xref: /openbmc/linux/drivers/spi/spi-sprd.c (revision b737eecd)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Spreadtrum Communications Inc.
3 
4 #include <linux/clk.h>
5 #include <linux/dmaengine.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/dma/sprd-dma.h>
8 #include <linux/interrupt.h>
9 #include <linux/io.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/of_dma.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/spi/spi.h>
19 
20 #define SPRD_SPI_TXD			0x0
21 #define SPRD_SPI_CLKD			0x4
22 #define SPRD_SPI_CTL0			0x8
23 #define SPRD_SPI_CTL1			0xc
24 #define SPRD_SPI_CTL2			0x10
25 #define SPRD_SPI_CTL3			0x14
26 #define SPRD_SPI_CTL4			0x18
27 #define SPRD_SPI_CTL5			0x1c
28 #define SPRD_SPI_INT_EN			0x20
29 #define SPRD_SPI_INT_CLR		0x24
30 #define SPRD_SPI_INT_RAW_STS		0x28
31 #define SPRD_SPI_INT_MASK_STS		0x2c
32 #define SPRD_SPI_STS1			0x30
33 #define SPRD_SPI_STS2			0x34
34 #define SPRD_SPI_DSP_WAIT		0x38
35 #define SPRD_SPI_STS3			0x3c
36 #define SPRD_SPI_CTL6			0x40
37 #define SPRD_SPI_STS4			0x44
38 #define SPRD_SPI_FIFO_RST		0x48
39 #define SPRD_SPI_CTL7			0x4c
40 #define SPRD_SPI_STS5			0x50
41 #define SPRD_SPI_CTL8			0x54
42 #define SPRD_SPI_CTL9			0x58
43 #define SPRD_SPI_CTL10			0x5c
44 #define SPRD_SPI_CTL11			0x60
45 #define SPRD_SPI_CTL12			0x64
46 #define SPRD_SPI_STS6			0x68
47 #define SPRD_SPI_STS7			0x6c
48 #define SPRD_SPI_STS8			0x70
49 #define SPRD_SPI_STS9			0x74
50 
51 /* Bits & mask definition for register CTL0 */
52 #define SPRD_SPI_SCK_REV		BIT(13)
53 #define SPRD_SPI_NG_TX			BIT(1)
54 #define SPRD_SPI_NG_RX			BIT(0)
55 #define SPRD_SPI_CHNL_LEN_MASK		GENMASK(4, 0)
56 #define SPRD_SPI_CSN_MASK		GENMASK(11, 8)
57 #define SPRD_SPI_CS0_VALID		BIT(8)
58 
59 /* Bits & mask definition for register SPI_INT_EN */
60 #define SPRD_SPI_TX_END_INT_EN		BIT(8)
61 #define SPRD_SPI_RX_END_INT_EN		BIT(9)
62 
63 /* Bits & mask definition for register SPI_INT_RAW_STS */
64 #define SPRD_SPI_TX_END_RAW		BIT(8)
65 #define SPRD_SPI_RX_END_RAW		BIT(9)
66 
67 /* Bits & mask definition for register SPI_INT_CLR */
68 #define SPRD_SPI_TX_END_CLR		BIT(8)
69 #define SPRD_SPI_RX_END_CLR		BIT(9)
70 
71 /* Bits & mask definition for register INT_MASK_STS */
72 #define SPRD_SPI_MASK_RX_END		BIT(9)
73 #define SPRD_SPI_MASK_TX_END		BIT(8)
74 
75 /* Bits & mask definition for register STS2 */
76 #define SPRD_SPI_TX_BUSY		BIT(8)
77 
78 /* Bits & mask definition for register CTL1 */
79 #define SPRD_SPI_RX_MODE		BIT(12)
80 #define SPRD_SPI_TX_MODE		BIT(13)
81 #define SPRD_SPI_RTX_MD_MASK		GENMASK(13, 12)
82 
83 /* Bits & mask definition for register CTL2 */
84 #define SPRD_SPI_DMA_EN			BIT(6)
85 
86 /* Bits & mask definition for register CTL4 */
87 #define SPRD_SPI_START_RX		BIT(9)
88 #define SPRD_SPI_ONLY_RECV_MASK		GENMASK(8, 0)
89 
90 /* Bits & mask definition for register SPI_INT_CLR */
91 #define SPRD_SPI_RX_END_INT_CLR		BIT(9)
92 #define SPRD_SPI_TX_END_INT_CLR		BIT(8)
93 
94 /* Bits & mask definition for register SPI_INT_RAW */
95 #define SPRD_SPI_RX_END_IRQ		BIT(9)
96 #define SPRD_SPI_TX_END_IRQ		BIT(8)
97 
98 /* Bits & mask definition for register CTL12 */
99 #define SPRD_SPI_SW_RX_REQ		BIT(0)
100 #define SPRD_SPI_SW_TX_REQ		BIT(1)
101 
102 /* Bits & mask definition for register CTL7 */
103 #define SPRD_SPI_DATA_LINE2_EN		BIT(15)
104 #define SPRD_SPI_MODE_MASK		GENMASK(5, 3)
105 #define SPRD_SPI_MODE_OFFSET		3
106 #define SPRD_SPI_3WIRE_MODE		4
107 #define SPRD_SPI_4WIRE_MODE		0
108 
109 /* Bits & mask definition for register CTL8 */
110 #define SPRD_SPI_TX_MAX_LEN_MASK	GENMASK(19, 0)
111 #define SPRD_SPI_TX_LEN_H_MASK		GENMASK(3, 0)
112 #define SPRD_SPI_TX_LEN_H_OFFSET	16
113 
114 /* Bits & mask definition for register CTL9 */
115 #define SPRD_SPI_TX_LEN_L_MASK		GENMASK(15, 0)
116 
117 /* Bits & mask definition for register CTL10 */
118 #define SPRD_SPI_RX_MAX_LEN_MASK	GENMASK(19, 0)
119 #define SPRD_SPI_RX_LEN_H_MASK		GENMASK(3, 0)
120 #define SPRD_SPI_RX_LEN_H_OFFSET	16
121 
122 /* Bits & mask definition for register CTL11 */
123 #define SPRD_SPI_RX_LEN_L_MASK		GENMASK(15, 0)
124 
125 /* Default & maximum word delay cycles */
126 #define SPRD_SPI_MIN_DELAY_CYCLE	14
127 #define SPRD_SPI_MAX_DELAY_CYCLE	130
128 
