1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved 4 * Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics. 5 */ 6 #include <linux/bitfield.h> 7 #include <linux/clk.h> 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/errno.h> 11 #include <linux/io.h> 12 #include <linux/iopoll.h> 13 #include <linux/interrupt.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/of.h> 17 #include <linux/of_device.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/platform_device.h> 21 #include <linux/reset.h> 22 #include <linux/sizes.h> 23 #include <linux/spi/spi-mem.h> 24 25 #define QSPI_CR 0x00 26 #define CR_EN BIT(0) 27 #define CR_ABORT BIT(1) 28 #define CR_DMAEN BIT(2) 29 #define CR_TCEN BIT(3) 30 #define CR_SSHIFT BIT(4) 31 #define CR_DFM BIT(6) 32 #define CR_FSEL BIT(7) 33 #define CR_FTHRES_SHIFT 8 34 #define CR_TEIE BIT(16) 35 #define CR_TCIE BIT(17) 36 #define CR_FTIE BIT(18) 37 #define CR_SMIE BIT(19) 38 #define CR_TOIE BIT(20) 39 #define CR_PRESC_MASK GENMASK(31, 24) 40 41 #define QSPI_DCR 0x04 42 #define DCR_FSIZE_MASK GENMASK(20, 16) 43 44 #define QSPI_SR 0x08 45 #define SR_TEF BIT(0) 46 #define SR_TCF BIT(1) 47 #define SR_FTF BIT(2) 48 #define SR_SMF BIT(3) 49 #define SR_TOF BIT(4) 50 #define SR_BUSY BIT(5) 51 #define SR_FLEVEL_MASK GENMASK(13, 8) 52 53 #define QSPI_FCR 0x0c 54 #define FCR_CTEF BIT(0) 55 #define FCR_CTCF BIT(1) 56 57 #define QSPI_DLR 0x10 58 59 #define QSPI_CCR 0x14 60 #define CCR_INST_MASK GENMASK(7, 0) 61 #define CCR_IMODE_MASK GENMASK(9, 8) 62 #define CCR_ADMODE_MASK GENMASK(11, 10) 63 #define CCR_ADSIZE_MASK GENMASK(13, 12) 64 #define CCR_DCYC_MASK GENMASK(22, 18) 65 #define CCR_DMODE_MASK GENMASK(25, 24) 66 #define CCR_FMODE_MASK GENMASK(27, 26) 67 #define CCR_FMODE_INDW (0U << 26) 68 #define CCR_FMODE_INDR (1U << 26) 69 #define CCR_FMODE_APM (2U << 26) 70 #define CCR_FMODE_MM (3U << 26) 71 #define CCR_BUSWIDTH_0 0x0 72 #define CCR_BUSWIDTH_1 0x1 73 #define CCR_BUSWIDTH_2 0x2 74 #define CCR_BUSWIDTH_4 0x3 75 76 #define QSPI_AR 0x18 77 #define QSPI_ABR 0x1c 78 #define QSPI_DR 0x20 79 #define QSPI_PSMKR 0x24 80 #define QSPI_PSMAR 0x28 81 #define QSPI_PIR 0x2c 82 #define QSPI_LPTR 0x30 83 84 #define STM32_QSPI_MAX_MMAP_SZ SZ_256M 85 #define STM32_QSPI_MAX_NORCHIP 2 86 87 #define STM32_FIFO_TIMEOUT_US 30000 88 #define STM32_BUSY_TIMEOUT_US 100000 89 #define STM32_ABT_TIMEOUT_US 100000 90 #define STM32_COMP_TIMEOUT_MS 1000 91 #define STM32_AUTOSUSPEND_DELAY -1 92 93 struct stm32_qspi_flash { 94 struct stm32_qspi *qspi; 95 u32 cs; 96 u32 presc; 97 }; 98 99 struct stm32_qspi { 100 struct device *dev; 101 struct spi_controller *ctrl; 102 phys_addr_t phys_base; 103 void __iomem *io_base; 104 void __iomem *mm_base; 105 resource_size_t mm_size; 106 struct clk *clk; 107 u32 clk_rate; 108 struct stm32_qspi_flash flash[STM32_QSPI_MAX_NORCHIP]; 109 struct completion data_completion; 110 u32 fmode; 111 112 struct dma_chan *dma_chtx; 113 struct dma_chan *dma_chrx; 114 struct completion dma_completion; 115 116 u32 cr_reg; 117 u32 dcr_reg; 118 119 /* 120 * to protect device configuration, could be different between 121 * 2 flash access (bk1, bk2) 122 */ 123 struct mutex lock; 124 }; 125 126 static irqreturn_t stm32_qspi_irq(int irq, void *dev_id) 127 { 128 struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id; 129 u32 cr, sr; 130 131 sr = readl_relaxed(qspi->io_base + QSPI_SR); 132 133 if (sr & (SR_TEF | SR_TCF)) { 134 /* disable irq */ 135 cr = readl_relaxed(qspi->io_base + QSPI_CR); 136 cr &= ~CR_TCIE & ~CR_TEIE; 137 writel_relaxed(cr, qspi->io_base + QSPI_CR); 138 complete(&qspi->data_completion); 139 } 140 141 return IRQ_HANDLED; 142 } 143 144 static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr) 145 { 146 *val = readb_relaxed(addr); 147 } 148 149 static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr) 150 { 151 writeb_relaxed(*val, addr); 152 } 153 154 static int stm32_qspi_tx_poll(struct stm32_qspi *qspi, 155 const struct spi_mem_op *op) 156 { 157 void (*tx_fifo)(u8 *val, void __iomem *addr); 158 u32 len = op->data.nbytes, sr; 159 u8 *buf; 160 int ret; 161 162 if (op->data.dir == SPI_MEM_DATA_IN) { 163 tx_fifo = stm32_qspi_read_fifo; 164 buf = op->data.buf.in; 165 166 } else { 167 tx_fifo = stm32_qspi_write_fifo; 168 buf = (u8 *)op->data.buf.out; 169 } 170 171 while (len--) { 172 ret = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, 173 sr, (sr & SR_FTF), 1, 174 STM32_FIFO_TIMEOUT_US); 175 if (ret) { 176 dev_err(qspi->dev, "fifo timeout (len:%d stat:%#x)\n", 177 len, sr); 178 return ret; 179 } 180 tx_fifo(buf++, qspi->io_base + QSPI_DR); 181 } 182 183 return 0; 184 } 185 186 static int stm32_qspi_tx_mm(struct stm32_qspi *qspi, 187 const struct spi_mem_op *op) 188 { 189 memcpy_fromio(op->data.buf.in, qspi->mm_base + op->addr.val, 190 op->data.nbytes); 191 return 0; 192 } 193 194 static void stm32_qspi_dma_callback(void *arg) 195 { 196 struct completion *dma_completion = arg; 197 198 complete(dma_completion); 199 } 200 201 static int stm32_qspi_tx_dma(struct stm32_qspi *qspi, 202 const struct spi_mem_op *op) 203 { 204 struct dma_async_tx_descriptor *desc; 205 enum dma_transfer_direction dma_dir; 206 struct dma_chan *dma_ch; 207 struct sg_table sgt; 208 dma_cookie_t cookie; 209 u32 cr, t_out; 210 int err; 211 212 if (op->data.dir == SPI_MEM_DATA_IN) { 213 dma_dir = DMA_DEV_TO_MEM; 214 dma_ch = qspi->dma_chrx; 215 } else { 216 dma_dir = DMA_MEM_TO_DEV; 217 dma_ch = qspi->dma_chtx; 218 } 219 220 /* 221 * spi_map_buf return -EINVAL if the buffer is not DMA-able 222 * (DMA-able: in vmalloc | kmap | virt_addr_valid) 223 */ 224 err = spi_controller_dma_map_mem_op_data(qspi->ctrl, op, &sgt); 225 if (err) 226 return err; 227 228 desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents, 229 dma_dir, DMA_PREP_INTERRUPT); 230 if (!desc) { 231 err = -ENOMEM; 232 goto out_unmap; 233 } 234 235 cr = readl_relaxed(qspi->io_base + QSPI_CR); 236 237 reinit_completion(&qspi->dma_completion); 238 desc->callback = stm32_qspi_dma_callback; 239 desc->callback_param = &qspi->dma_completion; 240 cookie = dmaengine_submit(desc); 241 err = dma_submit_error(cookie); 242 if (err) 243 goto out; 244 245 dma_async_issue_pending(dma_ch); 246 247 writel_relaxed(cr | CR_DMAEN, qspi->io_base + QSPI_CR); 248 249 t_out = sgt.nents * STM32_COMP_TIMEOUT_MS; 250 if (!wait_for_completion_timeout(&qspi->dma_completion, 251 msecs_to_jiffies(t_out))) 252 err = -ETIMEDOUT; 253 254 if (err) 255 dmaengine_terminate_all(dma_ch); 256 257 out: 258 writel_relaxed(cr & ~CR_DMAEN, qspi->io_base + QSPI_CR); 259 out_unmap: 260 spi_controller_dma_unmap_mem_op_data(qspi->ctrl, op, &sgt); 261 262 return err; 263 } 264 265 static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct spi_mem_op *op) 266 { 267 if (!op->data.nbytes) 268 return 0; 269 270 if (qspi->fmode == CCR_FMODE_MM) 271 return stm32_qspi_tx_mm(qspi, op); 272 else if ((op->data.dir == SPI_MEM_DATA_IN && qspi->dma_chrx) || 273 (op->data.dir == SPI_MEM_DATA_OUT && qspi->dma_chtx)) 274 if (!stm32_qspi_tx_dma(qspi, op)) 275 return 0; 276 277 return stm32_qspi_tx_poll(qspi, op); 278 } 279 280 static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi) 281 { 282 u32 sr; 283 284 return readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr, 285 !(sr & SR_BUSY), 1, 286 STM32_BUSY_TIMEOUT_US); 287 } 288 289 static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi, 290 const struct spi_mem_op *op) 291 { 292 u32 cr, sr; 293 int err = 0; 294 295 if (!op->data.nbytes) 296 return stm32_qspi_wait_nobusy(qspi); 297 298 if (readl_relaxed(qspi->io_base + QSPI_SR) & SR_TCF) 299 goto out; 300 301 reinit_completion(&qspi->data_completion); 302 cr = readl_relaxed(qspi->io_base + QSPI_CR); 303 writel_relaxed(cr | CR_TCIE | CR_TEIE, qspi->io_base + QSPI_CR); 304 305 if (!wait_for_completion_timeout(&qspi->data_completion, 306 msecs_to_jiffies(STM32_COMP_TIMEOUT_MS))) { 307 err = -ETIMEDOUT; 308 } else { 309 sr = readl_relaxed(qspi->io_base + QSPI_SR); 310 if (sr & SR_TEF) 311 err = -EIO; 312 } 313 314 out: 315 /* clear flags */ 316 writel_relaxed(FCR_CTCF | FCR_CTEF, qspi->io_base + QSPI_FCR); 317 318 return err; 319 } 320 321 static int stm32_qspi_get_mode(struct stm32_qspi *qspi, u8 buswidth) 322 { 323 if (buswidth == 4) 324 return CCR_BUSWIDTH_4; 325 326 return buswidth; 327 } 328 329 static int stm32_qspi_send(struct spi_mem *mem, const struct spi_mem_op *op) 330 { 331 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master); 332 struct stm32_qspi_flash *flash = &qspi->flash[mem->spi->chip_select]; 333 u32 ccr, cr, addr_max; 334 int timeout, err = 0; 335 336 dev_dbg(qspi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n", 337 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, 338 op->dummy.buswidth, op->data.buswidth, 339 op->addr.val, op->data.nbytes); 340 341 err = stm32_qspi_wait_nobusy(qspi); 342 if (err) 343 goto abort; 344 345 addr_max = op->addr.val + op->data.nbytes + 1; 346 347 if (op->data.dir == SPI_MEM_DATA_IN) { 348 if (addr_max < qspi->mm_size && 349 op->addr.buswidth) 350 qspi->fmode = CCR_FMODE_MM; 351 else 352 qspi->fmode = CCR_FMODE_INDR; 353 } else { 354 qspi->fmode = CCR_FMODE_INDW; 355 } 356 357 cr = readl_relaxed(qspi->io_base + QSPI_CR); 358 cr &= ~CR_PRESC_MASK & ~CR_FSEL; 359 cr |= FIELD_PREP(CR_PRESC_MASK, flash->presc); 360 cr |= FIELD_PREP(CR_FSEL, flash->cs); 361 writel_relaxed(cr, qspi->io_base + QSPI_CR); 362 363 if (op->data.nbytes) 364 writel_relaxed(op->data.nbytes - 1, 365 qspi->io_base + QSPI_DLR); 366 else 367 qspi->fmode = CCR_FMODE_INDW; 368 369 ccr = qspi->fmode; 370 ccr |= FIELD_PREP(CCR_INST_MASK, op->cmd.opcode); 371 ccr |= FIELD_PREP(CCR_IMODE_MASK, 372 stm32_qspi_get_mode(qspi, op->cmd.buswidth)); 373 374 if (op->addr.nbytes) { 375 ccr |= FIELD_PREP(CCR_ADMODE_MASK, 376 stm32_qspi_get_mode(qspi, op->addr.buswidth)); 377 ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1); 378 } 379 380 if (op->dummy.buswidth && op->dummy.nbytes) 381 ccr |= FIELD_PREP(CCR_DCYC_MASK, 382 op->dummy.nbytes * 8 / op->dummy.buswidth); 383 384 if (op->data.nbytes) { 