1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved 4 * Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics. 5 */ 6 #include <linux/bitfield.h> 7 #include <linux/clk.h> 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/errno.h> 11 #include <linux/io.h> 12 #include <linux/iopoll.h> 13 #include <linux/interrupt.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/of.h> 17 #include <linux/of_device.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/platform_device.h> 21 #include <linux/reset.h> 22 #include <linux/sizes.h> 23 #include <linux/spi/spi-mem.h> 24 25 #define QSPI_CR 0x00 26 #define CR_EN BIT(0) 27 #define CR_ABORT BIT(1) 28 #define CR_DMAEN BIT(2) 29 #define CR_TCEN BIT(3) 30 #define CR_SSHIFT BIT(4) 31 #define CR_DFM BIT(6) 32 #define CR_FSEL BIT(7) 33 #define CR_FTHRES_SHIFT 8 34 #define CR_TEIE BIT(16) 35 #define CR_TCIE BIT(17) 36 #define CR_FTIE BIT(18) 37 #define CR_SMIE BIT(19) 38 #define CR_TOIE BIT(20) 39 #define CR_APMS BIT(22) 40 #define CR_PRESC_MASK GENMASK(31, 24) 41 42 #define QSPI_DCR 0x04 43 #define DCR_FSIZE_MASK GENMASK(20, 16) 44 45 #define QSPI_SR 0x08 46 #define SR_TEF BIT(0) 47 #define SR_TCF BIT(1) 48 #define SR_FTF BIT(2) 49 #define SR_SMF BIT(3) 50 #define SR_TOF BIT(4) 51 #define SR_BUSY BIT(5) 52 #define SR_FLEVEL_MASK GENMASK(13, 8) 53 54 #define QSPI_FCR 0x0c 55 #define FCR_CTEF BIT(0) 56 #define FCR_CTCF BIT(1) 57 #define FCR_CSMF BIT(3) 58 59 #define QSPI_DLR 0x10 60 61 #define QSPI_CCR 0x14 62 #define CCR_INST_MASK GENMASK(7, 0) 63 #define CCR_IMODE_MASK GENMASK(9, 8) 64 #define CCR_ADMODE_MASK GENMASK(11, 10) 65 #define CCR_ADSIZE_MASK GENMASK(13, 12) 66 #define CCR_DCYC_MASK GENMASK(22, 18) 67 #define CCR_DMODE_MASK GENMASK(25, 24) 68 #define CCR_FMODE_MASK GENMASK(27, 26) 69 #define CCR_FMODE_INDW (0U << 26) 70 #define CCR_FMODE_INDR (1U << 26) 71 #define CCR_FMODE_APM (2U << 26) 72 #define CCR_FMODE_MM (3U << 26) 73 #define CCR_BUSWIDTH_0 0x0 74 #define CCR_BUSWIDTH_1 0x1 75 #define CCR_BUSWIDTH_2 0x2 76 #define CCR_BUSWIDTH_4 0x3 77 78 #define QSPI_AR 0x18 79 #define QSPI_ABR 0x1c 80 #define QSPI_DR 0x20 81 #define QSPI_PSMKR 0x24 82 #define QSPI_PSMAR 0x28 83 #define QSPI_PIR 0x2c 84 #define QSPI_LPTR 0x30 85 86 #define STM32_QSPI_MAX_MMAP_SZ SZ_256M 87 #define STM32_QSPI_MAX_NORCHIP 2 88 89 #define STM32_FIFO_TIMEOUT_US 30000 90 #define STM32_BUSY_TIMEOUT_US 100000 91 #define STM32_ABT_TIMEOUT_US 100000 92 #define STM32_COMP_TIMEOUT_MS 1000 93 #define STM32_AUTOSUSPEND_DELAY -1 94 95 struct stm32_qspi_flash { 96 u32 cs; 97 u32 presc; 98 }; 99 100 struct stm32_qspi { 101 struct device *dev; 102 struct spi_controller *ctrl; 103 phys_addr_t phys_base; 104 void __iomem *io_base; 105 void __iomem *mm_base; 106 resource_size_t mm_size; 107 struct clk *clk; 108 u32 clk_rate; 109 struct stm32_qspi_flash flash[STM32_QSPI_MAX_NORCHIP]; 110 struct completion data_completion; 111 struct completion match_completion; 112 u32 fmode; 113 114 struct dma_chan *dma_chtx; 115 struct dma_chan *dma_chrx; 116 struct completion dma_completion; 