129 #define SPRD_SPI_FIFO_SIZE		32
130 #define SPRD_SPI_CHIP_CS_NUM		0x4
131 #define SPRD_SPI_CHNL_LEN		2
132 #define SPRD_SPI_DEFAULT_SOURCE		26000000
133 #define SPRD_SPI_MAX_SPEED_HZ		48000000
134 #define SPRD_SPI_AUTOSUSPEND_DELAY	100
135 #define SPRD_SPI_DMA_STEP		8
136 
137 enum sprd_spi_dma_channel {
138 	SPRD_SPI_RX,
139 	SPRD_SPI_TX,
140 	SPRD_SPI_MAX,
141 };
142 
143 struct sprd_spi_dma {
144 	bool enable;
145 	struct dma_chan *dma_chan[SPRD_SPI_MAX];
146 	enum dma_slave_buswidth width;
147 	u32 fragmens_len;
148 	u32 rx_len;
149 };
150 
151 struct sprd_spi {
152 	void __iomem *base;
153 	phys_addr_t phy_base;
154 	struct device *dev;
155 	struct clk *clk;
156 	int irq;
157 	u32 src_clk;
158 	u32 hw_mode;
159 	u32 trans_len;
160 	u32 trans_mode;
161 	u32 word_delay;
162 	u32 hw_speed_hz;
163 	u32 len;
164 	int status;
165 	struct sprd_spi_dma dma;
166 	struct completion xfer_completion;
167 	const void *tx_buf;
168 	void *rx_buf;
169 	int (*read_bufs)(struct sprd_spi *ss, u32 len);
170 	int (*write_bufs)(struct sprd_spi *ss, u32 len);
171 };
172 
173 static u32 sprd_spi_transfer_max_timeout(struct sprd_spi *ss,
174 					 struct spi_transfer *t)
175 {
176 	/*
177 	 * The time spent on transmission of the full FIFO data is the maximum
178 	 * SPI transmission time.
179 	 */
180 	u32 size = t->bits_per_word * SPRD_SPI_FIFO_SIZE;
181 	u32 bit_time_us = DIV_ROUND_UP(USEC_PER_SEC, ss->hw_speed_hz);
182 	u32 total_time_us = size * bit_time_us;
183 	/*
184 	 * There is an interval between data and the data in our SPI hardware,
185 	 * so the total transmission time need add the interval time.
186 	 */
187 	u32 interval_cycle = SPRD_SPI_FIFO_SIZE * ss->word_delay;
188 	u32 interval_time_us = DIV_ROUND_UP(interval_cycle * USEC_PER_SEC,
189 					    ss->src_clk);
190 
191 	return total_time_us + interval_time_us;
192 }
193 
194 static int sprd_spi_wait_for_tx_end(struct sprd_spi *ss, struct spi_transfer *t)
195 {
196 	u32 val, us;
197 	int ret;
198 
199 	us = sprd_spi_transfer_max_timeout(ss, t);
200 	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
201 					 val & SPRD_SPI_TX_END_IRQ, 0, us);
202 	if (ret) {
203 		dev_err(ss->dev, "SPI error, spi send timeout!\n");
204 		return ret;
205 	}
206 
207 	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_STS2, val,
208 					 !(val & SPRD_SPI_TX_BUSY), 0, us);
209 	if (ret) {
210 		dev_err(ss->dev, "SPI error, spi busy timeout!\n");
211 		return ret;
212 	}
213 
214 	writel_relaxed(SPRD_SPI_TX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
215 
216 	return 0;
217 }
218 
219 static int sprd_spi_wait_for_rx_end(struct sprd_spi *ss, struct spi_transfer *t)
220 {
221 	u32 val, us;
222 	int ret;
223 
224 	us = sprd_spi_transfer_max_timeout(ss, t);
225 	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
226 					 val & SPRD_SPI_RX_END_IRQ, 0, us);
227 	if (ret) {
228 		dev_err(ss->dev, "SPI error, spi rx timeout!\n");
229 		return ret;
230 	}
231 
232 	writel_relaxed(SPRD_SPI_RX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
233 
234 	return 0;
235 }
236 
237 static void sprd_spi_tx_req(struct sprd_spi *ss)
238 {
239 	writel_relaxed(SPRD_SPI_SW_TX_REQ, ss->base + SPRD_SPI_CTL12);
240 }
241 
242 static void sprd_spi_rx_req(struct sprd_spi *ss)
243 {
244 	writel_relaxed(SPRD_SPI_SW_RX_REQ, ss->base + SPRD_SPI_CTL12);
245 }
246 
247 static void sprd_spi_enter_idle(struct sprd_spi *ss)
248 {
249 	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
250 
251 	val &= ~SPRD_SPI_RTX_MD_MASK;
252 	writel_relaxed(val, ss->base + SPRD_SPI_CTL1);
253 }
254 
255 static void sprd_spi_set_transfer_bits(struct sprd_spi *ss, u32 bits)
256 {
257 	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
258 
259 	/* Set the valid bits for every transaction */
260 	val &= ~(SPRD_SPI_CHNL_LEN_MASK << SPRD_SPI_CHNL_LEN);
261 	val |= bits << SPRD_SPI_CHNL_LEN;
262 	writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
263 }
264 
265 static void sprd_spi_set_tx_length(struct sprd_spi *ss, u32 length)
266 {
267 	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL8);
268 
269 	length &= SPRD_SPI_TX_MAX_LEN_MASK;
270 	val &= ~SPRD_SPI_TX_LEN_H_MASK;
271 	val |= length >> SPRD_SPI_TX_LEN_H_OFFSET;
