1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2018 Spreadtrum Communications Inc. 3 4 #include <linux/clk.h> 5 #include <linux/dmaengine.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/dma/sprd-dma.h> 8 #include <linux/interrupt.h> 9 #include <linux/io.h> 10 #include <linux/iopoll.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/of.h> 14 #include <linux/of_device.h> 15 #include <linux/of_dma.h> 16 #include <linux/platform_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/spi/spi.h> 19 20 #define SPRD_SPI_TXD 0x0 21 #define SPRD_SPI_CLKD 0x4 22 #define SPRD_SPI_CTL0 0x8 23 #define SPRD_SPI_CTL1 0xc 24 #define SPRD_SPI_CTL2 0x10 25 #define SPRD_SPI_CTL3 0x14 26 #define SPRD_SPI_CTL4 0x18 27 #define SPRD_SPI_CTL5 0x1c 28 #define SPRD_SPI_INT_EN 0x20 29 #define SPRD_SPI_INT_CLR 0x24 30 #define SPRD_SPI_INT_RAW_STS 0x28 31 #define SPRD_SPI_INT_MASK_STS 0x2c 32 #define SPRD_SPI_STS1 0x30 33 #define SPRD_SPI_STS2 0x34 34 #define SPRD_SPI_DSP_WAIT 0x38 35 #define SPRD_SPI_STS3 0x3c 36 #define SPRD_SPI_CTL6 0x40 37 #define SPRD_SPI_STS4 0x44 38 #define SPRD_SPI_FIFO_RST 0x48 39 #define SPRD_SPI_CTL7 0x4c 40 #define SPRD_SPI_STS5 0x50 41 #define SPRD_SPI_CTL8 0x54 42 #define SPRD_SPI_CTL9 0x58 43 #define SPRD_SPI_CTL10 0x5c 44 #define SPRD_SPI_CTL11 0x60 45 #define SPRD_SPI_CTL12 0x64 46 #define SPRD_SPI_STS6 0x68 47 #define SPRD_SPI_STS7 0x6c 48 #define SPRD_SPI_STS8 0x70 49 #define SPRD_SPI_STS9 0x74 50 51 /* Bits & mask definition for register CTL0 */ 52 #define SPRD_SPI_SCK_REV BIT(13) 53 #define SPRD_SPI_NG_TX BIT(1) 54 #define SPRD_SPI_NG_RX BIT(0) 55 #define SPRD_SPI_CHNL_LEN_MASK GENMASK(4, 0) 56 #define SPRD_SPI_CSN_MASK GENMASK(11, 8) 57 #define SPRD_SPI_CS0_VALID BIT(8) 58 59 /* Bits & mask definition for register SPI_INT_EN */ 60 #define SPRD_SPI_TX_END_INT_EN BIT(8) 61 #define SPRD_SPI_RX_END_INT_EN BIT(9) 62 63 /* Bits & mask definition for register SPI_INT_RAW_STS */ 64 #define SPRD_SPI_TX_END_RAW BIT(8) 65 #define SPRD_SPI_RX_END_RAW BIT(9) 66 67 /* Bits & mask definition for register SPI_INT_CLR */ 68 #define SPRD_SPI_TX_END_CLR BIT(8) 69 #define SPRD_SPI_RX_END_CLR BIT(9) 70 71 /* Bits & mask definition for register INT_MASK_STS */ 72 #define SPRD_SPI_MASK_RX_END BIT(9) 73 #define SPRD_SPI_MASK_TX_END BIT(8) 74 75 /* Bits & mask definition for register STS2 */ 76 #define SPRD_SPI_TX_BUSY BIT(8) 77 78 /* Bits & mask definition for register CTL1 */ 79 #define SPRD_SPI_RX_MODE BIT(12) 80 #define SPRD_SPI_TX_MODE BIT(13) 81 #define SPRD_SPI_RTX_MD_MASK GENMASK(13, 12) 82 83 /* Bits & mask definition for register CTL2 */ 84 #define SPRD_SPI_DMA_EN BIT(6) 85 86 /* Bits & mask definition for register CTL4 */ 87 #define SPRD_SPI_START_RX BIT(9) 88 #define SPRD_SPI_ONLY_RECV_MASK GENMASK(8, 0) 89 90 /* Bits & mask definition for register SPI_INT_CLR */ 91 #define SPRD_SPI_RX_END_INT_CLR BIT(9) 92 #define SPRD_SPI_TX_END_INT_CLR BIT(8) 93 94 /* Bits & mask definition for register SPI_INT_RAW */ 95 #define SPRD_SPI_RX_END_IRQ BIT(9) 96 #define SPRD_SPI_TX_END_IRQ BIT(8) 97 98 /* Bits & mask definition for register CTL12 */ 99 #define SPRD_SPI_SW_RX_REQ BIT(0) 100 #define SPRD_SPI_SW_TX_REQ BIT(1) 101 102 /* Bits & mask definition for register CTL7 */ 103 #define SPRD_SPI_DATA_LINE2_EN BIT(15) 104 #define SPRD_SPI_MODE_MASK GENMASK(5, 3) 105 #define SPRD_SPI_MODE_OFFSET 3 106 #define SPRD_SPI_3WIRE_MODE 4 107 #define SPRD_SPI_4WIRE_MODE 0 108 109 /* Bits & mask definition for register CTL8 */ 110 #define SPRD_SPI_TX_MAX_LEN_MASK GENMASK(19, 0) 111 #define SPRD_SPI_TX_LEN_H_MASK GENMASK(3, 0) 112 #define SPRD_SPI_TX_LEN_H_OFFSET 16 113 114 /* Bits & mask definition for register CTL9 */ 115 #define SPRD_SPI_TX_LEN_L_MASK GENMASK(15, 0) 116 117 /* Bits & mask definition for register CTL10 */ 118 #define SPRD_SPI_RX_MAX_LEN_MASK GENMASK(19, 0) 119 #define