xref: /openbmc/linux/drivers/spi/spi-sprd.c (revision 749396cb)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Spreadtrum Communications Inc.
3 
4 #include <linux/clk.h>
5 #include <linux/dmaengine.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/dma/sprd-dma.h>
8 #include <linux/interrupt.h>
9 #include <linux/io.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_dma.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/spi/spi.h>
18 
19 #define SPRD_SPI_TXD			0x0
20 #define SPRD_SPI_CLKD			0x4
21 #define SPRD_SPI_CTL0			0x8
22 #define SPRD_SPI_CTL1			0xc
23 #define SPRD_SPI_CTL2			0x10
24 #define SPRD_SPI_CTL3			0x14
25 #define SPRD_SPI_CTL4			0x18
26 #define SPRD_SPI_CTL5			0x1c
27 #define SPRD_SPI_INT_EN			0x20
28 #define SPRD_SPI_INT_CLR		0x24
29 #define SPRD_SPI_INT_RAW_STS		0x28
30 #define SPRD_SPI_INT_MASK_STS		0x2c
31 #define SPRD_SPI_STS1			0x30
32 #define SPRD_SPI_STS2			0x34
33 #define SPRD_SPI_DSP_WAIT		0x38
34 #define SPRD_SPI_STS3			0x3c
35 #define SPRD_SPI_CTL6			0x40
36 #define SPRD_SPI_STS4			0x44
37 #define SPRD_SPI_FIFO_RST		0x48
38 #define SPRD_SPI_CTL7			0x4c
39 #define SPRD_SPI_STS5			0x50
40 #define SPRD_SPI_CTL8			0x54
41 #define SPRD_SPI_CTL9			0x58
42 #define SPRD_SPI_CTL10			0x5c
43 #define SPRD_SPI_CTL11			0x60
44 #define SPRD_SPI_CTL12			0x64
45 #define SPRD_SPI_STS6			0x68
46 #define SPRD_SPI_STS7			0x6c
47 #define SPRD_SPI_STS8			0x70
48 #define SPRD_SPI_STS9			0x74
49 
50 /* Bits & mask definition for register CTL0 */
51 #define SPRD_SPI_SCK_REV		BIT(13)
52 #define SPRD_SPI_NG_TX			BIT(1)
53 #define SPRD_SPI_NG_RX			BIT(0)
54 #define SPRD_SPI_CHNL_LEN_MASK		GENMASK(4, 0)
55 #define SPRD_SPI_CSN_MASK		GENMASK(11, 8)
56 #define SPRD_SPI_CS0_VALID		BIT(8)
57 
58 /* Bits & mask definition for register SPI_INT_EN */
59 #define SPRD_SPI_TX_END_INT_EN		BIT(8)
60 #define SPRD_SPI_RX_END_INT_EN		BIT(9)
61 
62 /* Bits & mask definition for register SPI_INT_RAW_STS */
63 #define SPRD_SPI_TX_END_RAW		BIT(8)
64 #define SPRD_SPI_RX_END_RAW		BIT(9)
65 
66 /* Bits & mask definition for register SPI_INT_CLR */
67 #define SPRD_SPI_TX_END_CLR		BIT(8)
68 #define SPRD_SPI_RX_END_CLR		BIT(9)
69 
70 /* Bits & mask definition for register INT_MASK_STS */
71 #define SPRD_SPI_MASK_RX_END		BIT(9)
72 #define SPRD_SPI_MASK_TX_END		BIT(8)
73 
74 /* Bits & mask definition for register STS2 */
75 #define SPRD_SPI_TX_BUSY		BIT(8)
76 
77 /* Bits & mask definition for register CTL1 */
78 #define SPRD_SPI_RX_MODE		BIT(12)
79 #define SPRD_SPI_TX_MODE		BIT(13)
80 #define SPRD_SPI_RTX_MD_MASK		GENMASK(13, 12)
81 
82 /* Bits & mask definition for register CTL2 */
83 #define SPRD_SPI_DMA_EN			BIT(6)
84 
85 /* Bits & mask definition for register CTL4 */
86 #define SPRD_SPI_START_RX		BIT(9)
87 #define SPRD_SPI_ONLY_RECV_MASK		GENMASK(8, 0)