117 118 u32 cr_reg; 119 u32 dcr_reg; 120 unsigned long status_timeout; 121 122 /* 123 * to protect device configuration, could be different between 124 * 2 flash access (bk1, bk2) 125 */ 126 struct mutex lock; 127 }; 128 129 static irqreturn_t stm32_qspi_irq(int irq, void *dev_id) 130 { 131 struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id; 132 u32 cr, sr; 133 134 cr = readl_relaxed(qspi->io_base + QSPI_CR); 135 sr = readl_relaxed(qspi->io_base + QSPI_SR); 136 137 if (cr & CR_SMIE && sr & SR_SMF) { 138 /* disable irq */ 139 cr &= ~CR_SMIE; 140 writel_relaxed(cr, qspi->io_base + QSPI_CR); 141 complete(&qspi->match_completion); 142 143 return IRQ_HANDLED; 144 } 145 146 if (sr & (SR_TEF | SR_TCF)) { 147 /* disable irq */ 148 cr &= ~CR_TCIE & ~CR_TEIE; 149 writel_relaxed(cr, qspi->io_base + QSPI_CR); 150 complete(&qspi->data_completion); 151 } 152 153 return IRQ_HANDLED; 154 } 155 156 static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr) 157 { 158 *val = readb_relaxed(addr); 159 } 160 161 static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr) 162 { 163 writeb_relaxed(*val, addr); 164 } 165 166 static int stm32_qspi_tx_poll(struct stm32_qspi *qspi, 167 const struct spi_mem_op *op) 168 { 169 void (*tx_fifo)(u8 *val, void __iomem *addr); 170 u32 len = op->data.nbytes, sr; 171 u8 *buf; 172 int ret; 173 174 if (op->data.dir == SPI_MEM_DATA_IN) { 175 tx_fifo = stm32_qspi_read_fifo; 176 buf = op->data.buf.in; 177 178 } else { 179 tx_fifo = stm32_qspi_write_fifo; 180 buf = (u8 *)op->data.buf.out; 181 } 182 183 while (len--) { 184 ret = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, 185 sr, (sr & SR_FTF), 1, 186 STM32_FIFO_TIMEOUT_US); 187 if (ret) { 188 dev_err(qspi->dev, "fifo timeout (len:%d stat:%#x)\n", 189 len, sr); 190 return ret; 191 } 192 tx_fifo(buf++, qspi->io_base + QSPI_DR); 193 } 194 195 return 0; 196 } 197 198 static int stm32_qspi_tx_mm(struct stm32_qspi *qspi, 199 const struct spi_mem_op *op) 200 { 201 memcpy_fromio(op->data.buf.in, qspi->mm_base + op->addr.val, 202 op->data.nbytes); 203 return 0; 204 } 205 206 static void stm32_qspi_dma_callback(void *arg) 207 { 208 struct completion *dma_completion = arg; 209 210 complete(dma_completion); 211 } 212 213 static int stm32_qspi_tx_dma(struct stm32_qspi *qspi, 214 const struct spi_mem_op *op) 215 { 216 struct dma_async_tx_descriptor *desc; 217 enum dma_transfer_direction dma_dir; 218 struct dma_chan *dma_ch; 219 struct sg_table sgt; 220 dma_cookie_t cookie; 221 u32 cr, t_out; 222 int err; 223 224 if (op->data.dir == SPI_MEM_DATA_IN) { 225 dma_dir = DMA_DEV_TO_MEM; 226 dma_ch = qspi->dma_chrx; 227 } else { 228 dma_dir = DMA_MEM_TO_DEV; 229 dma_ch = qspi->dma_chtx; 230 } 231 232 /* 233 * spi_map_buf return -EINVAL if the buffer is not DMA-able 234 * (DMA-able: in vmalloc | kmap | virt_addr_valid) 235 */ 236 err = spi_controller_dma_map_mem_op_data(qspi->ctrl, op, &sgt); 237 if (err) 238 return err; 239 240 desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents, 241 dma_dir, DMA_PREP_INTERRUPT); 242 