1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2018 Spreadtrum Communications Inc. 3 4 #include <linux/clk.h> 5 #include <linux/dmaengine.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/dma/sprd-dma.h> 8 #include <linux/interrupt.h> 9 #include <linux/io.h> 10 #include <linux/iopoll.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/of.h> 14 #include <linux/of_device.h> 15 #include <linux/of_dma.h> 16 #include <linux/platform_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/spi/spi.h> 19 20 #define SPRD_SPI_TXD 0x0 21 #define SPRD_SPI_CLKD 0x4 22 #define SPRD_SPI_CTL0 0x8 23 #define SPRD_SPI_CTL1 0xc 24 #define SPRD_SPI_CTL2 0x10 25 #define SPRD_SPI_CTL3 0x14 26 #define SPRD_SPI_CTL4 0x18 27 #define SPRD_SPI_CTL5 0x1c 28 #define SPRD_SPI_INT_EN 0x20 29 #define SPRD_SPI_INT_CLR 0x24 30 #define SPRD_SPI_INT_RAW_STS 0x28 31 #define SPRD_SPI_INT_MASK_STS 0x2c 32 #define SPRD_SPI_STS1 0x30 33 #define SPRD_SPI_STS2 0x34 34 #define SPRD_SPI_DSP_WAIT 0x38 35 #define SPRD_SPI_STS3 0x3c 36 #define SPRD_SPI_CTL6 0x40 37 #define SPRD_SPI_STS4 0x44 38 #define SPRD_SPI_FIFO_RST 0x48 39 #define SPRD_SPI_CTL7 0x4c 40 #define SPRD_SPI_STS5 0x50 41 #define SPRD_SPI_CTL8 0x54 42 #define SPRD_SPI_CTL9 0x58 43 #define SPRD_SPI_CTL10 0x5c 44 #define SPRD_SPI_CTL11 0x60 45 #define SPRD_SPI_CTL12 0x64 46 #define SPRD_SPI_STS6 0x68 47 #define SPRD_SPI_STS7 0x6c 48 #define SPRD_SPI_STS8 0x70 49 #define SPRD_SPI_STS9 0x74 50 51 /* Bits & mask definition for register CTL0 */ 52 #define SPRD_SPI_SCK_REV BIT(13) 53 #define SPRD_SPI_NG_TX BIT(1) 54 #define SPRD_SPI_NG_RX BIT(0) 55 #define SPRD_SPI_CHNL_LEN_MASK GENMASK(4, 0) 56 #define SPRD_SPI_CSN_MASK GENMASK(11, 8) 57 #define SPRD_SPI_CS0_VALID BIT(8) 58 59 /* Bits & mask definition for register SPI_INT_EN */ 60 #define SPRD_SPI_TX_END_INT_EN BIT(8) 61 #define SPRD_SPI_RX_END_INT_EN BIT(9) 62 63 /* Bits & mask definition for register SPI_INT_RAW_STS */ 64 #define SPRD_SPI_TX_END_RAW BIT(8) 65 #define SPRD_SPI_RX_END_RAW BIT(9) 66 67 /* Bits & mask definition for register SPI_INT_CLR */ 68 #define SPRD_SPI_TX_END_CLR BIT(8) 69 #define SPRD_SPI_RX_END_CLR BIT(9) 70 71 /* Bits & mask definition for register INT_MASK_STS */ 72 #define SPRD_SPI_MASK_RX_END BIT(9) 73 #define SPRD_SPI_MASK_TX_END BIT(8) 74 75 /* Bits & mask definition for register STS2 */ 76 #define SPRD_SPI_TX_BUSY BIT(8) 77 78 /* Bits & mask definition for register CTL1 */ 79 #define SPRD_SPI_RX_MODE BIT(12) 80 #define SPRD_SPI_TX_MODE BIT(13) 81 #define SPRD_SPI_RTX_MD_MASK GENMASK(13, 12) 82 83 /* Bits & mask definition for register CTL2 */ 84 #define SPRD_SPI_DMA_EN BIT(6) 85 86 /* Bits & mask definition for register CTL4 */ 87 #define SPRD_SPI_START_RX BIT(9) 88 #define SPRD_SPI_ONLY_RECV_MASK GENMASK(8, 0) 89 90 /* Bits & mask definition for register SPI_INT_CLR */ 91 #define SPRD_SPI_RX_END_INT_CLR BIT(9) 92 #define SPRD_SPI_TX_END_INT_CLR BIT(8) 93 94 /* Bits & mask definition for register SPI_INT_RAW */ 95 #define SPRD_SPI_RX_END_IRQ BIT(9) 96 #define SPRD_SPI_TX_END_IRQ BIT(8) 97 98 /* Bits & mask definition for register CTL12 */ 99 #define SPRD_SPI_SW_RX_REQ BIT(0) 100 #define SPRD_SPI_SW_TX_REQ BIT(1) 101 102 /* Bits & mask definition for register CTL7 */ 103 #define SPRD_SPI_DATA_LINE2_EN BIT(15) 104 #define SPRD_SPI_MODE_MASK GENMASK(5, 3) 105 #define SPRD_SPI_MODE_OFFSET 3 106 #define SPRD_SPI_3WIRE_MODE 4 107 #define SPRD_SPI_4WIRE_MODE 0 108 109 /* Bits & mask definition for register CTL8 */ 110 #define SPRD_SPI_TX_MAX_LEN_MASK GENMASK(19, 0) 111 #define SPRD_SPI_TX_LEN_H_MASK GENMASK(3, 0) 112 #define SPRD_SPI_TX_LEN_H_OFFSET 16 113 114 /* Bits & mask definition for register CTL9 */ 115 #define SPRD_SPI_TX_LEN_L_MASK GENMASK(15, 0) 116 117 /* Bits & mask definition for register CTL10 */ 118 #define SPRD_SPI_RX_MAX_LEN_MASK GENMASK(19, 