88 
89 /* Bits & mask definition for register SPI_INT_CLR */
90 #define SPRD_SPI_RX_END_INT_CLR		BIT(9)
91 #define SPRD_SPI_TX_END_INT_CLR		BIT(8)
92 
93 /* Bits & mask definition for register SPI_INT_RAW */
94 #define SPRD_SPI_RX_END_IRQ		BIT(9)
95 #define SPRD_SPI_TX_END_IRQ		BIT(8)
96 
97 /* Bits & mask definition for register CTL12 */
98 #define SPRD_SPI_SW_RX_REQ		BIT(0)
99 #define SPRD_SPI_SW_TX_REQ		BIT(1)
100 
101 /* Bits & mask definition for register CTL7 */
102 #define SPRD_SPI_DATA_LINE2_EN		BIT(15)
103 #define SPRD_SPI_MODE_MASK		GENMASK(5, 3)
104 #define SPRD_SPI_MODE_OFFSET		3
105 #define SPRD_SPI_3WIRE_MODE		4
106 #define SPRD_SPI_4WIRE_MODE		0
107 
108 /* Bits & mask definition for register CTL8 */
109 #define SPRD_SPI_TX_MAX_LEN_MASK	GENMASK(19, 0)
110 #define SPRD_SPI_TX_LEN_H_MASK		GENMASK(3, 0)
111 #define SPRD_SPI_TX_LEN_H_OFFSET	16
112 
113 /* Bits & mask definition for register CTL9 */
114 #define SPRD_SPI_TX_LEN_L_MASK		GENMASK(15, 0)
115 
116 /* Bits & mask definition for register CTL10 */
117 #define SPRD_SPI_RX_MAX_LEN_MASK	GENMASK(19, 0)
118 #define SPRD_SPI_RX_LEN_H_MASK		GENMASK(3, 0)
119 #define SPRD_SPI_RX_LEN_H_OFFSET	16
120 
121 /* Bits & mask definition for register CTL11 */
122 #define SPRD_SPI_RX_LEN_L_MASK		GENMASK(15, 0)
123 
124 /* Default & maximum word delay cycles */
125 #define SPRD_SPI_MIN_DELAY_CYCLE	14
126 #define SPRD_SPI_MAX_DELAY_CYCLE	130
127 
128 #define SPRD_SPI_FIFO_SIZE		32
129 #define SPRD_SPI_CHIP_CS_NUM		0x4
130 #define SPRD_SPI_CHNL_LEN		2
131 #define SPRD_SPI_DEFAULT_SOURCE		26000000
132 #define SPRD_SPI_MAX_SPEED_HZ		48000000
133 #define SPRD_SPI_AUTOSUSPEND_DELAY	100
134 #define SPRD_SPI_DMA_STEP		8
135 
136 enum sprd_spi_dma_channel {
137 	SPRD_SPI_RX,
138 	SPRD_SPI_TX,
139 	SPRD_SPI_MAX,
140 };
141 
142 struct sprd_spi_dma {
143 	bool enable;
144 	struct dma_chan *dma_chan[SPRD_SPI_MAX];
145 	enum dma_slave_buswidth width;
146 	u32 fragmens_len;
147 	u32 rx_len;
148 };
149 
150 struct sprd_spi {
151 	void __iomem *base;
152 	phys_addr_t phy_base;
153 	struct device *dev;
154 	struct clk *clk;
155 	int irq;
156 	u32 src_clk;
157 	u32 hw_mode;
158 	u32 trans_len;
159 	u32 trans_mode;
160 	u32 word_delay;
161 	u32 hw_speed_hz;
162 	u32 len;
163 	int status;
164 	struct sprd_spi_dma dma;
165 	struct completion xfer_completion;
166 	const void *tx_buf;
167 	void *rx_buf;
168 	int (*read_bufs)(struct sprd_spi *ss, u32 len);
169 	int (*write_bufs)(struct sprd_spi *ss, u32 len);
170 };
171 
sprd_spi_transfer_max_timeout(struct sprd_spi * ss,struct spi_transfer * t)172 static u32 sprd_spi_transfer_max_timeout(struct sprd_spi *ss,
173 					 struct spi_transfer *t)
174 {
175 	/*
176 	 * The time spent on transmission of the full FIFO data is the maximum
177 	 * SPI transmission time.