272 	writel_relaxed(val, ss->base + SPRD_SPI_CTL8);
273 
274 	val = length & SPRD_SPI_TX_LEN_L_MASK;
275 	writel_relaxed(val, ss->base + SPRD_SPI_CTL9);
276 }
277 
278 static void sprd_spi_set_rx_length(struct sprd_spi *ss, u32 length)
279 {
280 	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL10);
281 
282 	length &= SPRD_SPI_RX_MAX_LEN_MASK;
283 	val &= ~SPRD_SPI_RX_LEN_H_MASK;
284 	val |= length >> SPRD_SPI_RX_LEN_H_OFFSET;
285 	writel_relaxed(val, ss->base + SPRD_SPI_CTL10);
286 
287 	val = length & SPRD_SPI_RX_LEN_L_MASK;
288 	writel_relaxed(val, ss->base + SPRD_SPI_CTL11);
289 }
290 
291 static void sprd_spi_chipselect(struct spi_device *sdev, bool cs)
292 {
293 	struct spi_controller *sctlr = sdev->controller;
294 	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
295 	u32 val;
296 
297 	val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
298 	/*  The SPI controller will pull down CS pin if cs is 0 */
299 	if (!cs) {
300 		val &= ~SPRD_SPI_CS0_VALID;
301 		writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
302 	} else {
303 		val |= SPRD_SPI_CSN_MASK;
304 		writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
305 	}
306 }
307 
308 static int sprd_spi_write_only_receive(struct sprd_spi *ss, u32 len)
309 {
310 	u32 val;
311 
312 	/* Clear the start receive bit and reset receive data number */
313 	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
314 	val &= ~(SPRD_SPI_START_RX | SPRD_SPI_ONLY_RECV_MASK);
315 	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
316 
317 	/* Set the receive data length */
318 	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
319 	val |= len & SPRD_SPI_ONLY_RECV_MASK;
320 	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
321 
322 	/* Trigger to receive data */
323 	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
324 	val |= SPRD_SPI_START_RX;
325 	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
326 
327 	return len;
328 }
329 
330 static int sprd_spi_write_bufs_u8(struct sprd_spi *ss, u32 len)
331 {
332 	u8 *tx_p = (u8 *)ss->tx_buf;
333 	int i;
334 
335 	for (i = 0; i < len; i++)
336 		writeb_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
337 
338 	ss->tx_buf += i;
339 	return i;
340 }
341 
342 static int sprd_spi_write_bufs_u16(struct sprd_spi *ss, u32 len)
343 {
344 	u16 *tx_p = (u16 *)ss->tx_buf;
345 	int i;
346 
347 	for (i = 0; i < len; i++)
348 		writew_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
349 
350 	ss->tx_buf += i << 1;
351 	return i << 1;
352 }
353 
354 static int sprd_spi_write_bufs_u32(struct sprd_spi *ss, u32 len)
355 {
356 	u32 *tx_p = (u32 *)ss->tx_buf;
357 	int i;
358 
359 	for (i = 0; i < len; i++)
360 		writel_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
361 
362 	ss->tx_buf += i << 2;
363 	return i << 2;
364 }
365 
366 static int sprd_spi_read_bufs_u8(struct sprd_spi *ss, u32 len)
367 {
368 	u8 *rx_p = (u8 *)ss->rx_buf;
369 	int i;
370 
371 	for (i = 0; i < len; i++)
372 		rx_p[i] = readb_relaxed(ss->base + SPRD_SPI_TXD);
373 
374 	ss->rx_buf += i;
375 	return i;
376 }
377 
378 static int sprd_spi_read_bufs_u16(struct sprd_spi *ss, u32 len)
379 {
380 	u16 *rx_p = (u16 *)ss->rx_buf;
381 	int i;
382 
383 	for (i = 0; i < len; i++)
384 		rx_p[i] = readw_relaxed(ss->base + SPRD_SPI_TXD);
385 
386 	ss->rx_buf += i << 1;
387 	return i << 1;
388 }
389 
390 static int sprd_spi_read_bufs_u32(struct sprd_spi *ss, u32 len)
391 {
392 	u32 *rx_p = (u32 *)ss->rx_buf;
393 	int i;
394 
395 	for (i = 0; i < len; i++)
396 		rx_p[i] = readl_relaxed(ss->base + SPRD_SPI_TXD);
397 
398 	ss->rx_buf += i << 2;
399 	return i << 2;
400 }
401 
402 static int sprd_spi_txrx_bufs(struct spi_device *sdev, struct spi_transfer *t)
403 {
404 	struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
405 	u32 trans_len = ss->trans_len, len;
406 	int ret, write_size = 0, read_size = 0;
407 
408 	while (trans_len) {
409 		len = trans_len > SPRD_SPI_FIFO_SIZE ? SPRD_SPI_FIFO_SIZE :
410 			trans_len;
411 		if (ss->trans_mode & SPRD_SPI_TX_MODE) {
412 			sprd_spi_set_tx_length(ss, len);
413 			write_size += ss->write_bufs(ss, len);
414 
415 			/*
416 			 * For our 3 wires mode or dual TX line mode, we need
417 			 * to request the controller to transfer.