0) 119 #define SPRD_SPI_RX_LEN_H_MASK GENMASK(3, 0) 120 #define SPRD_SPI_RX_LEN_H_OFFSET 16 121 122 /* Bits & mask definition for register CTL11 */ 123 #define SPRD_SPI_RX_LEN_L_MASK GENMASK(15, 0) 124 125 /* Default & maximum word delay cycles */ 126 #define SPRD_SPI_MIN_DELAY_CYCLE 14 127 #define SPRD_SPI_MAX_DELAY_CYCLE 130 128 129 #define SPRD_SPI_FIFO_SIZE 32 130 #define SPRD_SPI_CHIP_CS_NUM 0x4 131 #define SPRD_SPI_CHNL_LEN 2 132 #define SPRD_SPI_DEFAULT_SOURCE 26000000 133 #define SPRD_SPI_MAX_SPEED_HZ 48000000 134 #define SPRD_SPI_AUTOSUSPEND_DELAY 100 135 #define SPRD_SPI_DMA_STEP 8 136 137 enum sprd_spi_dma_channel { 138 SPRD_SPI_RX, 139 SPRD_SPI_TX, 140 SPRD_SPI_MAX, 141 }; 142 143 struct sprd_spi_dma { 144 bool enable; 145 struct dma_chan *dma_chan[SPRD_SPI_MAX]; 146 enum dma_slave_buswidth width; 147 u32 fragmens_len; 148 u32 rx_len; 149 }; 150 151 struct sprd_spi { 152 void __iomem *base; 153 phys_addr_t phy_base; 154 struct device *dev; 155 struct clk *clk; 156 int irq; 157 u32 src_clk; 158 u32 hw_mode; 159 u32 trans_len; 160 u32 trans_mode; 161 u32 word_delay; 162 u32 hw_speed_hz; 163 u32 len; 164 int status; 165 struct sprd_spi_dma dma; 166 struct completion xfer_completion; 167 const void *tx_buf; 168 void *rx_buf; 169 int (*read_bufs)(struct sprd_spi *ss, u32 len); 170 int (*write_bufs)(struct sprd_spi *ss, u32 len); 171 }; 172 173 static u32 sprd_spi_transfer_max_timeout(struct sprd_spi *ss, 174 struct spi_transfer *t) 175 { 176 /* 177 * The time spent on transmission of the full FIFO data is the maximum 178 * SPI transmission time. 179 */ 180 u32 size = t->bits_per_word * SPRD_SPI_FIFO_SIZE; 181 u32 bit_time_us = DIV_ROUND_UP(USEC_PER_SEC, ss->hw_speed_hz); 182 u32 total_time_us = size * bit_time_us; 183 /* 184 * There is an interval between data and the data in our SPI hardware, 185 * so the total transmission time need add the interval time. 186 */ 187 u32 interval_cycle = SPRD_SPI_FIFO_SIZE * ss->word_delay; 188 u32 interval_time_us = DIV_ROUND_UP(interval_cycle * USEC_PER_SEC, 189 ss->src_clk); 190 191 return total_time_us + interval_time_us; 192 } 193 194 static int sprd_spi_wait_for_tx_end(struct sprd_spi *ss, struct spi_transfer *t) 195 { 196 u32 val, us; 197 int ret; 198 199 us = sprd_spi_transfer_max_timeout(ss, t); 200 ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val, 201 val & SPRD_SPI_TX_END_IRQ, 0, us); 202 if (ret) { 203 dev_err(ss->dev, "SPI error, spi send timeout!\n"); 204 return ret; 205 } 206 207 ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_STS2, val, 208 !(val & SPRD_SPI_TX_BUSY), 0, us); 209 if (ret) { 210 dev_err(ss->dev, "SPI error, spi busy timeout!\n"); 211 return ret; 212 } 213 214 writel_relaxed(SPRD_SPI_TX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR); 215 216 return 0; 217 } 218 219 static int sprd_spi_wait_for_rx_end(struct sprd_spi *ss, struct spi_transfer *t) 220 { 221 u32 val, us; 222 int ret; 223 224 us = sprd_spi_transfer_max_timeout(ss, t); 225 ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val, 226 val & SPRD_SPI_RX_END_IRQ, 0, us); 227 if (ret) { 228 dev_err(ss->dev, "SPI error, spi rx timeout!\n"); 229 return ret; 230 } 231 232 writel_relaxed(SPRD_SPI_RX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR); 233 234 return 0; 235 } 236 237 static void sprd_spi_tx_req(struct sprd_spi *ss) 238 { 239 writel_relaxed(SPRD_SPI_SW_TX_REQ, ss->base + SPRD_SPI_CTL12); 240 } 241 242 static void sprd_spi_rx_req(struct sprd_spi *ss) 243 { 244 writel_relaxed(SPRD_SPI_SW_RX_REQ, ss->base + SPRD_SPI_CTL12); 245 } 246 247 static void sprd_spi_enter_idle(struct sprd_spi *ss) 248 { 249 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL1); 250 251 val &= ~SPRD_SPI_RTX_MD_MASK; 252 writel_relaxed(val, ss->base + SPRD_SPI_CTL1); 253 } 254 255 static void sprd_spi_set_transfer_bits(struct