reset.h>
22 #include <linux/sizes.h>
23 #include <linux/spi/spi-mem.h>
24 
25 #define QSPI_CR			0x00
26 #define CR_EN			BIT(0)
27 #define CR_ABORT		BIT(1)
28 #define CR_DMAEN		BIT(2)
29 #define CR_TCEN			BIT(3)
30 #define CR_SSHIFT		BIT(4)
31 #define CR_DFM			BIT(6)
32 #define CR_FSEL			BIT(7)
33 #define CR_FTHRES_SHIFT		8
34 #define CR_TEIE			BIT(16)
35 #define CR_TCIE			BIT(17)
36 #define CR_FTIE			BIT(18)
37 #define CR_SMIE			BIT(19)
38 #define CR_TOIE			BIT(20)
39 #define CR_PRESC_MASK		GENMASK(31, 24)
40 
41 #define QSPI_DCR		0x04
42 #define DCR_FSIZE_MASK		GENMASK(20, 16)
43 
44 #define QSPI_SR			0x08
45 #define SR_TEF			BIT(0)
46 #define SR_TCF			BIT(1)
47 #define SR_FTF			BIT(2)
48 #define SR_SMF			BIT(3)
49 #define SR_TOF			BIT(4)
50 #define SR_BUSY			BIT(5)
51 #define SR_FLEVEL_MASK		GENMASK(13, 8)
52 
53 #define QSPI_FCR		0x0c
54 #define FCR_CTEF		BIT(0)
55 #define FCR_CTCF		BIT(1)
56 
57 #define QSPI_DLR		0x10
58 
59 #define QSPI_CCR		0x14
60 #define CCR_INST_MASK		GENMASK(7, 0)
61 #define CCR_IMODE_MASK		GENMASK(9, 8)
62 #define CCR_ADMODE_MASK		GENMASK(11, 10)
63 #define CCR_ADSIZE_MASK		GENMASK(13, 12)
64 #define CCR_DCYC_MASK		GENMASK(22, 18)
65 #define CCR_DMODE_MASK		GENMASK(25, 24)
66 #define CCR_FMODE_MASK		GENMASK(27, 26)
67 #define CCR_FMODE_INDW		(0U << 26)
68 #define CCR_FMODE_INDR		(1U << 26)
69 #define CCR_FMODE_APM		(2U << 26)
70 #define CCR_FMODE_MM		(3U << 26)
71 #define CCR_BUSWIDTH_0		0x0
72 #define CCR_BUSWIDTH_1		0x1
73 #define CCR_BUSWIDTH_2		0x2
74 #define CCR_BUSWIDTH_4		0x3
75 
76 #define QSPI_AR			0x18
77 #define QSPI_ABR		0x1c
78 #define QSPI_DR			0x20
79 #define QSPI_PSMKR		0x24
80 #define QSPI_PSMAR		0x28
81 #define QSPI_PIR		0x2c
82 #define QSPI_LPTR		0x30
83 
84 #define STM32_QSPI_MAX_MMAP_SZ	SZ_256M
85 #define STM32_QSPI_MAX_NORCHIP	2
86 
87 #define STM32_FIFO_TIMEOUT_US 30000
88 #define STM32_BUSY_TIMEOUT_US 100000
89 #define STM32_ABT_TIMEOUT_US 100000
90 #define STM32_COMP_TIMEOUT_MS 1000
91 #define STM32_AUTOSUSPEND_DELAY -1
92 
93 struct stm32_qspi_flash {
94 	struct stm32_qspi *qspi;
95 	u32 cs;
96 	u32 presc;
97 };
98 
99 struct stm32_qspi {
100 	struct device *dev;
101 	struct spi_controller *ctrl;
102 	phys_addr_t phys_base;
103 	void __iomem *io_base;
104 	void __iomem *mm_base;
105 	resource_size_t mm_size;
106 	struct clk *clk;
107 	u32 clk_rate;
108 	struct stm32_qspi_flash flash[STM32_QSPI_MAX_NORCHIP];
109 	struct completion data_completion;
110 	u32 fmode;
111 
112 	struct dma_chan *dma_chtx;
113 	struct dma_chan *dma_chrx;
114 	struct completion dma_completion;