SPRD_SPI_RX_LEN_H_MASK GENMASK(3, 0) 120 #define SPRD_SPI_RX_LEN_H_OFFSET 16 121 122 /* Bits & mask definition for register CTL11 */ 123 #define SPRD_SPI_RX_LEN_L_MASK GENMASK(15, 0) 124 125 /* Default & maximum word delay cycles */ 126 #define SPRD_SPI_MIN_DELAY_CYCLE 14 127 #define SPRD_SPI_MAX_DELAY_CYCLE 130 128 129 #define SPRD_SPI_FIFO_SIZE 32 130 #define SPRD_SPI_CHIP_CS_NUM 0x4 131 #define SPRD_SPI_CHNL_LEN 2 132 #define SPRD_SPI_DEFAULT_SOURCE 26000000 133 #define SPRD_SPI_MAX_SPEED_HZ 48000000 134 #define SPRD_SPI_AUTOSUSPEND_DELAY 100 135 #define SPRD_SPI_DMA_STEP 8 136 137 enum sprd_spi_dma_channel { 138 SPRD_SPI_RX, 139 SPRD_SPI_TX, 140 SPRD_SPI_MAX, 141 }; 142 143 struct sprd_spi_dma { 144 bool enable; 145 struct dma_chan *dma_chan[SPRD_SPI_MAX]; 146 enum dma_slave_buswidth width; 147 u32 fragmens_len; 148 u32 rx_len; 149 }; 150 151 struct sprd_spi { 152 void __iomem *base; 153 phys_addr_t phy_base; 154 struct device *dev; 155 struct clk *clk; 156 int irq; 157 u32 src_clk; 158 u32 hw_mode; 159 u32 trans_len; 160 u32 trans_mode; 161 u32 word_delay; 162 u32 hw_speed_hz; 163 u32 len; 164 int status; 165 struct sprd_spi_dma dma; 166 struct completion xfer_completion; 167 const void *tx_buf; 168 void *rx_buf; 169 int (*read_bufs)(struct sprd_spi *ss, u32 len); 170 int (*write_bufs)(struct sprd_spi *ss, u32 len); 171 }; 172 173 static u32 sprd_spi_transfer_max_timeout(struct sprd_spi *ss, 174 struct spi_transfer *t) 175 { 176 /* 177 * The time spent on transmission of the full FIFO data is the maximum 178 * SPI transmission time. 179 */ 180 u32 size = t->bits_per_word * SPRD_SPI_FIFO_SIZE; 181 u32 bit_time_us = DIV_ROUND_UP(USEC_PER_SEC, ss->hw_speed_hz); 182 u32 total_time_us = size * bit_time_us; 183 /* 184 * There is an interval between data and the data in our SPI hardware, 185 * so the total transmission time need add the interval time. 186 */ 187 u32 interval_cycle = SPRD_SPI_FIFO_SIZE * ss->word_delay; 188 u32 interval_time_us = DIV_ROUND_UP(interval_cycle * USEC_PER_SEC, 189 ss->src_clk); 190 191 return total_time_us + interval_time_us; 192 } 193 194 static int sprd_spi_wait_for_tx_end(struct sprd_spi *ss, struct spi_transfer *t) 195 { 196 u32 val, us; 197 int ret; 198 199 us = sprd_spi_transfer_max_timeout(ss, t); 200 ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val, 201 val & SPRD_SPI_TX_END_IRQ, 0, us); 202 if (ret) { 203 dev_err(ss->dev, "SPI error, spi send timeout!\n"); 204 return ret; 205 } 206 207 ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_STS2, val, 208 !(val & SPRD_SPI_TX_BUSY), 0, us); 209 if (ret) { 210 dev_err(ss->dev, "SPI error, spi busy timeout!\n"); 211 return ret; 212 } 213 214 writel_relaxed(SPRD_SPI_TX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR); 215 216 return 0; 217 } 218 219 static int sprd_spi_wait_for_rx_end(struct sprd_spi *ss, struct spi_transfer *t) 220 { 221 u32 val, us; 222 int ret; 223 224 us = sprd_spi_transfer_max_timeout(ss, t); 225 ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val, 226 val & SPRD_SPI_RX_END_IRQ, 0, us); 227 if (ret) { 228 dev_err(ss->dev, "SPI error, spi rx timeout!\n"); 229 return ret; 230 } 231 232 writel_relaxed(SPRD_SPI_RX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR); 233 234 return 0; 235 } 236 237 static void sprd_spi_tx_req(struct sprd_spi *ss) 238 { 239 writel_relaxed(SPRD_SPI_SW_TX_REQ, ss->base + SPRD_SPI_CTL12); 240 } 241 242 static void sprd_spi_rx_req(struct sprd_spi *ss) 243 { 244 writel_relaxed(SPRD_SPI_SW_RX_REQ, ss->base + SPRD_SPI_CTL12); 245 } 246 247 static void sprd_spi_enter_idle(struct sprd_spi *ss) 248 { 249 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL1); 250 251 val &= ~SPRD_SPI_RTX_MD_MASK; 252 writel_relaxed(val, ss->base + SPRD_SPI_CTL1); 253 } 254 255 static void sprd_spi_set_transfer_bits(struct sprd_spi *ss, u32 bits) 256 { 