sprd_spi *ss, u32 bits) 256 { 257 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL0); 258 259 /* Set the valid bits for every transaction */ 260 val &= ~(SPRD_SPI_CHNL_LEN_MASK << SPRD_SPI_CHNL_LEN); 261 val |= bits << SPRD_SPI_CHNL_LEN; 262 writel_relaxed(val, ss->base + SPRD_SPI_CTL0); 263 } 264 265 static void sprd_spi_set_tx_length(struct sprd_spi *ss, u32 length) 266 { 267 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL8); 268 269 length &= SPRD_SPI_TX_MAX_LEN_MASK; 270 val &= ~SPRD_SPI_TX_LEN_H_MASK; 271 val |= length >> SPRD_SPI_TX_LEN_H_OFFSET; 272 writel_relaxed(val, ss->base + SPRD_SPI_CTL8); 273 274 val = length & SPRD_SPI_TX_LEN_L_MASK; 275 writel_relaxed(val, ss->base + SPRD_SPI_CTL9); 276 } 277 278 static void sprd_spi_set_rx_length(struct sprd_spi *ss, u32 length) 279 { 280 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL10); 281 282 length &= SPRD_SPI_RX_MAX_LEN_MASK; 283 val &= ~SPRD_SPI_RX_LEN_H_MASK; 284 val |= length >> SPRD_SPI_RX_LEN_H_OFFSET; 285 writel_relaxed(val, ss->base + SPRD_SPI_CTL10); 286 287 val = length & SPRD_SPI_RX_LEN_L_MASK; 288 writel_relaxed(val, ss->base + SPRD_SPI_CTL11); 289 } 290 291 static void sprd_spi_chipselect(struct spi_device *sdev, bool cs) 292 { 293 struct spi_controller *sctlr = sdev->controller; 294 struct sprd_spi *ss = spi_controller_get_devdata(sctlr); 295 u32 val; 296 297 val = readl_relaxed(ss->base + SPRD_SPI_CTL0); 298 /* The SPI controller will pull down CS pin if cs is 0 */ 299 if (!cs) { 300 val &= ~SPRD_SPI_CS0_VALID; 301 writel_relaxed(val, ss->base + SPRD_SPI_CTL0); 302 } else { 303 val |= SPRD_SPI_CSN_MASK; 304 writel_relaxed(val, ss->base + SPRD_SPI_CTL0); 305 } 306 } 307 308 static int sprd_spi_write_only_receive(struct sprd_spi *ss, u32 len) 309 { 310 u32 val; 311 312 /* Clear the start receive bit and reset receive data number */ 313 val = readl_relaxed(ss->base + SPRD_SPI_CTL4); 314 val &= ~(SPRD_SPI_START_RX | SPRD_SPI_ONLY_RECV_MASK); 315 writel_relaxed(val, ss->base + SPRD_SPI_CTL4); 316 317 /* Set the receive data length */ 318 val = readl_relaxed(ss->base + SPRD_SPI_CTL4); 319 val |= len & SPRD_SPI_ONLY_RECV_MASK; 320 writel_relaxed(val, ss->base + SPRD_SPI_CTL4); 321 322 /* Trigger to receive data */ 323 val = readl_relaxed(ss->base + SPRD_SPI_CTL4); 324 val |= SPRD_SPI_START_RX; 325 writel_relaxed(val, ss->base + SPRD_SPI_CTL4); 326 327 return len; 328 } 329 330 static int sprd_spi_write_bufs_u8(struct sprd_spi *ss, u32 len) 331 { 332 u8 *tx_p = (u8 *)ss->tx_buf; 333 int i; 334 335 for (i = 0; i < len; i++) 336 writeb_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD); 337 338 ss->tx_buf += i; 339 return i; 340 } 341 342 static int sprd_spi_write_bufs_u16(struct sprd_spi *ss, u32 len) 343 { 344 u16 *tx_p = (u16 *)ss->tx_buf; 345 int i; 346 347 for (i = 0; i < len; i++) 348 writew_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD); 349 350 ss->tx_buf += i << 1; 351 return i << 1; 352 } 353 354 static int sprd_spi_write_bufs_u32(struct sprd_spi *ss, u32 len) 355 { 356 u32 *tx_p = (u32 *)ss->tx_buf; 357 int i; 358 359 for (i = 0; i < len; i++) 360 writel_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD); 361 362 ss->tx_buf += i << 2; 363 return i << 2; 364 } 365 366 static int sprd_spi_read_bufs_u8(struct sprd_spi *ss, u32 len) 367 { 368 u8 *rx_p = (u8 *)ss->rx_buf; 369 int i; 370 371 for (i = 0; i < len; i++) 372 rx_p[i] = readb_relaxed(ss->base + SPRD_SPI_TXD); 373 374 ss->rx_buf += i; 375 return i; 376 } 377 378 static int sprd_spi_read_bufs_u16(struct sprd_spi *ss, u32 len) 379 { 380 u16 *rx_p = (u16 *)ss->rx_buf; 381 int i; 382 383 for (i = 0; i < len; i++) 384 rx_p[i] = readw_relaxed(ss->base + SPRD_SPI_TXD); 385 386 ss->rx_buf += i << 1; 387 return i << 1; 388 } 389 390 static int sprd_spi_read_bufs_u32(struct sprd_spi *ss, u32 len) 391 { 392 u32 *rx_p = (u32 *)ss->rx_buf; 393 int i; 394 395 for (i = 0; i < len; i++) 396 rx_p[i] = readl_relaxed(ss->base + SPRD_SPI_TXD); 397 398 ss->rx_buf += i << 2; 399 return i << 2; 400 } 401 402 static int sprd_spi_txrx_bufs(struct spi_device *sdev, struct spi_transfer *t) 403 { 404 struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller); 405 u32 trans_len = ss->trans_len, len; 406 int ret, write_size = 0, read_size = 0; 407 408 while (trans_len) { 409 len = trans_len > SPRD_SPI_FIFO_SIZE ? SPRD_SPI_FIFO_SIZE : 410 trans_len; 411 if (ss->trans_mode & SPRD_SPI_TX_MODE) { 412 sprd_spi_set_tx_length(ss, len); 413 write_size += ss->write_bufs(ss, len); 414 415 /* 416 * For our 3 wires mode or dual TX line mode, we need 417 * to request the controller to transfer. 418 */ 419 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) 420 sprd_spi_tx_req(ss); 421 422 ret = sprd_spi_wait_for_tx_end(ss, t); 423 } else { 424 sprd_spi_set_rx_length(ss, len); 425 426 /* 427 * For our 3 wires mode or dual TX line mode, we need 428 * to request the controller to read. 429 */ 430 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) 431 sprd_spi_rx_req(ss); 432 else 433 write_size += ss->write_bufs(ss, len); 434 435 ret = sprd_spi_wait_for_rx_end(ss, t); 436 } 437 438 if (ret) 439 goto complete; 440 441 if (ss->trans_mode & SPRD_SPI_RX_MODE) 442 read_size += ss->read_bufs(ss, len); 443 444 trans_len -= len; 445 } 446 447 if (ss->trans_mode & SPRD_SPI_TX_MODE) 448 ret = write_size; 449 else 450 ret = read_size; 451 complete: 452 sprd_spi_enter_idle(ss); 453 454 return ret; 455 } 456 457 static void sprd_spi_irq_enable(struct sprd_spi *ss) 458 { 459 u32 val; 460 461 /* Clear interrupt status before enabling interrupt. */ 462 writel_relaxed(SPRD_SPI_TX_END_CLR | SPRD_SPI_RX_END_CLR, 463 ss->base + SPRD_SPI_INT_CLR); 464 /* Enable SPI interrupt only in DMA mode. */ 465 val = readl_relaxed(ss->base + SPRD_SPI_INT_EN); 466 writel_relaxed(val | SPRD_SPI_TX_END_INT_EN | 467 SPRD_SPI_RX_END_INT_EN, 468 ss->base + SPRD_SPI_INT_EN); 469 } 470 471 static void sprd_spi_irq_disable(struct sprd_spi *ss) 472 { 473 writel_relaxed(0, ss->base + SPRD_SPI_INT_EN); 474 } 475 476 static void sprd_spi_dma_enable(struct sprd_spi *ss, bool enable) 477 { 478 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL2); 479 480 if (enable) 481 val |= SPRD_SPI_DMA_EN; 482 else 483 val &= ~SPRD_SPI_DMA_EN; 484 485 writel_relaxed(val, ss->base + SPRD_SPI_CTL2); 486 } 487 488 static int sprd_spi_dma_submit(struct dma_chan *dma_chan, 489 struct dma_slave_config *c, 490 struct sg_table *sg, 491 enum dma_transfer_direction dir) 492 { 493 struct dma_async_tx_descriptor *desc; 494 dma_cookie_t cookie; 495 unsigned long flags; 496 int ret; 497 498 ret = dmaengine_slave_config(dma_chan, c); 499 if (ret < 0) 500 return ret; 501 502 flags = SPRD_DMA_FLAGS(SPRD_DMA_CHN_MODE_NONE, SPRD_DMA_NO_TRG, 503 SPRD_DMA_FRAG_REQ, SPRD_DMA_TRANS_INT); 504 desc = dmaengine_prep_slave_sg(dma_chan, sg->sgl, sg->nents, dir, flags); 505 if (!desc) 506 return -ENODEV; 507 508 cookie = dmaengine_submit(desc); 509 if (dma_submit_error(cookie)) 510 return dma_submit_error(cookie); 511 512 dma_async_issue_pending(dma_chan); 513 514 return 0; 515 } 516 517 static int sprd_spi_dma_rx_config(struct sprd_spi *ss, struct spi_transfer *t) 518 { 519 struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_RX]; 520 struct dma_slave_config config = { 521 .src_addr = ss->phy_base, 522 .src_addr_width = ss->dma.width, 523 .dst_addr_width = ss->dma.width, 524 .dst_maxburst = ss->dma.fragmens_len, 525 }; 526 int ret; 527 528 ret = sprd_spi_dma_submit(dma_chan, &config, &t->rx_sg, DMA_DEV_TO_MEM); 529 if (ret) 530 return ret; 531 532 return ss->dma.rx_len; 533 } 534 535 static int sprd_spi_dma_tx_config(struct sprd_spi *ss, struct spi_transfer *t) 536 { 537 struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_TX]; 538 struct dma_slave_config config = { 539 .dst_addr = ss->phy_base, 540 .src_addr_width = ss->dma.width, 541 .dst_addr_width = ss->dma.width, 542 .src_maxburst = ss->dma.fragmens_len, 543 }; 544 int ret; 545 546 ret = sprd_spi_dma_submit(dma_chan, &config, &t->tx_sg, DMA_MEM_TO_DEV); 547 if (ret) 548 return ret; 549 550 return t->len; 551 } 552 553 static int sprd_spi_dma_request(struct sprd_spi *ss) 554 { 555 ss->dma.dma_chan[SPRD_SPI_RX] = dma_request_chan(ss->dev, "rx_chn"); 556 if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_RX])) 557 return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]), 558 "request RX DMA channel failed!\n"); 559 560 ss->dma.dma_chan[SPRD_SPI_TX] = dma_request_chan(ss->dev, "tx_chn"); 561 if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_TX])) { 562 dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]); 563 return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]), 564 "request TX DMA channel failed!\n"); 565 } 566 567 return 0; 568 } 569 570 static void sprd_spi_dma_release(struct sprd_spi *ss) 571 { 572 if (ss->dma.dma_chan[SPRD_SPI_RX]) 573 dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]); 574 575 if (ss->dma.dma_chan[SPRD_SPI_TX]) 576 dma_release_channel(ss->dma.dma_chan[SPRD_SPI_TX]); 577 } 578 579 static int sprd_spi_dma_txrx_bufs(struct spi_device *sdev, 580 struct spi_transfer *t) 581 { 582 struct sprd_spi *ss = spi_master_get_devdata(sdev->master); 583 u32 trans_len = ss->trans_len; 584 int ret, write_size = 0; 585 586 reinit_completion(&ss->xfer_completion); 587 sprd_spi_irq_enable(ss); 588 if (ss->trans_mode & SPRD_SPI_TX_MODE) { 589 write_size = sprd_spi_dma_tx_config(ss, t); 590 sprd_spi_set_tx_length(ss, trans_len); 591 592 /* 593 * For our 3 wires mode or dual TX line mode, we need 594 * to request the controller to transfer. 595 */ 596 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) 597 sprd_spi_tx_req(ss); 598 } else { 599 sprd_spi_set_rx_length(ss, trans_len); 600 601 /* 602 * For our 3 wires mode or dual TX line mode, we need 603 * to request the controller to read. 604 */ 605 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) 606 sprd_spi_rx_req(ss); 607 else 608 write_size = ss->write_bufs(ss, trans_len); 609 } 610 611 if (write_size < 0) { 612 ret = write_size; 613 dev_err(ss->dev, "failed to write, ret = %d\n", ret); 614 goto trans_complete; 615 } 616 617 if (ss->trans_mode & SPRD_SPI_RX_MODE) { 618 /* 619 * Set up the DMA receive data length, which must be an 620 * integral multiple of fragment length. But when the length 621 * of received data is less than fragment length, DMA can be 622 * configured to receive data according to the actual length 623 * of received data. 624 */ 625 ss->dma.rx_len = t->len > ss->dma.fragmens_len ? 626 (t->len - t->len % ss->dma.fragmens_len) : 627 t->len; 628 ret = sprd_spi_dma_rx_config(ss, t); 629 if (ret < 0) { 630 dev_err(&sdev->dev, 631 "failed to configure rx DMA, ret = %d\n", ret); 632 goto trans_complete; 633 } 634 } 635 636 sprd_spi_dma_enable(ss, true); 637 wait_for_completion(&(ss->xfer_completion)); 638 639 if (ss->trans_mode & SPRD_SPI_TX_MODE) 640 ret = write_size; 641 else 642 ret = ss->dma.rx_len; 643 644 trans_complete: 645 sprd_spi_dma_enable(ss, false); 646 sprd_spi_enter_idle(ss); 647 sprd_spi_irq_disable(ss); 648 649 return ret; 650 } 651 652 static void sprd_spi_set_speed(struct sprd_spi *ss, u32 speed_hz) 653 { 654 /* 655 * From SPI datasheet, the prescale calculation formula: 656 * prescale = SPI source clock / (2 * SPI_freq) - 1; 657 */ 658 u32 clk_div = DIV_ROUND_UP(ss->src_clk, speed_hz << 1) - 1; 659 660 /* Save the real hardware speed */ 661 ss->hw_speed_hz = (ss->src_clk >> 1) / (clk_div + 