115 
116 	u32 cr_reg;
117 	u32 dcr_reg;
118 
119 	/*
120 	 * to protect device configuration, could be different between
121 	 * 2 flash access (bk1, bk2)
122 	 */
123 	struct mutex lock;
124 };
125 
126 static irqreturn_t stm32_qspi_irq(int irq, void *dev_id)
127 {
128 	struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id;
129 	u32 cr, sr;
130 
131 	sr = readl_relaxed(qspi->io_base + QSPI_SR);
132 
133 	if (sr & (SR_TEF | SR_TCF)) {
134 		/* disable irq */
135 		cr = readl_relaxed(qspi->io_base + QSPI_CR);
136 		cr &= ~CR_TCIE & ~CR_TEIE;
137 		writel_relaxed(cr, qspi->io_base + QSPI_CR);
138 		complete(&qspi->data_completion);
139 	}
140 
141 	return IRQ_HANDLED;
142 }
143 
144 static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr)
145 {
146 	*val = readb_relaxed(addr);
147 }
148 
149 static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr)
150 {
151 	writeb_relaxed(*val, addr);
152 }
153 
154 static int stm32_qspi_tx_poll(struct stm32_qspi *qspi,
155 			      const struct spi_mem_op *op)
156 {
157 	void (*tx_fifo)(u8 *val, void __iomem *addr);
158 	u32 len = op->data.nbytes, sr;
159 	u8 *buf;
160 	int ret;
161 
162 	if (op->data.dir == SPI_MEM_DATA_IN) {
163 		tx_fifo = stm32_qspi_read_fifo;
164 		buf = op->data.buf.in;
165 
166 	} else {
167 		tx_fifo = stm32_qspi_write_fifo;
168 		buf = (u8 *)op->data.buf.out;
169 	}
170 
171 	while (len--) {
172 		ret = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR,
173 							sr, (sr & SR_FTF), 1,
174 							STM32_FIFO_TIMEOUT_US);
175 		if (ret) {
176 			dev_err(qspi->dev, "fifo timeout (len:%d stat:%#x)\n",
177 				len, sr);
178 			return ret;
179 		}
180 		tx_fifo(buf++, qspi->io_base + QSPI_DR);
181 	}
182 
183 	return 0;
184 }
185 
186 static int stm32_qspi_tx_mm(struct stm32_qspi *qspi,
187 			    const struct spi_mem_op *op)
188 {
189 	memcpy_fromio(op->data.buf.in, qspi->mm_base + op->addr.val,
190 		      op->data.nbytes);
191 	return 0;
192 }
193 
194 static void stm32_qspi_dma_callback(void *arg)
195 {
196 	struct completion *dma_completion = arg;
197 
198 	complete(dma_completion);
199 }
200 
201 static int stm32_qspi_tx_dma(struct stm32_qspi *qspi,
202 			     const struct spi_mem_op *op)
203 {
204 	struct dma_async_tx_descriptor *desc;
205 	enum dma_transfer_direction dma_dir;
206 	struct dma_chan *dma_ch;
207 	struct sg_table sgt;
208 	dma_cookie_t cookie;
209 	u32 cr, t_out;
210 	int err;
211 
212 	if (op->data.dir == SPI_MEM_DATA_IN) {
213 		dma_dir = DMA_DEV_TO_MEM;
214 		dma_ch = qspi->dma_chrx;
215 	} else {
216 		dma_dir = DMA_MEM_TO_DEV;