257 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL0); 258 259 /* Set the valid bits for every transaction */ 260 val &= ~(SPRD_SPI_CHNL_LEN_MASK << SPRD_SPI_CHNL_LEN); 261 val |= bits << SPRD_SPI_CHNL_LEN; 262 writel_relaxed(val, ss->base + SPRD_SPI_CTL0); 263 } 264 265 static void sprd_spi_set_tx_length(struct sprd_spi *ss, u32 length) 266 { 267 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL8); 268 269 length &= SPRD_SPI_TX_MAX_LEN_MASK; 270 val &= ~SPRD_SPI_TX_LEN_H_MASK; 271 val |= length >> SPRD_SPI_TX_LEN_H_OFFSET; 272 writel_relaxed(val, ss->base + SPRD_SPI_CTL8); 273 274 val = length & SPRD_SPI_TX_LEN_L_MASK; 275 writel_relaxed(val, ss->base + SPRD_SPI_CTL9); 276 } 277 278 static void sprd_spi_set_rx_length(struct sprd_spi *ss, u32 length) 279 { 280 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL10); 281 282 length &= SPRD_SPI_RX_MAX_LEN_MASK; 283 val &= ~SPRD_SPI_RX_LEN_H_MASK; 284 val |= length >> SPRD_SPI_RX_LEN_H_OFFSET; 285 writel_relaxed(val, ss->base + SPRD_SPI_CTL10); 286 287 val = length & SPRD_SPI_RX_LEN_L_MASK; 288 writel_relaxed(val, ss->base + SPRD_SPI_CTL11); 289 } 290 291 static void sprd_spi_chipselect(struct spi_device *sdev, bool cs) 292 { 293 struct spi_controller *sctlr = sdev->controller; 294 struct sprd_spi *ss = spi_controller_get_devdata(sctlr); 295 u32 val; 296 297 val = readl_relaxed(ss->base + SPRD_SPI_CTL0); 298 /* The SPI controller will pull down CS pin if cs is 0 */ 299 if (!cs) { 300 val &= ~SPRD_SPI_CS0_VALID; 301 writel_relaxed(val, ss->base + SPRD_SPI_CTL0); 302 } else { 303 val |= SPRD_SPI_CSN_MASK; 304 writel_relaxed(val, ss->base + SPRD_SPI_CTL0); 305 } 306 } 307 308 static int sprd_spi_write_only_receive(struct sprd_spi *ss, u32 len) 309 { 310 u32 val; 311 312 /* Clear the start receive bit and reset receive data number */ 313 val = readl_relaxed(ss->base + SPRD_SPI_CTL4); 314 val &= ~(SPRD_SPI_START_RX | SPRD_SPI_ONLY_RECV_MASK); 315 writel_relaxed(val, ss->base + SPRD_SPI_CTL4); 316 317 /* Set the receive data length */ 318 val = readl_relaxed(ss->base + SPRD_SPI_CTL4); 319 val |= len & SPRD_SPI_ONLY_RECV_MASK; 320 writel_relaxed(val, ss->base + SPRD_SPI_CTL4); 321 322 /* Trigger to receive data */ 323 val = readl_relaxed(ss->base + SPRD_SPI_CTL4); 324 val |= SPRD_SPI_START_RX; 325 writel_relaxed(val, ss->base + SPRD_SPI_CTL4); 326 327 return len; 328 } 329 330 static int sprd_spi_write_bufs_u8(struct sprd_spi *ss, u32 len) 331 { 332 u8 *tx_p = (u8 *)ss->tx_buf; 333 int i; 334 335 for (i = 0; i < len; i++) 336 writeb_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD); 337 338 ss->tx_buf += i; 339 return i; 340 } 341 342 static int sprd_spi_write_bufs_u16(struct sprd_spi *ss, u32 len) 343 { 344 u16 *tx_p = (u16 *)ss->tx_buf; 345 int i; 346 347 for (i = 0; i < len; i++) 348 writew_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD); 349 350 ss->tx_buf += i << 1; 351 return i << 1; 352 } 353 354 static int sprd_spi_write_bufs_u32(struct sprd_spi *ss, u32 len) 355 { 356 u32 *tx_p = (u32 *)ss->tx_buf; 357 int i; 358 359 for (i = 0; i < len; i++) 360 writel_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD); 361 362 ss->tx_buf += i << 2; 363 return i << 2; 364 } 365 366 static int sprd_spi_read_bufs_u8(struct sprd_spi *ss, u32 len) 367 { 368 u8 *rx_p = (u8 *)ss->rx_buf; 369 int i; 370 371 for (i = 0; i < len; i++) 372 rx_p[i] = readb_relaxed(ss->base + SPRD_SPI_TXD); 373 374 ss->rx_buf += i; 375 return i; 376 } 377 378 static int sprd_spi_read_bufs_u16(struct sprd_spi *ss, u32 len) 379 { 380 u16 *rx_p = (u16 *)ss->rx_buf; 381 int i; 382 383 for (i = 0; i < len; i++) 384 rx_p[i] = readw_relaxed(ss->base + SPRD_SPI_TXD); 385 386 ss->rx_buf += i << 1; 387 return i << 1; 388 } 389 390 static int sprd_spi_read_bufs_u32(struct sprd_spi *ss, u32 len) 391 { 392 u32 *rx_p = (u32 *)ss->rx_buf; 393 int i; 394 