if (!desc) { 243 err = -ENOMEM; 244 goto out_unmap; 245 } 246 247 cr = readl_relaxed(qspi->io_base + QSPI_CR); 248 249 reinit_completion(&qspi->dma_completion); 250 desc->callback = stm32_qspi_dma_callback; 251 desc->callback_param = &qspi->dma_completion; 252 cookie = dmaengine_submit(desc); 253 err = dma_submit_error(cookie); 254 if (err) 255 goto out; 256 257 dma_async_issue_pending(dma_ch); 258 259 writel_relaxed(cr | CR_DMAEN, qspi->io_base + QSPI_CR); 260 261 t_out = sgt.nents * STM32_COMP_TIMEOUT_MS; 262 if (!wait_for_completion_timeout(&qspi->dma_completion, 263 msecs_to_jiffies(t_out))) 264 err = -ETIMEDOUT; 265 266 if (err) 267 dmaengine_terminate_all(dma_ch); 268 269 out: 270 writel_relaxed(cr & ~CR_DMAEN, qspi->io_base + QSPI_CR); 271 out_unmap: 272 spi_controller_dma_unmap_mem_op_data(qspi->ctrl, op, &sgt); 273 274 return err; 275 } 276 277 static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct spi_mem_op *op) 278 { 279 if (!op->data.nbytes) 280 return 0; 281 282 if (qspi->fmode == CCR_FMODE_MM) 283 return stm32_qspi_tx_mm(qspi, op); 284 else if (((op->data.dir == SPI_MEM_DATA_IN && qspi->dma_chrx) || 285 (op->data.dir == SPI_MEM_DATA_OUT && qspi->dma_chtx)) && 286 op->data.nbytes > 4) 287 if (!stm32_qspi_tx_dma(qspi, op)) 288 return 0; 289 290 return stm32_qspi_tx_poll(qspi, op); 291 } 292 293 static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi) 294 { 295 u32 sr; 296 297 return readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr, 298 !(sr & SR_BUSY), 1, 299 STM32_BUSY_TIMEOUT_US); 300 } 301 302 static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi, 303 const struct spi_mem_op *op) 304 { 305 u32 cr, sr; 306 int err = 0; 307 308 if (!op->data.nbytes) 309 goto wait_nobusy; 310 311 if (readl_relaxed(qspi->io_base + QSPI_SR) & SR_TCF) 312 goto out; 313 314 reinit_completion(&qspi->data_completion); 315 cr = readl_relaxed(qspi->io_base + QSPI_CR); 316 writel_relaxed(cr | CR_TCIE | CR_TEIE, qspi->io_base + QSPI_CR); 317 318 if (!wait_for_completion_timeout(&qspi->data_completion, 319 msecs_to_jiffies(STM32_COMP_TIMEOUT_MS))) { 320 err = -ETIMEDOUT; 321 } else { 322 sr = readl_relaxed(qspi->io_base + QSPI_SR); 323 if (sr & SR_TEF) 324 err = -EIO; 325 } 326 327 out: 328 /* clear flags */ 329 writel_relaxed(FCR_CTCF | FCR_CTEF, qspi->io_base + QSPI_FCR); 330 wait_nobusy: 331 if (!err) 332 err = stm32_qspi_wait_nobusy(qspi); 333 334 return err; 335 } 336 337 static int stm32_qspi_wait_poll_status(struct stm32_qspi *qspi, 338 const struct spi_mem_op *op) 339 { 340 u32 cr; 341 342 reinit_completion(&qspi->match_completion); 343 cr = readl_relaxed(qspi->io_base + QSPI_CR); 344 writel_relaxed(cr | CR_SMIE, qspi->io_base + QSPI_CR); 345 346 if (!wait_for_completion_timeout(&qspi->match_completion, 347 msecs_to_jiffies(qspi->status_timeout))) 348 return -ETIMEDOUT; 349 350 writel_relaxed(FCR_CSMF, qspi->io_base + QSPI_FCR); 351 352 return 0; 353 } 354 355 static int stm32_qspi_get_mode(struct stm32_qspi *qspi, u8 buswidth) 356 { 357 if (buswidth == 4) 358 return