217 		dma_ch = qspi->dma_chtx;
218 	}
219 
220 	/*
221 	 * spi_map_buf return -EINVAL if the buffer is not DMA-able
222 	 * (DMA-able: in vmalloc | kmap | virt_addr_valid)
223 	 */
224 	err = spi_controller_dma_map_mem_op_data(qspi->ctrl, op, &sgt);
225 	if (err)
226 		return err;
227 
228 	desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents,
229 				       dma_dir, DMA_PREP_INTERRUPT);
230 	if (!desc) {
231 		err = -ENOMEM;
232 		goto out_unmap;
233 	}
234 
235 	cr = readl_relaxed(qspi->io_base + QSPI_CR);
236 
237 	reinit_completion(&qspi->dma_completion);
238 	desc->callback = stm32_qspi_dma_callback;
239 	desc->callback_param = &qspi->dma_completion;
240 	cookie = dmaengine_submit(desc);
241 	err = dma_submit_error(cookie);
242 	if (err)
243 		goto out;
244 
245 	dma_async_issue_pending(dma_ch);
246 
247 	writel_relaxed(cr | CR_DMAEN, qspi->io_base + QSPI_CR);
248 
249 	t_out = sgt.nents * STM32_COMP_TIMEOUT_MS;
250 	if (!wait_for_completion_timeout(&qspi->dma_completion,
251 					 msecs_to_jiffies(t_out)))
252 		err = -ETIMEDOUT;
253 
254 	if (err)
255 		dmaengine_terminate_all(dma_ch);
256 
257 out:
258 	writel_relaxed(cr & ~CR_DMAEN, qspi->io_base + QSPI_CR);
259 out_unmap:
260 	spi_controller_dma_unmap_mem_op_data(qspi->ctrl, op, &sgt);
261 
262 	return err;
263 }
264 
265 static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct spi_mem_op *op)
266 {
267 	if (!op->data.nbytes)
268 		return 0;
269 
270 	if (qspi->fmode == CCR_FMODE_MM)
271 		return stm32_qspi_tx_mm(qspi, op);
272 	else if (((op->data.dir == SPI_MEM_DATA_IN && qspi->dma_chrx) ||
273 		 (op->data.dir == SPI_MEM_DATA_OUT && qspi->dma_chtx)) &&
274 		  op->data.nbytes > 4)
275 		if (!stm32_qspi_tx_dma(qspi, op))
276 			return 0;
277 
278 	return stm32_qspi_tx_poll(qspi, op);
279 }
280 
281 static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi)
282 {
283 	u32 sr;
284 
285 	return readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr,
286 						 !(sr & SR_BUSY), 1,
287 						 STM32_BUSY_TIMEOUT_US);
288 }
289 
290 static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi,
291 			       const struct spi_mem_op *op)
292 {
293 	u32 cr, sr;
294 	int err = 0;
295 
296 	if (!op->data.nbytes)
297 		return stm32_qspi_wait_nobusy(qspi);
298 
299 	if (readl_relaxed(qspi->io_base + QSPI_SR) & SR_TCF)
300 		goto out;
301 
302 	reinit_completion(&qspi->data_completion);
303 	cr = readl_relaxed(qspi->io_base + QSPI_CR);
304 	writel_relaxed(cr | CR_TCIE | CR_TEIE, qspi->io_base + QSPI_CR);
305 
306 	if (!wait_for_completion_timeout(&qspi->data_completion,