178 	 */
179 	u32 size = t->bits_per_word * SPRD_SPI_FIFO_SIZE;
180 	u32 bit_time_us = DIV_ROUND_UP(USEC_PER_SEC, ss->hw_speed_hz);
181 	u32 total_time_us = size * bit_time_us;
182 	/*
183 	 * There is an interval between data and the data in our SPI hardware,
184 	 * so the total transmission time need add the interval time.
185 	 */
186 	u32 interval_cycle = SPRD_SPI_FIFO_SIZE * ss->word_delay;
187 	u32 interval_time_us = DIV_ROUND_UP(interval_cycle * USEC_PER_SEC,
188 					    ss->src_clk);
189 
190 	return total_time_us + interval_time_us;
191 }
192 
sprd_spi_wait_for_tx_end(struct sprd_spi * ss,struct spi_transfer * t)193 static int sprd_spi_wait_for_tx_end(struct sprd_spi *ss, struct spi_transfer *t)
194 {
195 	u32 val, us;
196 	int ret;
197 
198 	us = sprd_spi_transfer_max_timeout(ss, t);
199 	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
200 					 val & SPRD_SPI_TX_END_IRQ, 0, us);
201 	if (ret) {
202 		dev_err(ss->dev, "SPI error, spi send timeout!\n");
203 		return ret;
204 	}
205 
206 	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_STS2, val,
207 					 !(val & SPRD_SPI_TX_BUSY), 0, us);
208 	if (ret) {
209 		dev_err(ss->dev, "SPI error, spi busy timeout!\n");
210 		return ret;
211 	}
212 
213 	writel_relaxed(SPRD_SPI_TX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
214 
215 	return 0;
216 }
217 
sprd_spi_wait_for_rx_end(struct sprd_spi * ss,struct spi_transfer * t)218 static int sprd_spi_wait_for_rx_end(struct sprd_spi *ss, struct spi_transfer *t)
219 {
220 	u32 val, us;
221 	int ret;
222 
223 	us = sprd_spi_transfer_max_timeout(ss, t);
224 	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
225 					 val & SPRD_SPI_RX_END_IRQ, 0, us);
226 	if (ret) {
227 		dev_err(ss->dev, "SPI error, spi rx timeout!\n");
228 		return ret;
229 	}
230 
231 	writel_relaxed(SPRD_SPI_RX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
232 
233 	return 0;
234 }
235 
sprd_spi_tx_req(struct sprd_spi * ss)236 static void sprd_spi_tx_req(struct sprd_spi *ss)
237 {
238 	writel_relaxed(SPRD_SPI_SW_TX_REQ, ss->base + SPRD_SPI_CTL12);
239 }
240 
sprd_spi_rx_req(struct sprd_spi * ss)241 static void sprd_spi_rx_req(struct sprd_spi *ss)
242 {
243 	writel_relaxed(SPRD_SPI_SW_RX_REQ, ss->base + SPRD_SPI_CTL12);
244 }
245 
sprd_spi_enter_idle(struct sprd_spi * ss)246 static void sprd_spi_enter_idle(struct sprd_spi *ss)
247 {
248 	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
249 
250 	val &= ~SPRD_SPI_RTX_MD_MASK;
251 	writel_relaxed(val, ss->base + SPRD_SPI_CTL1);
252 }
253 
sprd_spi_set_transfer_bits(struct sprd_spi * ss,u32 bits)254 static void sprd_spi_set_transfer_bits(struct sprd_spi *ss, u32 bits)
255 {
256 	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
257 
258 	/* Set the valid bits for every transaction */
259 	val &= ~(SPRD_SPI_CHNL_LEN_MASK << SPRD_SPI_CHNL_LEN);
260 	val |= bits << SPRD_SPI_CHNL_LEN;
261 	writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
262 }
263 
sprd_spi_set_tx_length(struct sprd_spi * ss,u32 length)264 static void sprd_spi_set_tx_length(struct sprd_spi *ss, u32 length)
265 {
266 	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL8);
267 
268 	length &= SPRD_SPI_TX_MAX_LEN_MASK;
269 	val &= ~SPRD_SPI_TX_LEN_H_MASK;
270 	val |= length >> SPRD_SPI_TX_LEN_H_OFFSET;
271 	writel_relaxed(val, ss->base + SPRD_SPI_CTL8);
272 
273 	val = length & SPRD_SPI_TX_LEN_L_MASK;
274 	writel_relaxed(val, ss->base + SPRD_SPI_CTL9);
275 }
276 