CCR_BUSWIDTH_4; 359 360 return buswidth; 361 } 362 363 static int stm32_qspi_send(struct spi_mem *mem, const struct spi_mem_op *op) 364 { 365 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master); 366 struct stm32_qspi_flash *flash = &qspi->flash[mem->spi->chip_select]; 367 u32 ccr, cr; 368 int timeout, err = 0, err_poll_status = 0; 369 370 dev_dbg(qspi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n", 371 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, 372 op->dummy.buswidth, op->data.buswidth, 373 op->addr.val, op->data.nbytes); 374 375 err = stm32_qspi_wait_nobusy(qspi); 376 if (err) 377 goto abort; 378 379 cr = readl_relaxed(qspi->io_base + QSPI_CR); 380 cr &= ~CR_PRESC_MASK & ~CR_FSEL; 381 cr |= FIELD_PREP(CR_PRESC_MASK, flash->presc); 382 cr |= FIELD_PREP(CR_FSEL, flash->cs); 383 writel_relaxed(cr, qspi->io_base + QSPI_CR); 384 385 if (op->data.nbytes) 386 writel_relaxed(op->data.nbytes - 1, 387 qspi->io_base + QSPI_DLR); 388 389 ccr = qspi->fmode; 390 ccr |= FIELD_PREP(CCR_INST_MASK, op->cmd.opcode); 391 ccr |= FIELD_PREP(CCR_IMODE_MASK, 392 stm32_qspi_get_mode(qspi, op->cmd.buswidth)); 393 394 if (op->addr.nbytes) { 395 ccr |= FIELD_PREP(CCR_ADMODE_MASK, 396 stm32_qspi_get_mode(qspi, op->addr.buswidth)); 397 ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1); 398 } 399 400 if (op->dummy.nbytes) 401 ccr |= FIELD_PREP(CCR_DCYC_MASK, 402 op->dummy.nbytes * 8 / op->dummy.buswidth); 403 404 if (op->data.nbytes) { 405 ccr |= FIELD_PREP(CCR_DMODE_MASK, 406 stm32_qspi_get_mode(qspi, op->data.buswidth)); 407 } 408 409 writel_relaxed(ccr, qspi->io_base + QSPI_CCR); 410 411 if (op->addr.nbytes && qspi->fmode != CCR_FMODE_MM) 412 writel_relaxed(op->addr.val, qspi->io_base + QSPI_AR); 413 414 if (qspi->fmode == CCR_FMODE_APM) 415 err_poll_status = stm32_qspi_wait_poll_status(qspi, op); 416 417 err = stm32_qspi_tx(qspi, op); 418 419 /* 420 * Abort in: 421 * -error case 422 * -read memory map: prefetching must be stopped if we read the last 423 * byte of device (device size - fifo size). like device size is not 424 * knows, the prefetching is always stop. 425 */ 426 if (err || err_poll_status || qspi->fmode == CCR_FMODE_MM) 427 goto abort; 428 429 /* wait end of tx in indirect mode */ 430 err = stm32_qspi_wait_cmd(qspi, op); 431 if (err) 432 goto abort; 433 434 return 0; 435 436 abort: 437 cr = readl_relaxed(qspi->io_base + QSPI_CR) | CR_ABORT; 438 writel_relaxed(cr, qspi->io_base + QSPI_CR); 439 440 /* wait clear of abort bit by hw */ 441 timeout = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_CR, 442 cr, !(cr & CR_ABORT), 1, 443 STM32_ABT_TIMEOUT_US); 444 445 writel_relaxed(FCR_CTCF | FCR_CSMF, qspi->io_base + QSPI_FCR); 446 447 if (err || err_poll_status || timeout) 448 dev_err(qspi->dev, "%s err:%d err_poll_status:%d abort timeout:%d\n", 449 __func__, err, err_poll_status, timeout); 450 451 return err; 452 } 453 454 static int stm32_qspi_poll_status(struct spi_mem *mem, const struct spi_mem_op *op, 455 u16 mask, u16 match, 456 unsigned long initial_delay_us, 