307 				msecs_to_jiffies(STM32_COMP_TIMEOUT_MS))) {
308 		err = -ETIMEDOUT;
309 	} else {
310 		sr = readl_relaxed(qspi->io_base + QSPI_SR);
311 		if (sr & SR_TEF)
312 			err = -EIO;
313 	}
314 
315 out:
316 	/* clear flags */
317 	writel_relaxed(FCR_CTCF | FCR_CTEF, qspi->io_base + QSPI_FCR);
318 
319 	return err;
320 }
321 
322 static int stm32_qspi_get_mode(struct stm32_qspi *qspi, u8 buswidth)
323 {
324 	if (buswidth == 4)
325 		return CCR_BUSWIDTH_4;
326 
327 	return buswidth;
328 }
329 
330 static int stm32_qspi_send(struct spi_mem *mem, const struct spi_mem_op *op)
331 {
332 	struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
333 	struct stm32_qspi_flash *flash = &qspi->flash[mem->spi->chip_select];
334 	u32 ccr, cr;
335 	int timeout, err = 0;
336 
337 	dev_dbg(qspi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n",
338 		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
339 		op->dummy.buswidth, op->data.buswidth,
340 		op->addr.val, op->data.nbytes);
341 
342 	err = stm32_qspi_wait_nobusy(qspi);
343 	if (err)
344 		goto abort;
345 
346 	cr = readl_relaxed(qspi->io_base + QSPI_CR);
347 	cr &= ~CR_PRESC_MASK & ~CR_FSEL;
348 	cr |= FIELD_PREP(CR_PRESC_MASK, flash->presc);
349 	cr |= FIELD_PREP(CR_FSEL, flash->cs);
350 	writel_relaxed(cr, qspi->io_base + QSPI_CR);
351 
352 	if (op->data.nbytes)
353 		writel_relaxed(op->data.nbytes - 1,
354 			       qspi->io_base + QSPI_DLR);
355 
356 	ccr = qspi->fmode;
357 	ccr |= FIELD_PREP(CCR_INST_MASK, op->cmd.opcode);
358 	ccr |= FIELD_PREP(CCR_IMODE_MASK,
359 			  stm32_qspi_get_mode(qspi, op->cmd.buswidth));
360 
361 	if (op->addr.nbytes) {
362 		ccr |= FIELD_PREP(CCR_ADMODE_MASK,
363 				  stm32_qspi_get_mode(qspi, op->addr.buswidth));
364 		ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1);
365 	}
366 
367 	if (op->dummy.buswidth && op->dummy.nbytes)
368 		ccr |= FIELD_PREP(CCR_DCYC_MASK,
369 				  op->dummy.nbytes * 8 / op->dummy.buswidth);
370 
371 	if (op->data.nbytes) {
372 		ccr |= FIELD_PREP(CCR_DMODE_MASK,
373 				  stm32_qspi_get_mode(qspi, op->data.buswidth));
374 	}
375 
376 	writel_relaxed(ccr, qspi->io_base + QSPI_CCR);
377 
378 	if (op->addr.nbytes && qspi->fmode != CCR_FMODE_MM)
379 		writel_relaxed(op->addr.val, qspi->io_base + QSPI_AR);
380 
381 	err = stm32_qspi_tx(qspi, op);
382 
383 	/*
384 	 * Abort in:
385 	 * -error case
386 	 * -read memory map: prefetching must be stopped if we read the last
387 	 *  byte of device (device size - fifo size). like device size is not
388 	 *  knows, the prefetching is always stop.