385 ccr |= FIELD_PREP(CCR_DMODE_MASK, 386 stm32_qspi_get_mode(qspi, op->data.buswidth)); 387 } 388 389 writel_relaxed(ccr, qspi->io_base + QSPI_CCR); 390 391 if (op->addr.nbytes && qspi->fmode != CCR_FMODE_MM) 392 writel_relaxed(op->addr.val, qspi->io_base + QSPI_AR); 393 394 err = stm32_qspi_tx(qspi, op); 395 396 /* 397 * Abort in: 398 * -error case 399 * -read memory map: prefetching must be stopped if we read the last 400 * byte of device (device size - fifo size). like device size is not 401 * knows, the prefetching is always stop. 402 */ 403 if (err || qspi->fmode == CCR_FMODE_MM) 404 goto abort; 405 406 /* wait end of tx in indirect mode */ 407 err = stm32_qspi_wait_cmd(qspi, op); 408 if (err) 409 goto abort; 410 411 return 0; 412 413 abort: 414 cr = readl_relaxed(qspi->io_base + QSPI_CR) | CR_ABORT; 415 writel_relaxed(cr, qspi->io_base + QSPI_CR); 416 417 /* wait clear of abort bit by hw */ 418 timeout = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_CR, 419 cr, !(cr & CR_ABORT), 1, 420 STM32_ABT_TIMEOUT_US); 421 422 writel_relaxed(FCR_CTCF, qspi->io_base + QSPI_FCR); 423 424 if (err || timeout) 425 dev_err(qspi->dev, "%s err:%d abort timeout:%d\n", 426 __func__, err, timeout); 427 428 return err; 429 } 430 431 static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 432 { 433 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master); 434 int ret; 435 436 ret = pm_runtime_get_sync(qspi->dev); 437 if (ret < 0) 438 return ret; 439 440 mutex_lock(&qspi->lock); 441 ret = stm32_qspi_send(mem, op); 442 mutex_unlock(&qspi->lock); 443 444 pm_runtime_mark_last_busy(qspi->dev); 445 pm_runtime_put_autosuspend(qspi->dev); 446 447 return ret; 448 } 449 450 static int stm32_qspi_setup(struct spi_device *spi) 451 { 452 struct spi_controller *ctrl = spi->master; 453 struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl); 454 struct stm32_qspi_flash *flash; 455 u32 presc; 456 int ret; 457 458 if (ctrl->busy) 459 return -EBUSY; 460 461 if (!spi->max_speed_hz) 462 return -EINVAL; 463 464 ret = pm_runtime_get_sync(qspi->dev); 465 if (ret < 0) 466 return ret; 467 468 presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1; 469 470 flash = &qspi->flash[spi->chip_select]; 471 flash->qspi = qspi; 472 flash->cs = spi->chip_select; 473 flash->presc = presc; 474 475 mutex_lock(&qspi->lock); 476 qspi->cr_reg = 3 << CR_FTHRES_SHIFT | CR_SSHIFT | CR_EN; 477 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR); 478 479 /* set dcr fsize to max address */ 480 qspi->dcr_reg = DCR_FSIZE_MASK; 481 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); 482 mutex_unlock(&qspi->lock); 483 484 pm_runtime_mark_last_busy(qspi->dev); 485 pm_runtime_put_autosuspend(qspi->dev); 486 487 return 0; 488 } 489 490 static int stm32_qspi_dma_setup(struct stm32_qspi *qspi) 491 { 492 struct dma_slave_config dma_cfg; 493 struct device *dev = qspi->dev; 494 int ret = 0; 495 496 memset(&dma_cfg, 0, sizeof(dma_cfg)); 497 498 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 499 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 500 dma_cfg.src_addr = qspi->phys_base + QSPI_DR; 501 dma_cfg.dst_addr = qspi->phys_base + QSPI_DR; 502 dma_cfg.src_maxburst = 4; 503 dma_cfg.dst_maxburst = 4; 504 505 qspi->dma_chrx = dma_request_chan(dev, "rx"); 506 if (IS_ERR(qspi->dma_chrx)) { 507 ret = PTR_ERR(qspi->dma_chrx); 