395 for (i = 0; i < len; i++) 396 rx_p[i] = readl_relaxed(ss->base + SPRD_SPI_TXD); 397 398 ss->rx_buf += i << 2; 399 return i << 2; 400 } 401 402 static int sprd_spi_txrx_bufs(struct spi_device *sdev, struct spi_transfer *t) 403 { 404 struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller); 405 u32 trans_len = ss->trans_len, len; 406 int ret, write_size = 0, read_size = 0; 407 408 while (trans_len) { 409 len = trans_len > SPRD_SPI_FIFO_SIZE ? SPRD_SPI_FIFO_SIZE : 410 trans_len; 411 if (ss->trans_mode & SPRD_SPI_TX_MODE) { 412 sprd_spi_set_tx_length(ss, len); 413 write_size += ss->write_bufs(ss, len); 414 415 /* 416 * For our 3 wires mode or dual TX line mode, we need 417 * to request the controller to transfer. 418 */ 419 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) 420 sprd_spi_tx_req(ss); 421 422 ret = sprd_spi_wait_for_tx_end(ss, t); 423 } else { 424 sprd_spi_set_rx_length(ss, len); 425 426 /* 427 * For our 3 wires mode or dual TX line mode, we need 428 * to request the controller to read. 429 */ 430 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) 431 sprd_spi_rx_req(ss); 432 else 433 write_size += ss->write_bufs(ss, len); 434 435 ret = sprd_spi_wait_for_rx_end(ss, t); 436 } 437 438 if (ret) 439 goto complete; 440 441 if (ss->trans_mode & SPRD_SPI_RX_MODE) 442 read_size += ss->read_bufs(ss, len); 443 444 trans_len -= len; 445 } 446 447 if (ss->trans_mode & SPRD_SPI_TX_MODE) 448 ret = write_size; 449 else 450 ret = read_size; 451 complete: 452 sprd_spi_enter_idle(ss); 453 454 return ret; 455 } 456 457 static void sprd_spi_irq_enable(struct sprd_spi *ss) 458 { 459 u32 val; 460 461 /* Clear interrupt status before enabling interrupt. */ 462 writel_relaxed(SPRD_SPI_TX_END_CLR | SPRD_SPI_RX_END_CLR, 463 ss->base + SPRD_SPI_INT_CLR); 464 /* Enable SPI interrupt only in DMA mode. */ 465 val = readl_relaxed(ss->base + SPRD_SPI_INT_EN); 466 writel_relaxed(val | SPRD_SPI_TX_END_INT_EN | 467 SPRD_SPI_RX_END_INT_EN, 468 ss->base + SPRD_SPI_INT_EN); 469 } 470 471 static void sprd_spi_irq_disable(struct sprd_spi *ss) 472 { 473 writel_relaxed(0, ss->base + SPRD_SPI_INT_EN); 474 } 475 476 static void sprd_spi_dma_enable(struct sprd_spi *ss, bool enable) 477 { 478 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL2); 479 480 if (enable) 481 val |= SPRD_SPI_DMA_EN; 482 else 483 val &= ~SPRD_SPI_DMA_EN; 484 485 writel_relaxed(val, ss->base + SPRD_SPI_CTL2); 486 } 487 488 static int sprd_spi_dma_submit(struct dma_chan *dma_chan, 489 struct dma_slave_config *c, 490 struct sg_table *sg, 491 enum dma_transfer_direction dir) 492 { 493 struct dma_async_tx_descriptor *desc; 494 dma_cookie_t cookie; 495 unsigned long flags; 496 int ret; 497 498 ret = dmaengine_slave_config(dma_chan, c); 499 if (ret < 0) 500 return ret; 501 502 flags = SPRD_DMA_FLAGS(SPRD_DMA_CHN_MODE_NONE, SPRD_DMA_NO_TRG, 503 SPRD_DMA_FRAG_REQ, SPRD_DMA_TRANS_INT); 504 desc = dmaengine_prep_slave_sg(dma_chan, sg->sgl, sg->nents, dir, flags); 505 if (!desc) 506 return -ENODEV; 507 508 cookie = dmaengine_submit(desc); 509 if (dma_submit_error(cookie)) 510 return dma_submit_error(cookie); 511 512 dma_async_issue_pending(dma_chan); 513 514 return 0; 515 } 516 517 static int sprd_spi_dma_rx_config(struct sprd_spi *ss, struct spi_transfer *t) 518 { 519 struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_RX]; 520 struct dma_slave_config config = { 521 .src_addr = ss->phy_base, 522 .src_addr_width = ss->dma.width, 523 .dst_addr_width = ss->dma.width, 524 .dst_maxburst = ss->dma.fragmens_len, 525 }; 526 int ret; 527 528 ret = sprd_spi_dma_submit(dma_chan, &config, &t->rx_sg, DMA_DEV_TO_MEM); 529 if (ret) 530 return ret; 531 532 return ss->dma.rx_len; 533 } 534 535 static int sprd_spi_dma_tx_config(struct sprd_spi *ss, struct spi_transfer *t) 536 { 537 struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_TX]; 