389 	 */
390 	if (err || qspi->fmode == CCR_FMODE_MM)
391 		goto abort;
392 
393 	/* wait end of tx in indirect mode */
394 	err = stm32_qspi_wait_cmd(qspi, op);
395 	if (err)
396 		goto abort;
397 
398 	return 0;
399 
400 abort:
401 	cr = readl_relaxed(qspi->io_base + QSPI_CR) | CR_ABORT;
402 	writel_relaxed(cr, qspi->io_base + QSPI_CR);
403 
404 	/* wait clear of abort bit by hw */
405 	timeout = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_CR,
406 						    cr, !(cr & CR_ABORT), 1,
407 						    STM32_ABT_TIMEOUT_US);
408 
409 	writel_relaxed(FCR_CTCF, qspi->io_base + QSPI_FCR);
410 
411 	if (err || timeout)
412 		dev_err(qspi->dev, "%s err:%d abort timeout:%d\n",
413 			__func__, err, timeout);
414 
415 	return err;
416 }
417 
418 static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
419 {
420 	struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
421 	int ret;
422 
423 	ret = pm_runtime_get_sync(qspi->dev);
424 	if (ret < 0) {
425 		pm_runtime_put_noidle(qspi->dev);
426 		return ret;
427 	}
428 
429 	mutex_lock(&qspi->lock);
430 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes)
431 		qspi->fmode = CCR_FMODE_INDR;
432 	else
433 		qspi->fmode = CCR_FMODE_INDW;
434 
435 	ret = stm32_qspi_send(mem, op);
436 	mutex_unlock(&qspi->lock);
437 
438 	pm_runtime_mark_last_busy(qspi->dev);
439 	pm_runtime_put_autosuspend(qspi->dev);
440 
441 	return ret;
442 }
443 
444 static int stm32_qspi_dirmap_create(struct spi_mem_dirmap_desc *desc)
445 {
446 	struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->master);
447 
448 	if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT)
449 		return -EOPNOTSUPP;
450 
451 	/* should never happen, as mm_base == null is an error probe exit condition */
452 	if (!qspi->mm_base && desc->info.op_tmpl.data.dir == SPI_MEM_DATA_IN)
453 		return -EOPNOTSUPP;
454 
455 	if (!qspi->mm_size)
456 		return -EOPNOTSUPP;
457 
458 	return 0;
459 }
460 
461 static ssize_t stm32_qspi_dirmap_read(struct spi_mem_dirmap_desc *desc,
462 				      u64 offs, size_t len, void *buf)
463 {
464 	struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->master);
465 	struct spi_mem_op op;
466 	u32 addr_max;
467 	int ret;
468 
469 	ret = pm_runtime_get_sync(qspi->dev);
470 	if (ret < 0) {
471 		pm_runtime_put_noidle(qspi->dev);
472 		return ret;
473 	}
474 
475 	mutex_lock(&qspi->lock);
476 	/* make a local copy of desc op_tmpl and complete dirmap rdesc
477 	 * spi_mem_op template with offs, len and *buf in  order to get
478 	 * all needed transfer information into struct spi_mem_op
479 	 */
480 	memcpy(&op, &desc->info.op_tmpl, sizeof(struct spi_mem_op));
481 	dev_dbg(qspi->dev, "%s len = 0x%zx offs = 0x%llx buf = 0x%p\n", __func__, len, offs, buf);
482 
483 	op.data.nbytes = len;
484 	op.addr.val = desc->info.offset + offs;
485 	op.data.buf.in = buf;
486 
487 	addr_max = op.addr.val + op.data.nbytes + 1;
488 	if (addr_max < qspi->mm_size && op.addr.buswidth)
489 		qspi->fmode = CCR_FMODE_MM;
490 	else
491 		qspi->fmode = CCR_FMODE_INDR;
492 
493 	ret = stm32_qspi_send(desc->mem, &op);