508 qspi->dma_chrx = NULL; 509 if (ret == -EPROBE_DEFER) 510 goto out; 511 } else { 512 if (dmaengine_slave_config(qspi->dma_chrx, &dma_cfg)) { 513 dev_err(dev, "dma rx config failed\n"); 514 dma_release_channel(qspi->dma_chrx); 515 qspi->dma_chrx = NULL; 516 } 517 } 518 519 qspi->dma_chtx = dma_request_chan(dev, "tx"); 520 if (IS_ERR(qspi->dma_chtx)) { 521 ret = PTR_ERR(qspi->dma_chtx); 522 qspi->dma_chtx = NULL; 523 } else { 524 if (dmaengine_slave_config(qspi->dma_chtx, &dma_cfg)) { 525 dev_err(dev, "dma tx config failed\n"); 526 dma_release_channel(qspi->dma_chtx); 527 qspi->dma_chtx = NULL; 528 } 529 } 530 531 out: 532 init_completion(&qspi->dma_completion); 533 534 if (ret != -EPROBE_DEFER) 535 ret = 0; 536 537 return ret; 538 } 539 540 static void stm32_qspi_dma_free(struct stm32_qspi *qspi) 541 { 542 if (qspi->dma_chtx) 543 dma_release_channel(qspi->dma_chtx); 544 if (qspi->dma_chrx) 545 dma_release_channel(qspi->dma_chrx); 546 } 547 548 /* 549 * no special host constraint, so use default spi_mem_default_supports_op 550 * to check supported mode. 551 */ 552 static const struct spi_controller_mem_ops stm32_qspi_mem_ops = { 553 .exec_op = stm32_qspi_exec_op, 554 }; 555 556 static void stm32_qspi_release(struct stm32_qspi *qspi) 557 { 558 pm_runtime_get_sync(qspi->dev); 559 /* disable qspi */ 560 writel_relaxed(0, qspi->io_base + QSPI_CR); 561 stm32_qspi_dma_free(qspi); 562 mutex_destroy(&qspi->lock); 563 pm_runtime_put_noidle(qspi->dev); 564 pm_runtime_disable(qspi->dev); 565 pm_runtime_set_suspended(qspi->dev); 566 pm_runtime_dont_use_autosuspend(qspi->dev); 567 clk_disable_unprepare(qspi->clk); 568 } 569 570 static int stm32_qspi_probe(struct platform_device *pdev) 571 { 572 struct device *dev = &pdev->dev; 573 struct spi_controller *ctrl; 574 struct reset_control *rstc; 575 struct stm32_qspi *qspi; 576 struct resource *res; 577 int ret, irq; 578 579 ctrl = spi_alloc_master(dev, sizeof(*qspi)); 580 if (!ctrl) 581 return -ENOMEM; 582 583 qspi = spi_controller_get_devdata(ctrl); 584 qspi->ctrl = ctrl; 585 586 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi"); 587 qspi->io_base = devm_ioremap_resource(dev, res); 588 if (IS_ERR(qspi->io_base)) { 589 ret = PTR_ERR(qspi->io_base); 590 goto err_master_put; 591 } 592 593 qspi->phys_base = res->start; 594 595 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm"); 596 qspi->mm_base = devm_ioremap_resource(dev, res); 597 if (IS_ERR(qspi->mm_base)) { 598 ret = PTR_ERR(qspi->mm_base); 599 goto err_master_put; 600 } 601 602 qspi->mm_size = resource_size(res); 603 if (qspi->mm_size > STM32_QSPI_MAX_MMAP_SZ) { 604 ret = -EINVAL; 605 goto err_master_put; 606 } 607 608 irq = platform_get_irq(pdev, 0); 609 if (irq < 0) { 610 ret = irq; 611 goto err_master_put; 612 } 613 614 ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0, 615 dev_name(dev), qspi); 616 if (ret) { 617 dev_err(dev, "failed to request irq\n"); 618 goto err_master_put; 619 } 620 621 init_completion(&qspi->data_completion); 622 623 qspi->clk = devm_clk_get(dev, NULL); 624 if (IS_ERR(qspi->clk)) { 625 ret = PTR_ERR(qspi->clk); 626 goto err_master_put; 627 } 628 629 qspi->clk_rate = clk_get_rate(qspi->clk); 630 if (!qspi->clk_rate) { 631 ret = -EINVAL; 632 goto err_master_put; 633 } 634 635 ret = clk_prepare_enable(qspi->clk); 636 if (ret) { 637 dev_err(dev, "can