538 struct dma_slave_config config = { 539 .dst_addr = ss->phy_base, 540 .src_addr_width = ss->dma.width, 541 .dst_addr_width = ss->dma.width, 542 .src_maxburst = ss->dma.fragmens_len, 543 }; 544 int ret; 545 546 ret = sprd_spi_dma_submit(dma_chan, &config, &t->tx_sg, DMA_MEM_TO_DEV); 547 if (ret) 548 return ret; 549 550 return t->len; 551 } 552 553 static int sprd_spi_dma_request(struct sprd_spi *ss) 554 { 555 ss->dma.dma_chan[SPRD_SPI_RX] = dma_request_chan(ss->dev, "rx_chn"); 556 if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_RX])) { 557 if (PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]) == -EPROBE_DEFER) 558 return PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]); 559 560 dev_err(ss->dev, "request RX DMA channel failed!\n"); 561 return PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]); 562 } 563 564 ss->dma.dma_chan[SPRD_SPI_TX] = dma_request_chan(ss->dev, "tx_chn"); 565 if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_TX])) { 566 if (PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]) == -EPROBE_DEFER) 567 return PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]); 568 569 dev_err(ss->dev, "request TX DMA channel failed!\n"); 570 dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]); 571 return PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]); 572 } 573 574 return 0; 575 } 576 577 static void sprd_spi_dma_release(struct sprd_spi *ss) 578 { 579 if (ss->dma.dma_chan[SPRD_SPI_RX]) 580 dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]); 581 582 if (ss->dma.dma_chan[SPRD_SPI_TX]) 583 dma_release_channel(ss->dma.dma_chan[SPRD_SPI_TX]); 584 } 585 586 static int sprd_spi_dma_txrx_bufs(struct spi_device *sdev, 587 struct spi_transfer *t) 588 { 589 struct sprd_spi *ss = spi_master_get_devdata(sdev->master); 590 u32 trans_len = ss->trans_len; 591 int ret, write_size = 0; 592 593 reinit_completion(&ss->xfer_completion); 594 sprd_spi_irq_enable(ss); 595 if (ss->trans_mode & SPRD_SPI_TX_MODE) { 596 write_size = sprd_spi_dma_tx_config(ss, t); 597 sprd_spi_set_tx_length(ss, trans_len); 598 599 /* 600 * For our 3 wires mode or dual TX line mode, we need 601 * to request the controller to transfer. 602 */ 603 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) 604 sprd_spi_tx_req(ss); 605 } else { 606 sprd_spi_set_rx_length(ss, trans_len); 607 608 /* 609 * For our 3 wires mode or dual TX line mode, we need 610 * to request the controller to read. 611 */ 612 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) 613 sprd_spi_rx_req(ss); 614 else 615 write_size = ss->write_bufs(ss, trans_len); 616 } 617 618 if (write_size < 0) { 619 ret = write_size; 620 dev_err(ss->dev, "failed to write, ret = %d\n", ret); 621 goto trans_complete; 622 } 623 624 if (ss->trans_mode & SPRD_SPI_RX_MODE) { 625 /* 626 * Set up the DMA receive data length, which must be an 627 * integral multiple of fragment length. But when the length 628 * of received data is less than fragment length, DMA can be 629 * configured to receive data according to the actual length 630 * of received data. 631 */ 632 ss->dma.rx_len = t->len > ss->dma.fragmens_len ? 633 (t->len - t->len % ss->dma.fragmens_len) : 634 t->len; 635 ret = sprd_spi_dma_rx_config(ss, t); 636 if (ret < 0) { 637 dev_err(&sdev->dev, 638 "failed to configure rx DMA, ret = %d\n", ret); 639 goto trans_complete; 640 } 641 } 642 643 sprd_spi_dma_enable(ss, true); 644 wait_for_completion(&(ss->xfer_completion)); 645 646 if (ss->trans_mode & SPRD_SPI_TX_MODE) 647 ret = write_size; 648 else 649 ret = ss->dma.rx_len; 650 651 trans_complete: 652 sprd_spi_dma_enable(ss, false); 653 sprd_spi_enter_idle(ss); 654 sprd_spi_irq_disable(ss); 655 656 return ret; 657 } 658 659 static void sprd_spi_set_speed(struct sprd_spi *ss, u32 speed_hz) 660 { 661 /* 662 * From SPI datasheet, the prescale calculation