457 unsigned long polling_rate_us, 458 unsigned long timeout_ms) 459 { 460 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master); 461 int ret; 462 463 if (!spi_mem_supports_op(mem, op)) 464 return -EOPNOTSUPP; 465 466 ret = pm_runtime_get_sync(qspi->dev); 467 if (ret < 0) { 468 pm_runtime_put_noidle(qspi->dev); 469 return ret; 470 } 471 472 mutex_lock(&qspi->lock); 473 474 writel_relaxed(mask, qspi->io_base + QSPI_PSMKR); 475 writel_relaxed(match, qspi->io_base + QSPI_PSMAR); 476 qspi->fmode = CCR_FMODE_APM; 477 qspi->status_timeout = timeout_ms; 478 479 ret = stm32_qspi_send(mem, op); 480 mutex_unlock(&qspi->lock); 481 482 pm_runtime_mark_last_busy(qspi->dev); 483 pm_runtime_put_autosuspend(qspi->dev); 484 485 return ret; 486 } 487 488 static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 489 { 490 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master); 491 int ret; 492 493 ret = pm_runtime_get_sync(qspi->dev); 494 if (ret < 0) { 495 pm_runtime_put_noidle(qspi->dev); 496 return ret; 497 } 498 499 mutex_lock(&qspi->lock); 500 if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes) 501 qspi->fmode = CCR_FMODE_INDR; 502 else 503 qspi->fmode = CCR_FMODE_INDW; 504 505 ret = stm32_qspi_send(mem, op); 506 mutex_unlock(&qspi->lock); 507 508 pm_runtime_mark_last_busy(qspi->dev); 509 pm_runtime_put_autosuspend(qspi->dev); 510 511 return ret; 512 } 513 514 static int stm32_qspi_dirmap_create(struct spi_mem_dirmap_desc *desc) 515 { 516 struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->master); 517 518 if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT) 519 return -EOPNOTSUPP; 520 521 /* should never happen, as mm_base == null is an error probe exit condition */ 522 if (!qspi->mm_base && desc->info.op_tmpl.data.dir == SPI_MEM_DATA_IN) 523 return -EOPNOTSUPP; 524 525 if (!qspi->mm_size) 526 return -EOPNOTSUPP; 527 528 return 0; 529 } 530 531 static ssize_t stm32_qspi_dirmap_read(struct spi_mem_dirmap_desc *desc, 532 u64 offs, size_t len, void *buf) 533 { 534 struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->master); 535 struct spi_mem_op op; 536 u32 addr_max; 537 int ret; 538 539 ret = pm_runtime_get_sync(qspi->dev); 540 if (ret < 0) { 541 pm_runtime_put_noidle(qspi->dev); 542 return ret; 543 } 544 545 mutex_lock(&qspi->lock); 546 /* make a local copy of desc op_tmpl and complete dirmap rdesc 547 * spi_mem_op template with offs, len and *buf in order to get 548 * all needed transfer information into struct spi_mem_op 549 */ 550 memcpy(&op, &desc->info.op_tmpl, sizeof(struct spi_mem_op)); 551 dev_dbg(qspi->dev, "%s len = 0x%zx offs = 0x%llx buf = 0x%p\n", __func__, len, offs, buf); 552 553 op.data.nbytes = len; 554 op.addr.val = desc->info.offset + offs; 555 op.data.buf.in = buf; 556 557 addr_max = op.addr.val + op.data.nbytes + 1; 558 if (addr_max < qspi->mm_size && op.addr.buswidth) 559 qspi->fmode = CCR_FMODE_MM; 560 else 561 qspi->fmode = CCR_FMODE_INDR; 562 563 ret = stm32_qspi_send(desc->mem, &op); 564 mutex_unlock(&qspi->lock); 565 566 