1); 662 writel_relaxed(clk_div, ss->base + SPRD_SPI_CLKD); 663 } 664 665 static int sprd_spi_init_hw(struct sprd_spi *ss, struct spi_transfer *t) 666 { 667 struct spi_delay *d = &t->word_delay; 668 u16 word_delay, interval; 669 u32 val; 670 671 if (d->unit != SPI_DELAY_UNIT_SCK) 672 return -EINVAL; 673 674 val = readl_relaxed(ss->base + SPRD_SPI_CTL0); 675 val &= ~(SPRD_SPI_SCK_REV | SPRD_SPI_NG_TX | SPRD_SPI_NG_RX); 676 /* Set default chip selection, clock phase and clock polarity */ 677 val |= ss->hw_mode & SPI_CPHA ? SPRD_SPI_NG_RX : SPRD_SPI_NG_TX; 678 val |= ss->hw_mode & SPI_CPOL ? SPRD_SPI_SCK_REV : 0; 679 writel_relaxed(val, ss->base + SPRD_SPI_CTL0); 680 681 /* 682 * Set the intervals of two SPI frames, and the inteval calculation 683 * formula as below per datasheet: 684 * interval time (source clock cycles) = interval * 4 + 10. 685 */ 686 word_delay = clamp_t(u16, d->value, SPRD_SPI_MIN_DELAY_CYCLE, 687 SPRD_SPI_MAX_DELAY_CYCLE); 688 interval = DIV_ROUND_UP(word_delay - 10, 4); 689 ss->word_delay = interval * 4 + 10; 690 writel_relaxed(interval, ss->base + SPRD_SPI_CTL5); 691 692 /* Reset SPI fifo */ 693 writel_relaxed(1, ss->base + SPRD_SPI_FIFO_RST); 694 writel_relaxed(0, ss->base + SPRD_SPI_FIFO_RST); 695 696 /* Set SPI work mode */ 697 val = readl_relaxed(ss->base + SPRD_SPI_CTL7); 698 val &= ~SPRD_SPI_MODE_MASK; 699 700 if (ss->hw_mode & SPI_3WIRE) 701 val |= SPRD_SPI_3WIRE_MODE << SPRD_SPI_MODE_OFFSET; 702 else 703 val |= SPRD_SPI_4WIRE_MODE << SPRD_SPI_MODE_OFFSET; 704 705 if (ss->hw_mode & SPI_TX_DUAL) 706 val |= SPRD_SPI_DATA_LINE2_EN; 707 else 708 val &= ~SPRD_SPI_DATA_LINE2_EN; 709 710 writel_relaxed(val, ss->base + SPRD_SPI_CTL7); 711 712 return 0; 713 } 714 715 static int sprd_spi_setup_transfer(struct spi_device *sdev, 716 struct spi_transfer *t) 717 { 718 struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller); 719 u8 bits_per_word = t->bits_per_word; 720 u32 val, mode = 0; 721 int ret; 722 723 ss->len = t->len; 724 ss->tx_buf = t->tx_buf; 725 ss->rx_buf = t->rx_buf; 726 727 ss->hw_mode = sdev->mode; 728 ret = sprd_spi_init_hw(ss, t); 729 if (ret) 730 return ret; 731 732 /* Set tansfer speed and valid bits */ 733 sprd_spi_set_speed(ss, t->speed_hz); 734 sprd_spi_set_transfer_bits(ss, bits_per_word); 735 736 if (bits_per_word > 16) 737 bits_per_word = round_up(bits_per_word, 16); 738 else 739 bits_per_word = round_up(bits_per_word, 8); 740 741 switch (bits_per_word) { 742 case 8: 743 ss->trans_len = t->len; 744 ss->read_bufs = sprd_spi_read_bufs_u8; 745 ss->write_bufs = sprd_spi_write_bufs_u8; 746 ss->dma.width = DMA_SLAVE_BUSWIDTH_1_BYTE; 747 ss->dma.fragmens_len = SPRD_SPI_DMA_STEP; 748 break; 749 case 16: 750 ss->trans_len = t->len >> 1; 751 ss->read_bufs = sprd_spi_read_bufs_u16; 752 ss->write_bufs = sprd_spi_write_bufs_u16; 753 ss->dma.width = DMA_SLAVE_BUSWIDTH_2_BYTES; 754 ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 1; 755 break; 756 case 32: 757 ss->trans_len = t->len >> 2; 758 ss->read_bufs = sprd_spi_read_bufs_u32; 759 ss->write_bufs = sprd_spi_write_bufs_u32; 760 ss->dma.width = DMA_SLAVE_BUSWIDTH_4_BYTES; 761 ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 2; 762 break; 763 default: 764 return -EINVAL; 765 } 766 767 /* Set transfer read or write mode */ 768 val = readl_relaxed(ss->base + SPRD_SPI_CTL1); 769 val &= ~SPRD_SPI_RTX_MD_MASK; 770 if (t->tx_buf) 771 mode |= SPRD_SPI_TX_MODE; 772 if (t->rx_buf) 773 mode |= SPRD_SPI_RX_MODE; 774 775 writel_relaxed(val | mode, ss->base + SPRD_SPI_CTL1); 776 777 ss->trans_mode = mode; 778 779 /* 780 * If in only receive mode, we need to trigger the SPI controller to 781 * receive data automatically. 