418 			 */
419 			if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
420 				sprd_spi_tx_req(ss);
421 
422 			ret = sprd_spi_wait_for_tx_end(ss, t);
423 		} else {
424 			sprd_spi_set_rx_length(ss, len);
425 
426 			/*
427 			 * For our 3 wires mode or dual TX line mode, we need
428 			 * to request the controller to read.
429 			 */
430 			if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
431 				sprd_spi_rx_req(ss);
432 			else
433 				write_size += ss->write_bufs(ss, len);
434 
435 			ret = sprd_spi_wait_for_rx_end(ss, t);
436 		}
437 
438 		if (ret)
439 			goto complete;
440 
441 		if (ss->trans_mode & SPRD_SPI_RX_MODE)
442 			read_size += ss->read_bufs(ss, len);
443 
444 		trans_len -= len;
445 	}
446 
447 	if (ss->trans_mode & SPRD_SPI_TX_MODE)
448 		ret = write_size;
449 	else
450 		ret = read_size;
451 complete:
452 	sprd_spi_enter_idle(ss);
453 
454 	return ret;
455 }
456 
457 static void sprd_spi_irq_enable(struct sprd_spi *ss)
458 {
459 	u32 val;
460 
461 	/* Clear interrupt status before enabling interrupt. */
462 	writel_relaxed(SPRD_SPI_TX_END_CLR | SPRD_SPI_RX_END_CLR,
463 		ss->base + SPRD_SPI_INT_CLR);
464 	/* Enable SPI interrupt only in DMA mode. */
465 	val = readl_relaxed(ss->base + SPRD_SPI_INT_EN);
466 	writel_relaxed(val | SPRD_SPI_TX_END_INT_EN |
467 		       SPRD_SPI_RX_END_INT_EN,
468 		       ss->base + SPRD_SPI_INT_EN);
469 }
470 
471 static void sprd_spi_irq_disable(struct sprd_spi *ss)
472 {
473 	writel_relaxed(0, ss->base + SPRD_SPI_INT_EN);
474 }
475 
476 static void sprd_spi_dma_enable(struct sprd_spi *ss, bool enable)
477 {
478 	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL2);
479 
480 	if (enable)
481 		val |= SPRD_SPI_DMA_EN;
482 	else
483 		val &= ~SPRD_SPI_DMA_EN;
484 
485 	writel_relaxed(val, ss->base + SPRD_SPI_CTL2);
486 }
487 
488 static int sprd_spi_dma_submit(struct dma_chan *dma_chan,
489 			       struct dma_slave_config *c,
490 			       struct sg_table *sg,
491 			       enum dma_transfer_direction dir)
492 {
493 	struct dma_async_tx_descriptor *desc;
494 	dma_cookie_t cookie;
495 	unsigned long flags;
496 	int ret;
497 
498 	ret = dmaengine_slave_config(dma_chan, c);
499 	if (ret < 0)
500 		return ret;
501 
502 	flags = SPRD_DMA_FLAGS(SPRD_DMA_CHN_MODE_NONE, SPRD_DMA_NO_TRG,
503 			       SPRD_DMA_FRAG_REQ, SPRD_DMA_TRANS_INT);
504 	desc = dmaengine_prep_slave_sg(dma_chan, sg->sgl, sg->nents, dir, flags);
505 	if (!desc)
506 		return  -ENODEV;
507 
508 	cookie = dmaengine_submit(desc);
509 	if (dma_submit_error(cookie))
510 		return dma_submit_error(cookie);
511 
512 	dma_async_issue_pending(dma_chan);
513 
514 	return 0;
515 }
516 
517 static int sprd_spi_dma_rx_config(struct sprd_spi *ss, struct spi_transfer *t)
518 {
519 	struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_RX];
520 	struct dma_slave_config config = {
521 		.src_addr = ss->phy_base,
522 		.src_addr_width = ss->dma.width,
523 		.dst_addr_width = ss->dma.width,
524 		.dst_maxburst = ss->dma.fragmens_len,
525 	};
526 	int ret;
527 
528 	ret = sprd_spi_dma_submit(dma_chan, &config, &t->rx_sg, DMA_DEV_TO_MEM);
529 	if (ret)
530 		return ret;
531 
532 	return ss->dma.rx_len;
533 }
534 
535 static int sprd_spi_dma_tx_config(struct sprd_spi *ss, struct spi_transfer *t)
536 {
537 	struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_TX];
538 	struct dma_slave_config config = {
539 		.dst_addr = ss->phy_base,
540 		.src_addr_width = ss->dma.width,
541 		.dst_addr_width = ss->dma.width,
542 		.src_maxburst = ss->dma.fragmens_len,
543 	};
544 	int ret;
545 
546 	ret = sprd_spi_dma_submit(dma_chan, &config, &t->tx_sg, DMA_MEM_TO_DEV);
547 	if (ret)
548 		return ret;
549 
550 	return t->len;
551 }
552 
553 static int sprd_spi_dma_request(struct sprd_spi *ss)
554 {
555 	ss->dma.dma_chan[SPRD_SPI_RX] = dma_request_chan(ss->dev, "rx_chn");
556 	if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_RX]))
557 		return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]),
558 				     "request RX DMA channel failed!\n");
559 
560 	ss->dma.dma_chan[SPRD_SPI_TX]  = dma_request_chan(ss->dev, "tx_chn");