494 	mutex_unlock(&qspi->lock);
495 
496 	pm_runtime_mark_last_busy(qspi->dev);
497 	pm_runtime_put_autosuspend(qspi->dev);
498 
499 	return ret ?: len;
500 }
501 
502 static int stm32_qspi_setup(struct spi_device *spi)
503 {
504 	struct spi_controller *ctrl = spi->master;
505 	struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl);
506 	struct stm32_qspi_flash *flash;
507 	u32 presc;
508 	int ret;
509 
510 	if (ctrl->busy)
511 		return -EBUSY;
512 
513 	if (!spi->max_speed_hz)
514 		return -EINVAL;
515 
516 	ret = pm_runtime_get_sync(qspi->dev);
517 	if (ret < 0) {
518 		pm_runtime_put_noidle(qspi->dev);
519 		return ret;
520 	}
521 
522 	presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1;
523 
524 	flash = &qspi->flash[spi->chip_select];
525 	flash->qspi = qspi;
526 	flash->cs = spi->chip_select;
527 	flash->presc = presc;
528 
529 	mutex_lock(&qspi->lock);
530 	qspi->cr_reg = 3 << CR_FTHRES_SHIFT | CR_SSHIFT | CR_EN;
531 	writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR);
532 
533 	/* set dcr fsize to max address */
534 	qspi->dcr_reg = DCR_FSIZE_MASK;
535 	writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
536 	mutex_unlock(&qspi->lock);
537 
538 	pm_runtime_mark_last_busy(qspi->dev);
539 	pm_runtime_put_autosuspend(qspi->dev);
540 
541 	return 0;
542 }
543 
544 static int stm32_qspi_dma_setup(struct stm32_qspi *qspi)
545 {
546 	struct dma_slave_config dma_cfg;
547 	struct device *dev = qspi->dev;
548 	int ret = 0;
549 
550 	memset(&dma_cfg, 0, sizeof(dma_cfg));
551 
552 	dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
553 	dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
554 	dma_cfg.src_addr = qspi->phys_base + QSPI_DR;
555 	dma_cfg.dst_addr = qspi->phys_base + QSPI_DR;
556 	dma_cfg.src_maxburst = 4;
557 	dma_cfg.dst_maxburst = 4;
558 
559 	qspi->dma_chrx = dma_request_chan(dev, "rx");
560 	if (IS_ERR(qspi->dma_chrx)) {
561 		ret = PTR_ERR(qspi->dma_chrx);
562 		qspi->dma_chrx = NULL;
563 		if (ret == -EPROBE_DEFER)
564 			goto out;
565 	} else {
566 		if (dmaengine_slave_config(qspi->dma_chrx, &dma_cfg)) {
567 			dev_err(dev, "dma rx config failed\n");
568 			dma_release_channel(qspi->dma_chrx);
569 			qspi->dma_chrx = NULL;
570 		}
571 	}
572 
573 	qspi->dma_chtx = dma_request_chan(dev, "tx");
574 	if (IS_ERR(qspi->dma_chtx)) {
575 		ret = PTR_ERR(qspi->dma_chtx);
576 		qspi->dma_chtx = NULL;
577 	} else {
578 		if (dmaengine_slave_config(qspi->dma_chtx, &dma_cfg)) {
579 			dev_err(dev, "dma tx config failed\n");
580 			dma_release_channel(qspi->dma_chtx);
581 			qspi->dma_chtx = NULL;
582 		}
583 	}
584 
585 out:
586 	init_completion(&qspi->dma_completion);
587 
588 	if (ret != -EPROBE_DEFER)
589 		ret = 0;
590 
591 	return ret;
592 }
593 
594 static void stm32_qspi_dma_free(struct stm32_qspi *qspi)
595 {
596 	if (qspi->dma_chtx)
597 		dma_release_channel(qspi->dma_chtx);
598 	if (qspi->dma_chrx)
599 		dma_release_channel(qspi->dma_chrx);
600 }
601 
602 /*
603  * no special host constraint, so use default spi_mem_default_supports_op
604  * to check supported mode.