782 */ 783 if (ss->trans_mode == SPRD_SPI_RX_MODE) 784 ss->write_bufs = sprd_spi_write_only_receive; 785 786 return 0; 787 } 788 789 static int sprd_spi_transfer_one(struct spi_controller *sctlr, 790 struct spi_device *sdev, 791 struct spi_transfer *t) 792 { 793 int ret; 794 795 ret = sprd_spi_setup_transfer(sdev, t); 796 if (ret) 797 goto setup_err; 798 799 if (sctlr->can_dma(sctlr, sdev, t)) 800 ret = sprd_spi_dma_txrx_bufs(sdev, t); 801 else 802 ret = sprd_spi_txrx_bufs(sdev, t); 803 804 if (ret == t->len) 805 ret = 0; 806 else if (ret >= 0) 807 ret = -EREMOTEIO; 808 809 setup_err: 810 spi_finalize_current_transfer(sctlr); 811 812 return ret; 813 } 814 815 static irqreturn_t sprd_spi_handle_irq(int irq, void *data) 816 { 817 struct sprd_spi *ss = (struct sprd_spi *)data; 818 u32 val = readl_relaxed(ss->base + SPRD_SPI_INT_MASK_STS); 819 820 if (val & SPRD_SPI_MASK_TX_END) { 821 writel_relaxed(SPRD_SPI_TX_END_CLR, ss->base + SPRD_SPI_INT_CLR); 822 if (!(ss->trans_mode & SPRD_SPI_RX_MODE)) 823 complete(&ss->xfer_completion); 824 825 return IRQ_HANDLED; 826 } 827 828 if (val & SPRD_SPI_MASK_RX_END) { 829 writel_relaxed(SPRD_SPI_RX_END_CLR, ss->base + SPRD_SPI_INT_CLR); 830 if (ss->dma.rx_len < ss->len) { 831 ss->rx_buf += ss->dma.rx_len; 832 ss->dma.rx_len += 833 ss->read_bufs(ss, ss->len - ss->dma.rx_len); 834 } 835 complete(&ss->xfer_completion); 836 837 return IRQ_HANDLED; 838 } 839 840 return IRQ_NONE; 841 } 842 843 static int sprd_spi_irq_init(struct platform_device *pdev, struct sprd_spi *ss) 844 { 845 int ret; 846 847 ss->irq = platform_get_irq(pdev, 0); 848 if (ss->irq < 0) 849 return ss->irq; 850 851 ret = devm_request_irq(&pdev->dev, ss->irq, sprd_spi_handle_irq, 852 0, pdev->name, ss); 853 if (ret) 854 dev_err(&pdev->dev, "failed to request spi irq %d, ret = %d\n", 855 ss->irq, ret); 856 857 return ret; 858 } 859 860 static int sprd_spi_clk_init(struct platform_device *pdev, struct sprd_spi *ss) 861 { 862 struct clk *clk_spi, *clk_parent; 863 864 clk_spi = devm_clk_get(&pdev->dev, "spi"); 865 if (IS_ERR(clk_spi)) { 866 dev_warn(&pdev->dev, "can't get the spi clock\n"); 867 clk_spi = NULL; 868 } 869 870 clk_parent = devm_clk_get(&pdev->dev, "source"); 871 if (IS_ERR(clk_parent)) { 872 dev_warn(&pdev->dev, "can't get the source clock\n"); 873 clk_parent = NULL; 874 } 875 876 ss->clk = devm_clk_get(&pdev->dev, "enable"); 877 if (IS_ERR(ss->clk)) { 878 dev_err(&pdev->dev, "can't get the enable clock\n"); 879 return PTR_ERR(ss->clk); 880 } 881 882 if (!clk_set_parent(clk_spi, clk_parent)) 883 ss->src_clk = clk_get_rate(clk_spi); 884 else 885 ss->src_clk = SPRD_SPI_DEFAULT_SOURCE; 886 887 return 0; 888 } 889 890 static bool sprd_spi_can_dma(struct spi_controller *sctlr, 891 struct spi_device *spi, struct spi_transfer *t) 892 { 893 struct sprd_spi *ss = spi_controller_get_devdata(sctlr); 894 895 return ss->dma.enable && (t->len > SPRD_SPI_FIFO_SIZE); 896 } 897 898 static int sprd_spi_dma_init(struct platform_device *pdev, struct sprd_spi *ss) 899 { 900 int ret; 901 902 ret = sprd_spi_dma_request(ss); 903 if (ret) { 904 if (ret == -EPROBE_DEFER) 905 return ret; 906 907 dev_warn(&pdev->dev, 908 "failed to request dma, enter no dma mode, ret = %d\n", 909 ret); 910 911 return 0; 912 } 913 914 ss->dma.enable = true; 915 916 return 0; 917 } 918 919 static int sprd_spi_probe(struct platform_device *pdev) 920 { 921 struct spi_controller *sctlr; 922 struct resource *res; 923 struct sprd_spi *ss; 924 int ret; 925 926 pdev->id = of_alias_get_id(pdev->dev.of_node, "spi"); 927 sctlr = spi_alloc_master(&pdev->dev, sizeof(*ss)); 928 if (!sctlr) 929 return -ENOMEM; 930 931 ss = spi_controller_get_devdata(sctlr); 932 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 933 ss->base = devm_ioremap_resource(&pdev->dev, res); 934 if (IS_ERR(ss->base)) { 935 ret = PTR_ERR(ss->base); 936 goto free_controller; 937 } 938 939 ss->phy_base = res->start; 940 ss->dev = &pdev->dev; 941 sctlr->dev.of_node = pdev->dev.of_node; 942 sctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE | SPI_TX_DUAL; 943 sctlr->bus_num = pdev->id; 944 sctlr->set_cs = sprd_spi_chipselect; 945 sctlr->transfer_one = sprd_spi_transfer_one; 946 sctlr->can_dma = sprd_spi_can_dma; 947 sctlr->auto_runtime_pm = true; 948 sctlr->max_speed_hz = min_t(u32, ss->src_clk >> 1, 949 SPRD_SPI_MAX_SPEED_HZ); 950 951 init_completion(&ss->xfer_completion); 952 platform_set_drvdata(pdev, sctlr); 953 ret = sprd_spi_clk_init(pdev, ss); 954 if (ret) 955 goto free_controller; 956 957 ret = sprd_spi_irq_init(pdev, ss); 958 if (ret) 959 goto free_controller; 960 961 ret = sprd_spi_dma_init(pdev, ss); 962 if (ret) 963 goto free_controller; 964 965 ret = clk_prepare_enable(ss->clk); 966 if (ret) 967 goto release_dma; 968 969 ret = pm_runtime_set_active(&pdev->dev); 970 if (ret < 0) 971 goto disable_clk; 972 973 pm_runtime_set_autosuspend_delay(&pdev->dev, 974 SPRD_SPI_AUTOSUSPEND_DELAY); 975 pm_runtime_use_autosuspend(&pdev->dev); 976 pm_runtime_enable(&pdev->dev); 977 ret = pm_runtime_get_sync(&pdev->dev); 978 if (ret < 0) { 979 dev_err(&pdev->dev, "failed to resume SPI controller\n"); 980 goto err_rpm_put; 981 } 982 983 ret = devm_spi_register_controller(&pdev->dev, sctlr); 984 if (ret) 985 goto err_rpm_put; 986 987 pm_runtime_mark_last_busy(&pdev->dev); 988 pm_runtime_put_autosuspend(&pdev->dev); 989 990 return 0; 991 992 err_rpm_put: 993 pm_runtime_put_noidle(&pdev->dev); 994 pm_runtime_disable(&pdev->dev); 995 disable_clk: 996 clk_disable_unprepare(ss->clk); 997 release_dma: 998 sprd_spi_dma_release(ss); 999 free_controller: 1000 spi_controller_put(sctlr); 1001 1002 return ret; 1003 } 1004 1005 static int sprd_spi_remove(struct platform_device *pdev) 1006 { 1007 struct spi_controller *sctlr = platform_get_drvdata(pdev); 1008 struct sprd_spi *ss = spi_controller_get_devdata(sctlr); 1009 int ret; 1010 1011 ret = pm_runtime_get_sync(ss->dev); 1012 if (ret < 0) { 1013 dev_err(ss->dev, "failed to resume SPI controller\n"); 1014 return ret; 1015 } 1016 1017 spi_controller_suspend(sctlr); 1018 1019 if (ss->dma.enable) 1020 sprd_spi_dma_release(ss); 1021 clk_disable_unprepare(ss->clk); 1022 pm_runtime_put_noidle(&pdev->dev); 1023 pm_runtime_disable(&pdev->dev); 1024 1025 return 0; 1026 } 1027 1028 static int __maybe_unused sprd_spi_runtime_suspend(struct device *dev) 1029 { 1030 struct spi_controller *sctlr = dev_get_drvdata(dev); 1031 struct sprd_spi *ss = spi_controller_get_devdata(sctlr); 1032 1033 if (ss->dma.enable) 1034 sprd_spi_dma_release(ss); 1035 1036 clk_disable_unprepare(ss->clk); 1037 1038 return 0; 1039 } 1040 1041 static int __maybe_unused sprd_spi_runtime_resume(struct device *dev) 1042 { 1043 struct spi_controller *sctlr = dev_get_drvdata(dev); 1044 struct sprd_spi *ss = spi_controller_get_devdata(sctlr); 1045 int ret; 1046 1047 ret = clk_prepare_enable(ss->clk); 1048 if (ret) 1049 return ret; 1050 1051 if (!ss->dma.enable) 1052 return 0; 1053 1054 ret = sprd_spi_dma_request(ss); 1055 if (ret) 1056 clk_disable_unprepare(ss->clk); 1057 1058 return ret; 1059 } 1060 1061 static const struct dev_pm_ops sprd_spi_pm_ops = { 1062 SET_RUNTIME_PM_OPS(sprd_spi_runtime_suspend, 1063 sprd_spi_runtime_resume, NULL) 1064 }; 1065 1066 static const struct of_device_id sprd_spi_of_match[] = { 1067 { .compatible = "sprd,sc9860-spi", }, 1068 { /* sentinel */ } 1069 }; 1070 1071 static struct platform_driver sprd_spi_driver = { 1072 .driver = { 1073 .name = "sprd-spi", 1074 .of_match_table = sprd_spi_of_match, 1075 .pm = &sprd_spi_pm_ops, 1076 }, 1077 .probe = sprd_spi_probe, 1078 .remove = sprd_spi_remove, 1079 }; 1080 1081 module_platform_driver(sprd_spi_driver); 1082 1083 MODULE_DESCRIPTION("Spreadtrum SPI Controller driver"); 1084 MODULE_AUTHOR("Lanqing Liu <lanqing.liu@spreadtrum.com>"); 1085 MODULE_LICENSE("GPL v2"); 1086