561 	if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_TX])) {
562 		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
563 		return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]),
564 				     "request TX DMA channel failed!\n");
565 	}
566 
567 	return 0;
568 }
569 
570 static void sprd_spi_dma_release(struct sprd_spi *ss)
571 {
572 	if (ss->dma.dma_chan[SPRD_SPI_RX])
573 		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
574 
575 	if (ss->dma.dma_chan[SPRD_SPI_TX])
576 		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_TX]);
577 }
578 
579 static int sprd_spi_dma_txrx_bufs(struct spi_device *sdev,
580 				  struct spi_transfer *t)
581 {
582 	struct sprd_spi *ss = spi_master_get_devdata(sdev->master);
583 	u32 trans_len = ss->trans_len;
584 	int ret, write_size = 0;
585 
586 	reinit_completion(&ss->xfer_completion);
587 	sprd_spi_irq_enable(ss);
588 	if (ss->trans_mode & SPRD_SPI_TX_MODE) {
589 		write_size = sprd_spi_dma_tx_config(ss, t);
590 		sprd_spi_set_tx_length(ss, trans_len);
591 
592 		/*
593 		 * For our 3 wires mode or dual TX line mode, we need
594 		 * to request the controller to transfer.
595 		 */
596 		if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
597 			sprd_spi_tx_req(ss);
598 	} else {
599 		sprd_spi_set_rx_length(ss, trans_len);
600 
601 		/*
602 		 * For our 3 wires mode or dual TX line mode, we need
603 		 * to request the controller to read.
604 		 */
605 		if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
606 			sprd_spi_rx_req(ss);
607 		else
608 			write_size = ss->write_bufs(ss, trans_len);
609 	}
610 
611 	if (write_size < 0) {
612 		ret = write_size;
613 		dev_err(ss->dev, "failed to write, ret = %d\n", ret);
614 		goto trans_complete;
615 	}
616 
617 	if (ss->trans_mode & SPRD_SPI_RX_MODE) {
618 		/*
619 		 * Set up the DMA receive data length, which must be an
620 		 * integral multiple of fragment length. But when the length
621 		 * of received data is less than fragment length, DMA can be
622 		 * configured to receive data according to the actual length
623 		 * of received data.
624 		 */
625 		ss->dma.rx_len = t->len > ss->dma.fragmens_len ?
626 			(t->len - t->len % ss->dma.fragmens_len) :
627 			 t->len;
628 		ret = sprd_spi_dma_rx_config(ss, t);
629 		if (ret < 0) {
630 			dev_err(&sdev->dev,
631 				"failed to configure rx DMA, ret = %d\n", ret);
632 			goto trans_complete;
633 		}
634 	}
635 
636 	sprd_spi_dma_enable(ss, true);
637 	wait_for_completion(&(ss->xfer_completion));
638 
639 	if (ss->trans_mode & SPRD_SPI_TX_MODE)
640 		ret = write_size;
641 	else
642 		ret = ss->dma.rx_len;
643 
644 trans_complete:
645 	sprd_spi_dma_enable(ss, false);
646 	sprd_spi_enter_idle(ss);
647 	sprd_spi_irq_disable(ss);
648 
649 	return ret;
650 }
651 
652 static void sprd_spi_set_speed(struct sprd_spi *ss, u32 speed_hz)
653 {
654 	/*
655 	 * From SPI datasheet, the prescale calculation formula:
656 	 * prescale = SPI source clock / (2 * SPI_freq) - 1;
657 	 */
658 	u32 clk_div = DIV_ROUND_UP(ss->src_clk, speed_hz << 1) - 1;
659 
660 	/* Save the real hardware speed */
661 	ss->hw_speed_hz = (ss->src_clk >> 1) / (clk_div + 1);
662 	writel_relaxed(clk_div, ss->base + SPRD_SPI_CLKD);
663 }
664 
665 static int sprd_spi_init_hw(struct sprd_spi *ss, struct spi_transfer *t)
666 {
667 	struct spi_delay *d = &t->word_delay;
668 	u16 word_delay, interval;
669 	u32 val;
670 
671 	if (d->unit != SPI_DELAY_UNIT_SCK)
672 		return -EINVAL;
673 
674 	val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
675 	val &= ~(SPRD_SPI_SCK_REV | SPRD_SPI_NG_TX | SPRD_SPI_NG_RX);
676 	/* Set default chip selection, clock phase and clock polarity */
677 	val |= ss->hw_mode & SPI_CPHA ? SPRD_SPI_NG_RX : SPRD_SPI_NG_TX;
678 	val |= ss->hw_mode & SPI_CPOL ? SPRD_SPI_SCK_REV : 0;
679 	writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
680 
681 	/*
682 	 * Set the intervals of two SPI frames, and the inteval calculation
683 	 * formula as below per datasheet:
684 	 * interval time (source clock cycles) = interval * 4 + 10.