605  */
606 static const struct spi_controller_mem_ops stm32_qspi_mem_ops = {
607 	.exec_op	= stm32_qspi_exec_op,
608 	.dirmap_create	= stm32_qspi_dirmap_create,
609 	.dirmap_read	= stm32_qspi_dirmap_read,
610 };
611 
612 static int stm32_qspi_probe(struct platform_device *pdev)
613 {
614 	struct device *dev = &pdev->dev;
615 	struct spi_controller *ctrl;
616 	struct reset_control *rstc;
617 	struct stm32_qspi *qspi;
618 	struct resource *res;
619 	int ret, irq;
620 
621 	ctrl = spi_alloc_master(dev, sizeof(*qspi));
622 	if (!ctrl)
623 		return -ENOMEM;
624 
625 	qspi = spi_controller_get_devdata(ctrl);
626 	qspi->ctrl = ctrl;
627 
628 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi");
629 	qspi->io_base = devm_ioremap_resource(dev, res);
630 	if (IS_ERR(qspi->io_base)) {
631 		ret = PTR_ERR(qspi->io_base);
632 		goto err_master_put;
633 	}
634 
635 	qspi->phys_base = res->start;
636 
637 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm");
638 	qspi->mm_base = devm_ioremap_resource(dev, res);
639 	if (IS_ERR(qspi->mm_base)) {
640 		ret = PTR_ERR(qspi->mm_base);
641 		goto err_master_put;
642 	}
643 
644 	qspi->mm_size = resource_size(res);
645 	if (qspi->mm_size > STM32_QSPI_MAX_MMAP_SZ) {
646 		ret = -EINVAL;
647 		goto err_master_put;
648 	}
649 
650 	irq = platform_get_irq(pdev, 0);
651 	if (irq < 0) {
652 		ret = irq;
653 		goto err_master_put;
654 	}
655 
656 	ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0,
657 			       dev_name(dev), qspi);
658 	if (ret) {
659 		dev_err(dev, "failed to request irq\n");
660 		goto err_master_put;
661 	}
662 
663 	init_completion(&qspi->data_completion);
664 
665 	qspi->clk = devm_clk_get(dev, NULL);
666 	if (IS_ERR(qspi->clk)) {
667 		ret = PTR_ERR(qspi->clk);
668 		goto err_master_put;
669 	}
670 
671 	qspi->clk_rate = clk_get_rate(qspi->clk);
672 	if (!qspi->clk_rate) {
673 		ret = -EINVAL;
674 		goto err_master_put;
675 	}
676 
677 	ret = clk_prepare_enable(qspi->clk);
678 	if (ret) {
679 		dev_err(dev, "can not enable the clock\n");
680 		goto err_master_put;
681 	}
682 
683 	rstc = devm_reset_control_get_exclusive(dev, NULL);
684 	if (IS_ERR(rstc)) {
685 		ret = PTR_ERR(rstc);
686 		if (ret == -EPROBE_DEFER)
687 			goto err_clk_disable;
688 	} else {
689 		reset_control_assert(rstc);
690 		udelay(2);
691 		reset_control_deassert(rstc);
692 	}
693 
694 	qspi->dev = dev;
695 	platform_set_drvdata(pdev, qspi);
696 	ret = stm32_qspi_dma_setup(qspi);
697 	if (ret)
698 		goto err_dma_free;
699 
700 	mutex_init(&qspi->lock);
701 
702 	ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD
703 		| SPI_TX_DUAL | SPI_TX_QUAD;
704 	ctrl->setup = stm32_qspi_setup;
705 	ctrl->bus_num = -1;
706 	ctrl->mem_ops = &stm32_qspi_mem_ops;
707 	ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP;
708 	ctrl->dev.of_node = dev->of_node;
709 
710 	pm_runtime_set_autosuspend_delay(dev, STM32_AUTOSUSPEND_DELAY);
711 	pm_runtime_use_autosuspend(dev);
712 	pm_runtime_set_active(dev);
713 	pm_runtime_enable(dev);
714 	pm_runtime_get_noresume(dev);
715 
716 	ret = devm_spi_register_master(dev, ctrl);
717 	if (ret)
718 		goto err_pm_runtime_free;
719 
720 	pm_runtime_mark_last_busy(dev);
721 	pm_runtime_put_autosuspend(dev);