formula: 663 * prescale = SPI source clock / (2 * SPI_freq) - 1; 664 */ 665 u32 clk_div = DIV_ROUND_UP(ss->src_clk, speed_hz << 1) - 1; 666 667 /* Save the real hardware speed */ 668 ss->hw_speed_hz = (ss->src_clk >> 1) / (clk_div + 1); 669 writel_relaxed(clk_div, ss->base + SPRD_SPI_CLKD); 670 } 671 672 static void sprd_spi_init_hw(struct sprd_spi *ss, struct spi_transfer *t) 673 { 674 u16 word_delay, interval; 675 u32 val; 676 677 val = readl_relaxed(ss->base + SPRD_SPI_CTL7); 678 val &= ~(SPRD_SPI_SCK_REV | SPRD_SPI_NG_TX | SPRD_SPI_NG_RX); 679 /* Set default chip selection, clock phase and clock polarity */ 680 val |= ss->hw_mode & SPI_CPHA ? SPRD_SPI_NG_RX : SPRD_SPI_NG_TX; 681 val |= ss->hw_mode & SPI_CPOL ? SPRD_SPI_SCK_REV : 0; 682 writel_relaxed(val, ss->base + SPRD_SPI_CTL0); 683 684 /* 685 * Set the intervals of two SPI frames, and the inteval calculation 686 * formula as below per datasheet: 687 * interval time (source clock cycles) = interval * 4 + 10. 688 */ 689 word_delay = clamp_t(u16, t->word_delay, SPRD_SPI_MIN_DELAY_CYCLE, 690 SPRD_SPI_MAX_DELAY_CYCLE); 691 interval = DIV_ROUND_UP(word_delay - 10, 4); 692 ss->word_delay = interval * 4 + 10; 693 writel_relaxed(interval, ss->base + SPRD_SPI_CTL5); 694 695 /* Reset SPI fifo */ 696 writel_relaxed(1, ss->base + SPRD_SPI_FIFO_RST); 697 writel_relaxed(0, ss->base + SPRD_SPI_FIFO_RST); 698 699 /* Set SPI work mode */ 700 val = readl_relaxed(ss->base + SPRD_SPI_CTL7); 701 val &= ~SPRD_SPI_MODE_MASK; 702 703 if (ss->hw_mode & SPI_3WIRE) 704 val |= SPRD_SPI_3WIRE_MODE << SPRD_SPI_MODE_OFFSET; 705 else 706 val |= SPRD_SPI_4WIRE_MODE << SPRD_SPI_MODE_OFFSET; 707 708 if (ss->hw_mode & SPI_TX_DUAL) 709 val |= SPRD_SPI_DATA_LINE2_EN; 710 else 711 val &= ~SPRD_SPI_DATA_LINE2_EN; 712 713 writel_relaxed(val, ss->base + SPRD_SPI_CTL7); 714 } 715 716 static int sprd_spi_setup_transfer(struct spi_device *sdev, 717 struct spi_transfer *t) 718 { 719 struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller); 720 u8 bits_per_word = t->bits_per_word; 721 u32 val, mode = 0; 722 723 ss->len = t->len; 724 ss->tx_buf = t->tx_buf; 725 ss->rx_buf = t->rx_buf; 726 727 ss->hw_mode = sdev->mode; 728 sprd_spi_init_hw(ss, t); 729 730 /* Set tansfer speed and valid bits */ 731 sprd_spi_set_speed(ss, t->speed_hz); 732 sprd_spi_set_transfer_bits(ss, bits_per_word); 733 734 if (bits_per_word > 16) 735 bits_per_word = round_up(bits_per_word, 16); 736 else 737 bits_per_word = round_up(bits_per_word, 8); 738 739 switch (bits_per_word) { 740 case 8: 741 ss->trans_len = t->len; 742 ss->read_bufs = sprd_spi_read_bufs_u8; 743 ss->write_bufs = sprd_spi_write_bufs_u8; 744 ss->dma.width = DMA_SLAVE_BUSWIDTH_1_BYTE; 745 ss->dma.fragmens_len = SPRD_SPI_DMA_STEP; 746 break; 747 case 16: 748 ss->trans_len = t->len >> 1; 749 ss->read_bufs = sprd_spi_read_bufs_u16; 750 ss->write_bufs = sprd_spi_write_bufs_u16; 751 ss->dma.width = DMA_SLAVE_BUSWIDTH_2_BYTES; 752 ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 1; 753 break; 754 case 32: 755 ss->trans_len = t->len >> 2; 756 ss->read_bufs = sprd_spi_read_bufs_u32; 757 ss->write_bufs = sprd_spi_write_bufs_u32; 758 ss->dma.width = DMA_SLAVE_BUSWIDTH_4_BYTES; 759 ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 2; 760 break; 761 default: 762 return -EINVAL; 763 } 764 765 /* Set transfer read or write mode */ 766 val = readl_relaxed(ss->base + SPRD_SPI_CTL1); 767 val &= ~SPRD_SPI_RTX_MD_MASK; 768 if (t->tx_buf) 769 mode |= SPRD_SPI_TX_MODE; 770 if (t->rx_buf) 771 mode |= SPRD_SPI_RX_MODE; 772 773 writel_relaxed(val | mode, ss->base + SPRD_SPI_CTL1); 774 775 ss->trans_mode = mode; 776 777 /* 778 * If in only receive mode, we need to trigger the SPI controller to 779 * receive data automatically. 