685 	 */
686 	word_delay = clamp_t(u16, d->value, SPRD_SPI_MIN_DELAY_CYCLE,
687 			     SPRD_SPI_MAX_DELAY_CYCLE);
688 	interval = DIV_ROUND_UP(word_delay - 10, 4);
689 	ss->word_delay = interval * 4 + 10;
690 	writel_relaxed(interval, ss->base + SPRD_SPI_CTL5);
691 
692 	/* Reset SPI fifo */
693 	writel_relaxed(1, ss->base + SPRD_SPI_FIFO_RST);
694 	writel_relaxed(0, ss->base + SPRD_SPI_FIFO_RST);
695 
696 	/* Set SPI work mode */
697 	val = readl_relaxed(ss->base + SPRD_SPI_CTL7);
698 	val &= ~SPRD_SPI_MODE_MASK;
699 
700 	if (ss->hw_mode & SPI_3WIRE)
701 		val |= SPRD_SPI_3WIRE_MODE << SPRD_SPI_MODE_OFFSET;
702 	else
703 		val |= SPRD_SPI_4WIRE_MODE << SPRD_SPI_MODE_OFFSET;
704 
705 	if (ss->hw_mode & SPI_TX_DUAL)
706 		val |= SPRD_SPI_DATA_LINE2_EN;
707 	else
708 		val &= ~SPRD_SPI_DATA_LINE2_EN;
709 
710 	writel_relaxed(val, ss->base + SPRD_SPI_CTL7);
711 
712 	return 0;
713 }
714 
715 static int sprd_spi_setup_transfer(struct spi_device *sdev,
716 				   struct spi_transfer *t)
717 {
718 	struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
719 	u8 bits_per_word = t->bits_per_word;
720 	u32 val, mode = 0;
721 	int ret;
722 
723 	ss->len = t->len;
724 	ss->tx_buf = t->tx_buf;
725 	ss->rx_buf = t->rx_buf;
726 
727 	ss->hw_mode = sdev->mode;
728 	ret = sprd_spi_init_hw(ss, t);
729 	if (ret)
730 		return ret;
731 
732 	/* Set tansfer speed and valid bits */
733 	sprd_spi_set_speed(ss, t->speed_hz);
734 	sprd_spi_set_transfer_bits(ss, bits_per_word);
735 
736 	if (bits_per_word > 16)
737 		bits_per_word = round_up(bits_per_word, 16);
738 	else
739 		bits_per_word = round_up(bits_per_word, 8);
740 
741 	switch (bits_per_word) {
742 	case 8:
743 		ss->trans_len = t->len;
744 		ss->read_bufs = sprd_spi_read_bufs_u8;
745 		ss->write_bufs = sprd_spi_write_bufs_u8;
746 		ss->dma.width = DMA_SLAVE_BUSWIDTH_1_BYTE;
747 		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP;
748 		break;
749 	case 16:
750 		ss->trans_len = t->len >> 1;
751 		ss->read_bufs = sprd_spi_read_bufs_u16;
752 		ss->write_bufs = sprd_spi_write_bufs_u16;
753 		ss->dma.width = DMA_SLAVE_BUSWIDTH_2_BYTES;
754 		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 1;
755 		break;
756 	case 32:
757 		ss->trans_len = t->len >> 2;
758 		ss->read_bufs = sprd_spi_read_bufs_u32;
759 		ss->write_bufs = sprd_spi_write_bufs_u32;
760 		ss->dma.width = DMA_SLAVE_BUSWIDTH_4_BYTES;
761 		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 2;
762 		break;
763 	default:
764 		return -EINVAL;
765 	}
766 
767 	/* Set transfer read or write mode */
768 	val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
769 	val &= ~SPRD_SPI_RTX_MD_MASK;
770 	if (t->tx_buf)
771 		mode |= SPRD_SPI_TX_MODE;
772 	if (t->rx_buf)
773 		mode |= SPRD_SPI_RX_MODE;
774 
775 	writel_relaxed(val | mode, ss->base + SPRD_SPI_CTL1);
776 
777 	ss->trans_mode = mode;
778 
779 	/*
780 	 * If in only receive mode, we need to trigger the SPI controller to
781 	 * receive data automatically.