not enable the clock\n"); 638 goto err_master_put; 639 } 640 641 rstc = devm_reset_control_get_exclusive(dev, NULL); 642 if (IS_ERR(rstc)) { 643 ret = PTR_ERR(rstc); 644 if (ret == -EPROBE_DEFER) 645 goto err_qspi_release; 646 } else { 647 reset_control_assert(rstc); 648 udelay(2); 649 reset_control_deassert(rstc); 650 } 651 652 qspi->dev = dev; 653 platform_set_drvdata(pdev, qspi); 654 ret = stm32_qspi_dma_setup(qspi); 655 if (ret) 656 goto err_qspi_release; 657 658 mutex_init(&qspi->lock); 659 660 ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD 661 | SPI_TX_DUAL | SPI_TX_QUAD; 662 ctrl->setup = stm32_qspi_setup; 663 ctrl->bus_num = -1; 664 ctrl->mem_ops = &stm32_qspi_mem_ops; 665 ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP; 666 ctrl->dev.of_node = dev->of_node; 667 668 pm_runtime_set_autosuspend_delay(dev, STM32_AUTOSUSPEND_DELAY); 669 pm_runtime_use_autosuspend(dev); 670 pm_runtime_set_active(dev); 671 pm_runtime_enable(dev); 672 pm_runtime_get_noresume(dev); 673 674 ret = devm_spi_register_master(dev, ctrl); 675 if (ret) 676 goto err_qspi_release; 677 678 pm_runtime_mark_last_busy(dev); 679 pm_runtime_put_autosuspend(dev); 680 681 return 0; 682 683 err_qspi_release: 684 stm32_qspi_release(qspi); 685 err_master_put: 686 spi_master_put(qspi->ctrl); 687 688 return ret; 689 } 690 691 static int stm32_qspi_remove(struct platform_device *pdev) 692 { 693 struct stm32_qspi *qspi = platform_get_drvdata(pdev); 694 695 stm32_qspi_release(qspi); 696 697 return 0; 698 } 699 700 static int __maybe_unused stm32_qspi_runtime_suspend(struct device *dev) 701 { 702 struct stm32_qspi *qspi = dev_get_drvdata(dev); 703 704 clk_disable_unprepare(qspi->clk); 705 706 return 0; 707 } 708 709 static int __maybe_unused stm32_qspi_runtime_resume(struct device *dev) 710 { 711 struct stm32_qspi *qspi = dev_get_drvdata(dev); 712 713 return clk_prepare_enable(qspi->clk); 714 } 715 716 static int __maybe_unused stm32_qspi_suspend(struct device *dev) 717 { 718 pinctrl_pm_select_sleep_state(dev); 719 720 return 0; 721 } 722 723 static int __maybe_unused stm32_qspi_resume(struct device *dev) 724 { 725 struct stm32_qspi *qspi = dev_get_drvdata(dev); 726 727 pinctrl_pm_select_default_state(dev); 728 clk_prepare_enable(qspi->clk); 729 730 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR); 731 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); 732 733 pm_runtime_mark_last_busy(qspi->dev); 734 pm_runtime_put_autosuspend(qspi->dev); 735 736 return 0; 737 } 738 739 static const struct dev_pm_ops stm32_qspi_pm_ops = { 740 SET_RUNTIME_PM_OPS(stm32_qspi_runtime_suspend, 741 stm32_qspi_runtime_resume, NULL) 742 SET_SYSTEM_SLEEP_PM_OPS(stm32_qspi_suspend, stm32_qspi_resume) 743 }; 744 745 static const struct of_device_id stm32_qspi_match[] = { 746 {.compatible = "st,stm32f469-qspi"}, 747 {} 748 }; 749 MODULE_DEVICE_TABLE(of, stm32_qspi_match); 750 751 static struct platform_driver stm32_qspi_driver = { 752 .probe = stm32_qspi_probe, 753 .remove = stm32_qspi_remove, 754 .driver = { 755 .name = "stm32-qspi", 756 .of_match_table = stm32_qspi_match, 757 .pm = &stm32_qspi_pm_ops, 758 }, 759 }; 760 module_platform_driver(stm32_qspi_driver); 761 762 MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>"); 763 MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver"); 764 MODULE_LICENSE("GPL v2"); 765