780 */ 781 if (ss->trans_mode == SPRD_SPI_RX_MODE) 782 ss->write_bufs = sprd_spi_write_only_receive; 783 784 return 0; 785 } 786 787 static int sprd_spi_transfer_one(struct spi_controller *sctlr, 788 struct spi_device *sdev, 789 struct spi_transfer *t) 790 { 791 int ret; 792 793 ret = sprd_spi_setup_transfer(sdev, t); 794 if (ret) 795 goto setup_err; 796 797 if (sctlr->can_dma(sctlr, sdev, t)) 798 ret = sprd_spi_dma_txrx_bufs(sdev, t); 799 else 800 ret = sprd_spi_txrx_bufs(sdev, t); 801 802 if (ret == t->len) 803 ret = 0; 804 else if (ret >= 0) 805 ret = -EREMOTEIO; 806 807 setup_err: 808 spi_finalize_current_transfer(sctlr); 809 810 return ret; 811 } 812 813 static irqreturn_t sprd_spi_handle_irq(int irq, void *data) 814 { 815 struct sprd_spi *ss = (struct sprd_spi *)data; 816 u32 val = readl_relaxed(ss->base + SPRD_SPI_INT_MASK_STS); 817 818 if (val & SPRD_SPI_MASK_TX_END) { 819 writel_relaxed(SPRD_SPI_TX_END_CLR, ss->base + SPRD_SPI_INT_CLR); 820 if (!(ss->trans_mode & SPRD_SPI_RX_MODE)) 821 complete(&ss->xfer_completion); 822 823 return IRQ_HANDLED; 824 } 825 826 if (val & SPRD_SPI_MASK_RX_END) { 827 writel_relaxed(SPRD_SPI_RX_END_CLR, ss->base + SPRD_SPI_INT_CLR); 828 if (ss->dma.rx_len < ss->len) { 829 ss->rx_buf += ss->dma.rx_len; 830 ss->dma.rx_len += 831 ss->read_bufs(ss, ss->len - ss->dma.rx_len); 832 } 833 complete(&ss->xfer_completion); 834 835 return IRQ_HANDLED; 836 } 837 838 return IRQ_NONE; 839 } 840 841 static int sprd_spi_irq_init(struct platform_device *pdev, struct sprd_spi *ss) 842 { 843 int ret; 844 845 ss->irq = platform_get_irq(pdev, 0); 846 if (ss->irq < 0) 847 return ss->irq; 848 849 ret = devm_request_irq(&pdev->dev, ss->irq, sprd_spi_handle_irq, 850 0, pdev->name, ss); 851 if (ret) 852 dev_err(&pdev->dev, "failed to request spi irq %d, ret = %d\n", 853 ss->irq, ret); 854 855 return ret; 856 } 857 858 static int sprd_spi_clk_init(struct platform_device *pdev, struct sprd_spi *ss) 859 { 860 struct clk *clk_spi, *clk_parent; 861 862 clk_spi = devm_clk_get(&pdev->dev, "spi"); 863 if (IS_ERR(clk_spi)) { 864 dev_warn(&pdev->dev, "can't get the spi clock\n"); 865 clk_spi = NULL; 866 } 867 868 clk_parent = devm_clk_get(&pdev->dev, "source"); 869 if (IS_ERR(clk_parent)) { 870 dev_warn(&pdev->dev, "can't get the source clock\n"); 871 clk_parent = NULL; 872 } 873 874 ss->clk = devm_clk_get(&pdev->dev, "enable"); 875 if (IS_ERR(ss->clk)) { 876 dev_err(&pdev->dev, "can't get the enable clock\n"); 877 return PTR_ERR(ss->clk); 878 } 879 880 if (!clk_set_parent(clk_spi, clk_parent)) 881 ss->src_clk = clk_get_rate(clk_spi); 882 else 883 ss->src_clk = SPRD_SPI_DEFAULT_SOURCE; 884 885 return 0; 886 } 887 888 static bool sprd_spi_can_dma(struct spi_controller *sctlr, 889 struct spi_device *spi, struct spi_transfer *t) 890 { 891 struct sprd_spi *ss = spi_controller_get_devdata(sctlr); 892 893 return ss->dma.enable && (t->len > SPRD_SPI_FIFO_SIZE); 894 } 895 896 static int sprd_spi_dma_init(struct platform_device *pdev, struct sprd_spi *ss) 897 { 898 int ret; 899 900 ret = sprd_spi_dma_request(ss); 901 if (ret) { 902 if (ret == -EPROBE_DEFER) 903 return ret; 904 905 dev_warn(&pdev->dev, 906 "failed to request dma, enter no dma mode, ret = %d\n", 907 ret); 908 909 return 0; 910 } 911 912 ss->dma.enable = true; 913 914 return 0; 915 } 916 917 static int sprd_spi_probe(struct platform_device *pdev) 918 { 919 struct spi_controller *sctlr; 920 struct resource *res; 921 struct sprd_spi *ss; 922 int ret; 923 924 pdev->id = of_alias_get_id(pdev->dev.of_node, "spi"); 925 sctlr = spi_alloc_master(&pdev->dev, sizeof(*ss)); 926 if (!sctlr) 927 return -ENOMEM; 928 929 ss = spi_controller_get_devdata(sctlr); 930 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 931 ss->base = devm_ioremap_resource(&pdev->dev, res); 932 if (IS_ERR(ss->base)) { 933 ret = PTR_ERR(ss->base); 934 goto free_controller; 935 } 936 937 ss->phy_base = res->start; 938 ss->dev = &pdev->dev; 939 sctlr->dev.of_node = pdev->dev.of_node; 940 sctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE | SPI_TX_DUAL; 941 sctlr->bus_num = pdev->id; 942 sctlr->set_cs = sprd_spi_chipselect; 943 sctlr->transfer_one = sprd_spi_transfer_one; 944 sctlr->can_dma = sprd_spi_can_dma; 945 sctlr->auto_runtime_pm = true; 946 sctlr->max_speed_hz = min_t(u32, ss->src_clk >> 1, 947 SPRD_SPI_MAX_SPEED_HZ); 948 949 init_completion(&ss->xfer_completion); 950 platform_set_drvdata(pdev, sctlr); 951 ret = sprd_spi_clk_init(pdev, ss); 952 if (ret) 953 goto free_controller; 954 955 ret = sprd_spi_irq_init(pdev, ss); 956 if (ret) 957 goto free_controller; 958 959 ret = sprd_spi_dma_init(pdev, ss); 960 if (ret) 961 goto free_controller; 962 963 ret = clk_prepare_enable(ss->clk); 964 if (ret) 965 goto release_dma; 966 967 ret = pm_runtime_set_active(&pdev->dev); 968 if (ret < 0) 969 goto disable_clk; 970 971 pm_runtime_set_autosuspend_delay(&pdev->dev, 972 SPRD_SPI_AUTOSUSPEND_DELAY); 973 pm_runtime_use_autosuspend(&pdev->dev); 974 pm_runtime_enable(&pdev->dev); 975 ret = pm_runtime_get_sync(&pdev->dev); 976 if (ret < 0) { 977 dev_err(&pdev->dev, "failed to resume SPI controller\n"); 978 goto err_rpm_put; 979 } 980 981 ret = devm_spi_register_controller(&pdev->dev, sctlr); 982 if (ret) 983 goto err_rpm_put; 984 985 pm_runtime_mark_last_busy(&pdev->dev); 986 pm_runtime_put_autosuspend(&pdev->dev); 987 988 return 0; 989 990 err_rpm_put: 991 pm_runtime_put_noidle(&pdev->dev); 992 pm_runtime_disable(&pdev->dev); 993 disable_clk: 994 clk_disable_unprepare(ss->clk); 995 release_dma: 996 sprd_spi_dma_release(ss); 997 free_controller: 998 spi_controller_put(sctlr); 999 1000 return ret; 1001 } 1002 1003 static int sprd_spi_remove(struct platform_device *pdev) 1004 { 1005 struct spi_controller *sctlr = platform_get_drvdata(pdev); 1006 struct sprd_spi *ss = spi_controller_get_devdata(sctlr); 1007 int ret; 1008 1009 ret = pm_runtime_get_sync(ss->dev); 1010 if (ret < 0) { 1011 dev_err(ss->dev, "failed to resume SPI controller\n"); 1012 return ret; 1013 } 1014 1015 spi_controller_suspend(sctlr); 1016 1017 if (ss->dma.enable) 1018 sprd_spi_dma_release(ss); 1019 clk_disable_unprepare(ss->clk); 1020 pm_runtime_put_noidle(&pdev->dev); 1021 pm_runtime_disable(&pdev->dev); 1022 1023 return 0; 1024 } 1025 1026 static int __maybe_unused sprd_spi_runtime_suspend(struct device *dev) 1027 { 1028 struct spi_controller *sctlr = dev_get_drvdata(dev); 1029 struct sprd_spi *ss = spi_controller_get_devdata(sctlr); 1030 1031 if (ss->dma.enable) 1032 sprd_spi_dma_release(ss); 1033 1034 clk_disable_unprepare(ss->clk); 1035 1036 return 0; 1037 } 1038 1039 static int __maybe_unused sprd_spi_runtime_resume(struct device *dev) 1040 { 1041 struct spi_controller *sctlr = dev_get_drvdata(dev); 1042 struct sprd_spi *ss = spi_controller_get_devdata(sctlr); 1043 int ret; 1044 1045 ret = clk_prepare_enable(ss->clk); 1046 if (ret) 1047 return ret; 1048 1049 if (!ss->dma.enable) 1050 return 0; 1051 1052 ret = sprd_spi_dma_request(ss); 1053 if (ret) 1054 clk_disable_unprepare(ss->clk); 1055 1056 return ret; 1057 } 1058 1059 static const struct dev_pm_ops sprd_spi_pm_ops = { 1060 SET_RUNTIME_PM_OPS(sprd_spi_runtime_suspend, 1061 sprd_spi_runtime_resume, NULL) 1062 }; 1063 1064 static const struct of_device_id sprd_spi_of_match[] = { 1065 { .compatible = "sprd,sc9860-spi", }, 1066 { /* sentinel */ } 1067 }; 1068 1069 static struct platform_driver sprd_spi_driver = { 1070 .driver = { 1071 .name = "sprd-spi", 1072 .of_match_table = sprd_spi_of_match, 1073 .pm = &sprd_spi_pm_ops, 1074 }, 1075 .probe = sprd_spi_probe, 1076 .remove = sprd_spi_remove, 1077 }; 1078 1079 module_platform_driver(sprd_spi_driver); 1080 1081 MODULE_DESCRIPTION("Spreadtrum SPI Controller driver"); 1082 MODULE_AUTHOR("Lanqing Liu <lanqing.liu@spreadtrum.com>"); 1083 MODULE_LICENSE("GPL v2"); 1084