782 	 */
783 	if (ss->trans_mode == SPRD_SPI_RX_MODE)
784 		ss->write_bufs = sprd_spi_write_only_receive;
785 
786 	return 0;
787 }
788 
789 static int sprd_spi_transfer_one(struct spi_controller *sctlr,
790 				 struct spi_device *sdev,
791 				 struct spi_transfer *t)
792 {
793 	int ret;
794 
795 	ret = sprd_spi_setup_transfer(sdev, t);
796 	if (ret)
797 		goto setup_err;
798 
799 	if (sctlr->can_dma(sctlr, sdev, t))
800 		ret = sprd_spi_dma_txrx_bufs(sdev, t);
801 	else
802 		ret = sprd_spi_txrx_bufs(sdev, t);
803 
804 	if (ret == t->len)
805 		ret = 0;
806 	else if (ret >= 0)
807 		ret = -EREMOTEIO;
808 
809 setup_err:
810 	spi_finalize_current_transfer(sctlr);
811 
812 	return ret;
813 }
814 
815 static irqreturn_t sprd_spi_handle_irq(int irq, void *data)
816 {
817 	struct sprd_spi *ss = (struct sprd_spi *)data;
818 	u32 val = readl_relaxed(ss->base + SPRD_SPI_INT_MASK_STS);
819 
820 	if (val & SPRD_SPI_MASK_TX_END) {
821 		writel_relaxed(SPRD_SPI_TX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
822 		if (!(ss->trans_mode & SPRD_SPI_RX_MODE))
823 			complete(&ss->xfer_completion);
824 
825 		return IRQ_HANDLED;
826 	}
827 
828 	if (val & SPRD_SPI_MASK_RX_END) {
829 		writel_relaxed(SPRD_SPI_RX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
830 		if (ss->dma.rx_len < ss->len) {
831 			ss->rx_buf += ss->dma.rx_len;
832 			ss->dma.rx_len +=
833 				ss->read_bufs(ss, ss->len - ss->dma.rx_len);
834 		}
835 		complete(&ss->xfer_completion);
836 
837 		return IRQ_HANDLED;
838 	}
839 
840 	return IRQ_NONE;
841 }
842 
843 static int sprd_spi_irq_init(struct platform_device *pdev, struct sprd_spi *ss)
844 {
845 	int ret;
846 
847 	ss->irq = platform_get_irq(pdev, 0);
848 	if (ss->irq < 0)
849 		return ss->irq;
850 
851 	ret = devm_request_irq(&pdev->dev, ss->irq, sprd_spi_handle_irq,
852 				0, pdev->name, ss);
853 	if (ret)
854 		dev_err(&pdev->dev, "failed to request spi irq %d, ret = %d\n",
855 			ss->irq, ret);
856 
857 	return ret;
858 }
859 
860 static int sprd_spi_clk_init(struct platform_device *pdev, struct sprd_spi *ss)
861 {
862 	struct clk *clk_spi, *clk_parent;
863 
864 	clk_spi = devm_clk_get(&pdev->dev, "spi");
865 	if (IS_ERR(clk_spi)) {
866 		dev_warn(&pdev->dev, "can't get the spi clock\n");
867 		clk_spi = NULL;
868 	}
869 
870 	clk_parent = devm_clk_get(&pdev->dev, "source");
871 	if (IS_ERR(clk_parent)) {
872 		dev_warn(&pdev->dev, "can't get the source clock\n");
873 		clk_parent = NULL;
874 	}
875 
876 	ss->clk = devm_clk_get(&pdev->dev, "enable");
877 	if (IS_ERR(ss->clk)) {
878 		dev_err(&pdev->dev, "can't get the enable clock\n");
879 		return PTR_ERR(ss->clk);
880 	}
881 
882 	if (!clk_set_parent(clk_spi, clk_parent))
883 		ss->src_clk = clk_get_rate(clk_spi);
884 	else
885 		ss->src_clk = SPRD_SPI_DEFAULT_SOURCE;
886 
887 	return 0;
888 }
889 
890 static bool sprd_spi_can_dma(struct spi_controller *sctlr,
891 			     struct spi_device *spi, struct spi_transfer *t)
892 {
893 	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
894 
895 	return ss->dma.enable && (t->len > SPRD_SPI_FIFO_SIZE);
896 }
897 
898 static int sprd_spi_dma_init(struct platform_device *pdev, struct sprd_spi *ss)
899 {
900 	int ret;
901 
902 	ret = sprd_spi_dma_request(ss);
903 	if (ret) {
904 		if (ret == -EPROBE_DEFER)
905 			return ret;
906 
907 		dev_warn(&pdev->dev,
908 			 "failed to request dma, enter no dma mode, ret = %d\n",
909 			 ret);
910 
911 		return 0;
912 	}
913 
914 	ss->dma.enable = true;
915 
916 	return 0;
917 }
918 
919 static int sprd_spi_probe(struct platform_device *pdev)
920 {
921 	struct spi_controller *sctlr;
922 	struct resource *res;
923 	struct sprd_spi *ss;
924 	int ret;
925 
926 	pdev->id = of_alias_get_id(pdev->dev.of_node, "spi");
927 	sctlr = spi_alloc_master(&pdev->dev, sizeof(*ss));
928 	if (!sctlr)
929 		return -ENOMEM;
930 
931 	ss = spi_controller_get_devdata(sctlr);
932 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
933 	ss->base = devm_ioremap_resource(&pdev->dev, res);
934 	if (IS_ERR(ss->base)) {
935 		ret = PTR_ERR(ss->base);
936 		goto free_controller;
937 	}
938 