pm_runtime_mark_last_busy(qspi->dev); 567 pm_runtime_put_autosuspend(qspi->dev); 568 569 return ret ?: len; 570 } 571 572 static int stm32_qspi_setup(struct spi_device *spi) 573 { 574 struct spi_controller *ctrl = spi->master; 575 struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl); 576 struct stm32_qspi_flash *flash; 577 u32 presc; 578 int ret; 579 580 if (ctrl->busy) 581 return -EBUSY; 582 583 if (!spi->max_speed_hz) 584 return -EINVAL; 585 586 ret = pm_runtime_get_sync(qspi->dev); 587 if (ret < 0) { 588 pm_runtime_put_noidle(qspi->dev); 589 return ret; 590 } 591 592 presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1; 593 594 flash = &qspi->flash[spi->chip_select]; 595 flash->cs = spi->chip_select; 596 flash->presc = presc; 597 598 mutex_lock(&qspi->lock); 599 qspi->cr_reg = CR_APMS | 3 << CR_FTHRES_SHIFT | CR_SSHIFT | CR_EN; 600 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR); 601 602 /* set dcr fsize to max address */ 603 qspi->dcr_reg = DCR_FSIZE_MASK; 604 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); 605 mutex_unlock(&qspi->lock); 606 607 pm_runtime_mark_last_busy(qspi->dev); 608 pm_runtime_put_autosuspend(qspi->dev); 609 610 return 0; 611 } 612 613 static int stm32_qspi_dma_setup(struct stm32_qspi *qspi) 614 { 615 struct dma_slave_config dma_cfg; 616 struct device *dev = qspi->dev; 617 int ret = 0; 618 619 memset(&dma_cfg, 0, sizeof(dma_cfg)); 620 621 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 622 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 623 dma_cfg.src_addr = qspi->phys_base + QSPI_DR; 624 dma_cfg.dst_addr = qspi->phys_base + QSPI_DR; 625 dma_cfg.src_maxburst = 4; 626 dma_cfg.dst_maxburst = 4; 627 628 qspi->dma_chrx = dma_request_chan(dev, "rx"); 629 if (IS_ERR(qspi->dma_chrx)) { 630 ret = PTR_ERR(qspi->dma_chrx); 631 qspi->dma_chrx = NULL; 632 if (ret == -EPROBE_DEFER) 633 goto out; 634 } else { 635 if (dmaengine_slave_config(qspi->dma_chrx, &dma_cfg)) { 636 dev_err(dev, "dma rx config failed\n"); 637 dma_release_channel(qspi->dma_chrx); 638 qspi->dma_chrx = NULL; 639 } 640 } 641 642 qspi->dma_chtx = dma_request_chan(dev, "tx"); 643 if (IS_ERR(qspi->dma_chtx)) { 644 ret = PTR_ERR(qspi->dma_chtx); 645 qspi->dma_chtx = NULL; 646 } else { 647 if (dmaengine_slave_config(qspi->dma_chtx, &dma_cfg)) { 648 dev_err(dev, "dma tx config failed\n"); 649 dma_release_channel(qspi->dma_chtx); 650 qspi->dma_chtx = NULL; 651 } 652 } 653 654 out: 655 init_completion(&qspi->dma_completion); 656 657 if (ret != -EPROBE_DEFER) 658 ret = 0; 659 660 return ret; 661 } 662 663 static void stm32_qspi_dma_free(struct stm32_qspi *qspi) 664 { 665 if (qspi->dma_chtx) 666 dma_release_channel(qspi->dma_chtx); 667 if (qspi->dma_chrx) 668 dma_release_channel(qspi->dma_chrx); 669 } 670 671 /* 672 * no special host constraint, so use default spi_mem_default_supports_op 673 * to check supported mode. 674 */ 675 static const struct spi_controller_mem_ops stm32_qspi_mem_ops = { 676 .exec_op = stm32_qspi_exec_op, 677 .dirmap_create = stm32_qspi_dirmap_create, 678 .dirmap_read = stm32_qspi_dirmap_read, 679 .poll_status = stm32_qspi_poll_status, 680 }; 681 682 static int stm32_qspi_probe(struct platform_device *pdev) 683 { 684 struct device *dev = &pdev->dev; 685 struct spi_controller *ctrl; 686 struct reset_control *rstc; 687 struct stm32_qspi *qspi; 688 struct resource *res; 689 int ret, irq; 690 691 ctrl = spi_alloc_master(dev, sizeof(*qspi)); 692 if (!ctrl) 693 return -ENOMEM; 694 695 qspi = spi_controller_get_devdata(ctrl); 696 qspi->ctrl = ctrl; 697 698 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi"); 699 qspi->io_base = devm_ioremap_resource(dev, res); 700 if (IS_ERR(qspi->io_base)) { 701 ret = PTR_ERR(qspi->io_base); 702 goto err_master_put; 703 } 704 705 qspi->phys_base = res->start; 706 707 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm"); 708 qspi->mm_base = devm_ioremap_resource(dev, res); 709 if (IS_ERR(qspi->mm_base)) { 710 ret = PTR_ERR(qspi->mm_base); 711 goto err_master_put; 712 } 713 714 qspi->mm_size = resource_size(res); 715 if (qspi->mm_size > STM32_QSPI_MAX_MMAP_SZ) { 716 ret = -EINVAL; 717 goto err_master_put; 718 } 719 720 irq = platform_get_irq(pdev, 0); 721 if (irq < 0) { 722 ret = irq; 723 goto err_master_put; 724 } 725 726 ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0, 727 dev_name(dev), qspi); 728 if (ret) { 729 dev_err(dev, "failed to request irq\n"); 730 goto err_master_put; 731 } 732 733 init_completion(&qspi->data_completion); 734 init_completion(&qspi->match_completion); 735 736 qspi->clk = devm_clk_get(dev, NULL); 737 if (IS_ERR(qspi->clk)) { 738 ret = PTR_ERR(qspi->clk); 739 goto err_master_put; 740 } 741 742 qspi->clk_rate = clk_get_rate(qspi->clk); 743 if (!qspi->clk_rate) { 744 ret = -EINVAL; 745 goto err_master_put; 746 } 747 748 ret = clk_prepare_enable(qspi->clk); 749 if (ret) { 750 dev_err(dev, "can not enable the clock\n"); 751 goto err_master_put; 752 } 753 754 rstc = devm_reset_control_get_exclusive(dev, NULL); 755 if (IS_ERR(rstc)) { 756 ret = PTR_ERR(rstc); 757 if (ret == -EPROBE_DEFER) 758 goto err_clk_disable; 759 } else { 760 reset_control_assert(rstc); 761 udelay(2); 762 reset_control_deassert(rstc); 763 } 764 765 qspi->dev = dev; 766 platform_set_drvdata(pdev, qspi); 767 ret = stm32_qspi_dma_setup(qspi); 768 if (ret) 769 goto err_dma_free; 770 771 mutex_init(&qspi->lock); 772 773 ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD 774 | SPI_TX_DUAL | SPI_TX_QUAD; 775 ctrl->setup = stm32_qspi_setup; 776 ctrl->bus_num = -1; 777 ctrl->mem_ops = &stm32_qspi_mem_ops; 778 ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP; 779 ctrl->dev.of_node = dev->of_node; 780 781 pm_runtime_set_autosuspend_delay(dev, STM32_AUTOSUSPEND_DELAY); 782 pm_runtime_use_autosuspend(dev); 783 pm_runtime_set_active(dev); 784 pm_runtime_enable(dev); 785 pm_runtime_get_noresume(dev); 786 787 ret = devm_spi_register_master(dev, ctrl); 788 if (ret) 789 goto err_pm_runtime_free; 790 791 pm_runtime_mark_last_busy(dev); 792 pm_runtime_put_autosuspend(dev); 793 794 return 0; 795 796 err_pm_runtime_free: 