722 
723 	return 0;
724 
725 err_pm_runtime_free:
726 	pm_runtime_get_sync(qspi->dev);
727 	/* disable qspi */
728 	writel_relaxed(0, qspi->io_base + QSPI_CR);
729 	mutex_destroy(&qspi->lock);
730 	pm_runtime_put_noidle(qspi->dev);
731 	pm_runtime_disable(qspi->dev);
732 	pm_runtime_set_suspended(qspi->dev);
733 	pm_runtime_dont_use_autosuspend(qspi->dev);
734 err_dma_free:
735 	stm32_qspi_dma_free(qspi);
736 err_clk_disable:
737 	clk_disable_unprepare(qspi->clk);
738 err_master_put:
739 	spi_master_put(qspi->ctrl);
740 
741 	return ret;
742 }
743 
744 static int stm32_qspi_remove(struct platform_device *pdev)
745 {
746 	struct stm32_qspi *qspi = platform_get_drvdata(pdev);
747 
748 	pm_runtime_get_sync(qspi->dev);
749 	/* disable qspi */
750 	writel_relaxed(0, qspi->io_base + QSPI_CR);
751 	stm32_qspi_dma_free(qspi);
752 	mutex_destroy(&qspi->lock);
753 	pm_runtime_put_noidle(qspi->dev);
754 	pm_runtime_disable(qspi->dev);
755 	pm_runtime_set_suspended(qspi->dev);
756 	pm_runtime_dont_use_autosuspend(qspi->dev);
757 	clk_disable_unprepare(qspi->clk);
758 
759 	return 0;
760 }
761 
762 static int __maybe_unused stm32_qspi_runtime_suspend(struct device *dev)
763 {
764 	struct stm32_qspi *qspi = dev_get_drvdata(dev);
765 
766 	clk_disable_unprepare(qspi->clk);
767 
768 	return 0;
769 }
770 
771 static int __maybe_unused stm32_qspi_runtime_resume(struct device *dev)
772 {
773 	struct stm32_qspi *qspi = dev_get_drvdata(dev);
774 
775 	return clk_prepare_enable(qspi->clk);
776 }
777 
778 static int __maybe_unused stm32_qspi_suspend(struct device *dev)
779 {
780 	pinctrl_pm_select_sleep_state(dev);
781 
782 	return pm_runtime_force_suspend(dev);
783 }
784 
785 static int __maybe_unused stm32_qspi_resume(struct device *dev)
786 {
787 	struct stm32_qspi *qspi = dev_get_drvdata(dev);
788 	int ret;
789 
790 	ret = pm_runtime_force_resume(dev);
791 	if (ret < 0)
792 		return ret;
793 
794 	pinctrl_pm_select_default_state(dev);
795 
796 	ret = pm_runtime_get_sync(dev);
797 	if (ret < 0) {
798 		pm_runtime_put_noidle(dev);
799 		return ret;
800 	}
801 
802 	writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR);
803 	writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
804 
805 	pm_runtime_mark_last_busy(dev);
806 	pm_runtime_put_autosuspend(dev);
807 
808 	return 0;
809 }
810 
811 static const struct dev_pm_ops stm32_qspi_pm_ops = {
812 	SET_RUNTIME_PM_OPS(stm32_qspi_runtime_suspend,
813 			   stm32_qspi_runtime_resume, NULL)
814 	SET_SYSTEM_SLEEP_PM_OPS(stm32_qspi_suspend, stm32_qspi_resume)
815 };
816 
817 static const struct of_device_id stm32_qspi_match[] = {
818 	{.compatible = "st,stm32f469-qspi"},
819 	{}
820 };
821 MODULE_DEVICE_TABLE(of, stm32_qspi_match);
822 
823 static struct platform_driver stm32_qspi_driver = {
824 	.probe	= stm32_qspi_probe,
825 	.remove	= stm32_qspi_remove,
826 	.driver	= {
827 		.name = "stm32-qspi",
828 		.of_match_table = stm32_qspi_match,
829 		.pm = &stm32_qspi_pm_ops,
830 	},
831 };
832 module_platform_driver(stm32_qspi_driver);
833 
834 MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>");
835 MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver");
836 MODULE_LICENSE("GPL v2");
837