939 	ss->phy_base = res->start;
940 	ss->dev = &pdev->dev;
941 	sctlr->dev.of_node = pdev->dev.of_node;
942 	sctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE | SPI_TX_DUAL;
943 	sctlr->bus_num = pdev->id;
944 	sctlr->set_cs = sprd_spi_chipselect;
945 	sctlr->transfer_one = sprd_spi_transfer_one;
946 	sctlr->can_dma = sprd_spi_can_dma;
947 	sctlr->auto_runtime_pm = true;
948 	sctlr->max_speed_hz = min_t(u32, ss->src_clk >> 1,
949 				    SPRD_SPI_MAX_SPEED_HZ);
950 
951 	init_completion(&ss->xfer_completion);
952 	platform_set_drvdata(pdev, sctlr);
953 	ret = sprd_spi_clk_init(pdev, ss);
954 	if (ret)
955 		goto free_controller;
956 
957 	ret = sprd_spi_irq_init(pdev, ss);
958 	if (ret)
959 		goto free_controller;
960 
961 	ret = sprd_spi_dma_init(pdev, ss);
962 	if (ret)
963 		goto free_controller;
964 
965 	ret = clk_prepare_enable(ss->clk);
966 	if (ret)
967 		goto release_dma;
968 
969 	ret = pm_runtime_set_active(&pdev->dev);
970 	if (ret < 0)
971 		goto disable_clk;
972 
973 	pm_runtime_set_autosuspend_delay(&pdev->dev,
974 					 SPRD_SPI_AUTOSUSPEND_DELAY);
975 	pm_runtime_use_autosuspend(&pdev->dev);
976 	pm_runtime_enable(&pdev->dev);
977 	ret = pm_runtime_get_sync(&pdev->dev);
978 	if (ret < 0) {
979 		dev_err(&pdev->dev, "failed to resume SPI controller\n");
980 		goto err_rpm_put;
981 	}
982 
983 	ret = devm_spi_register_controller(&pdev->dev, sctlr);
984 	if (ret)
985 		goto err_rpm_put;
986 
987 	pm_runtime_mark_last_busy(&pdev->dev);
988 	pm_runtime_put_autosuspend(&pdev->dev);
989 
990 	return 0;
991 
992 err_rpm_put:
993 	pm_runtime_put_noidle(&pdev->dev);
994 	pm_runtime_disable(&pdev->dev);
995 disable_clk:
996 	clk_disable_unprepare(ss->clk);
997 release_dma:
998 	sprd_spi_dma_release(ss);
999 free_controller:
1000 	spi_controller_put(sctlr);
1001 
1002 	return ret;
1003 }
1004 
1005 static int sprd_spi_remove(struct platform_device *pdev)
1006 {
1007 	struct spi_controller *sctlr = platform_get_drvdata(pdev);
1008 	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1009 	int ret;
1010 
1011 	ret = pm_runtime_get_sync(ss->dev);
1012 	if (ret < 0) {
1013 		pm_runtime_put_noidle(ss->dev);
1014 		dev_err(ss->dev, "failed to resume SPI controller\n");
1015 		return ret;
1016 	}
1017 
1018 	spi_controller_suspend(sctlr);
1019 
1020 	if (ss->dma.enable)
1021 		sprd_spi_dma_release(ss);
1022 	clk_disable_unprepare(ss->clk);
1023 	pm_runtime_put_noidle(&pdev->dev);
1024 	pm_runtime_disable(&pdev->dev);
1025 
1026 	return 0;
1027 }
1028 
1029 static int __maybe_unused sprd_spi_runtime_suspend(struct device *dev)
1030 {
1031 	struct spi_controller *sctlr = dev_get_drvdata(dev);
1032 	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1033 
1034 	if (ss->dma.enable)
1035 		sprd_spi_dma_release(ss);
1036 
1037 	clk_disable_unprepare(ss->clk);
1038 
1039 	return 0;
1040 }
1041 
1042 static int __maybe_unused sprd_spi_runtime_resume(struct device *dev)
1043 {
1044 	struct spi_controller *sctlr = dev_get_drvdata(dev);
1045 	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1046 	int ret;
1047 
1048 	ret = clk_prepare_enable(ss->clk);
1049 	if (ret)
1050 		return ret;
1051 
1052 	if (!ss->dma.enable)
1053 		return 0;
1054 
1055 	ret = sprd_spi_dma_request(ss);
1056 	if (ret)
1057 		clk_disable_unprepare(ss->clk);
1058 
1059 	return ret;
1060 }
1061 
1062 static const struct dev_pm_ops sprd_spi_pm_ops = {
1063 	SET_RUNTIME_PM_OPS(sprd_spi_runtime_suspend,
1064 			   sprd_spi_runtime_resume, NULL)
1065 };
1066 
1067 static const struct of_device_id sprd_spi_of_match[] = {
1068 	{ .compatible = "sprd,sc9860-spi", },
1069 	{ /* sentinel */ }
1070 };
1071 
1072 static struct platform_driver sprd_spi_driver = {
1073 	.driver = {
1074 		.name = "sprd-spi",
1075 		.of_match_table = sprd_spi_of_match,
1076 		.pm = &sprd_spi_pm_ops,
1077 	},
1078 	.probe = sprd_spi_probe,
1079 	.remove  = sprd_spi_remove,
1080 };
1081 
1082 module_platform_driver(sprd_spi_driver);
1083 
1084 MODULE_DESCRIPTION("Spreadtrum SPI Controller driver");
1085 MODULE_AUTHOR("Lanqing Liu <lanqing.liu@spreadtrum.com>");
1086 MODULE_LICENSE("GPL v2");
1087