797 pm_runtime_get_sync(qspi->dev); 798 /* disable qspi */ 799 writel_relaxed(0, qspi->io_base + QSPI_CR); 800 mutex_destroy(&qspi->lock); 801 pm_runtime_put_noidle(qspi->dev); 802 pm_runtime_disable(qspi->dev); 803 pm_runtime_set_suspended(qspi->dev); 804 pm_runtime_dont_use_autosuspend(qspi->dev); 805 err_dma_free: 806 stm32_qspi_dma_free(qspi); 807 err_clk_disable: 808 clk_disable_unprepare(qspi->clk); 809 err_master_put: 810 spi_master_put(qspi->ctrl); 811 812 return ret; 813 } 814 815 static int stm32_qspi_remove(struct platform_device *pdev) 816 { 817 struct stm32_qspi *qspi = platform_get_drvdata(pdev); 818 819 pm_runtime_get_sync(qspi->dev); 820 /* disable qspi */ 821 writel_relaxed(0, qspi->io_base + QSPI_CR); 822 stm32_qspi_dma_free(qspi); 823 mutex_destroy(&qspi->lock); 824 pm_runtime_put_noidle(qspi->dev); 825 pm_runtime_disable(qspi->dev); 826 pm_runtime_set_suspended(qspi->dev); 827 pm_runtime_dont_use_autosuspend(qspi->dev); 828 clk_disable_unprepare(qspi->clk); 829 830 return 0; 831 } 832 833 static int __maybe_unused stm32_qspi_runtime_suspend(struct device *dev) 834 { 835 struct stm32_qspi *qspi = dev_get_drvdata(dev); 836 837 clk_disable_unprepare(qspi->clk); 838 839 return 0; 840 } 841 842 static int __maybe_unused stm32_qspi_runtime_resume(struct device *dev) 843 { 844 struct stm32_qspi *qspi = dev_get_drvdata(dev); 845 846 return clk_prepare_enable(qspi->clk); 847 } 848 849 static int __maybe_unused stm32_qspi_suspend(struct device *dev) 850 { 851 pinctrl_pm_select_sleep_state(dev); 852 853 return pm_runtime_force_suspend(dev); 854 } 855 856 static int __maybe_unused stm32_qspi_resume(struct device *dev) 857 { 858 struct stm32_qspi *qspi = dev_get_drvdata(dev); 859 int ret; 860 861 ret = pm_runtime_force_resume(dev); 862 if (ret < 0) 863 return ret; 864 865 pinctrl_pm_select_default_state(dev); 866 867 ret = pm_runtime_get_sync(dev); 868 if (ret < 0) { 869 pm_runtime_put_noidle(dev); 870 return ret; 871 } 872 873 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR); 874 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); 875 876 pm_runtime_mark_last_busy(dev); 877 pm_runtime_put_autosuspend(dev); 878 879 return 0; 880 } 881 882 static const struct dev_pm_ops stm32_qspi_pm_ops = { 883 SET_RUNTIME_PM_OPS(stm32_qspi_runtime_suspend, 884 stm32_qspi_runtime_resume, NULL) 885 SET_SYSTEM_SLEEP_PM_OPS(stm32_qspi_suspend, stm32_qspi_resume) 886 }; 887 888 static const struct of_device_id stm32_qspi_match[] = { 889 {.compatible = "st,stm32f469-qspi"}, 890 {} 891 }; 892 MODULE_DEVICE_TABLE(of, stm32_qspi_match); 893 894 static struct platform_driver stm32_qspi_driver = { 895 .probe = stm32_qspi_probe, 896 .remove = stm32_qspi_remove, 897 .driver = { 898 .name = "stm32-qspi", 899 .of_match_table = stm32_qspi_match, 900 .pm = &stm32_qspi_pm_ops, 901 }, 902 }; 903 module_platform_driver(stm32_qspi_driver); 904 905 MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>"); 906 MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver"); 907 MODULE_LICENSE("GPL v2"); 908