sprd_spi_set_rx_length(struct sprd_spi * ss,u32 length)277 static void sprd_spi_set_rx_length(struct sprd_spi *ss, u32 length)
278 {
279 	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL10);
280 
281 	length &= SPRD_SPI_RX_MAX_LEN_MASK;
282 	val &= ~SPRD_SPI_RX_LEN_H_MASK;
283 	val |= length >> SPRD_SPI_RX_LEN_H_OFFSET;
284 	writel_relaxed(val, ss->base + SPRD_SPI_CTL10);
285 
286 	val = length & SPRD_SPI_RX_LEN_L_MASK;
287 	writel_relaxed(val, ss->base + SPRD_SPI_CTL11);
288 }
289 
sprd_spi_chipselect(struct spi_device * sdev,bool cs)290 static void sprd_spi_chipselect(struct spi_device *sdev, bool cs)
291 {
292 	struct spi_controller *sctlr = sdev->controller;
293 	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
294 	u32 val;
295 
296 	val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
297 	/*  The SPI controller will pull down CS pin if cs is 0 */
298 	if (!cs) {
299 		val &= ~SPRD_SPI_CS0_VALID;
300 		writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
301 	} else {
302 		val |= SPRD_SPI_CSN_MASK;
303 		writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
304 	}
305 }
306 
sprd_spi_write_only_receive(struct sprd_spi * ss,u32 len)307 static int sprd_spi_write_only_receive(struct sprd_spi *ss, u32 len)
308 {
309 	u32 val;
310 
311 	/* Clear the start receive bit and reset receive data number */
312 	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
313 	val &= ~(SPRD_SPI_START_RX | SPRD_SPI_ONLY_RECV_MASK);
314 	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
315 
316 	/* Set the receive data length */
317 	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
318 	val |= len & SPRD_SPI_ONLY_RECV_MASK;
319 	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
320 
321 	/* Trigger to receive data */
322 	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
323 	val |= SPRD_SPI_START_RX;
324 	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
325 
326 	return len;
327 }
328 
sprd_spi_write_bufs_u8(struct sprd_spi * ss,u32 len)329 static int sprd_spi_write_bufs_u8(struct sprd_spi *ss, u32 len)
330 {
331 	u8 *tx_p = (u8 *)ss->tx_buf;
332 	int i;
333 
334 	for (i = 0; i < len; i++)
335 		writeb_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
336 
337 	ss->tx_buf += i;
338 	return i;
339 }
340 
sprd_spi_write_bufs_u16(struct sprd_spi * ss,u32 len)341 static int sprd_spi_write_bufs_u16(struct sprd_spi *ss, u32 len)
342 {
343 	u16 *tx_p = (u16 *)ss->tx_buf;
344 	int i;
345 
346 	for (i = 0; i < len; i++)
347 		writew_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
348 
349 	ss->tx_buf += i << 1;
350 	return i << 1;
351 }
352 
sprd_spi_write_bufs_u32(struct sprd_spi * ss,u32 len)353 static int sprd_spi_write_bufs_u32(struct sprd_spi *ss, u32 len)
354 {
355 	u32 *tx_p = (u32 *)ss->tx_buf;
356 	int i;
357 
358 	for (i = 0; i < len; i++)
359 		writel_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
360 
361 	ss->tx_buf += i << 2;
362 	return i << 2;
363 }
364 
sprd_spi_read_bufs_u8(struct sprd_spi * ss,u32 len)365 static int sprd_spi_read_bufs_u8(struct sprd_spi *ss, u32 len)
366 {
367 	u8 *rx_p = (u8 *)ss->rx_buf;
368 	int i;
369 
370 	for (i = 0; i < len; i++)
371 		rx_p[i] = readb_relaxed(ss->base + SPRD_SPI_TXD);
372 
373 	ss->rx_buf += i;
374 	return i;
375 }
376 
sprd_spi_read_bufs_u16(struct sprd_spi * ss,u32 len)377 static int sprd_spi_read_bufs_u16(struct sprd_spi *ss, u32 len)
378 {
379 	u16 *rx_p = (u16 *)ss->rx_buf;
380 	int i;
381 
382 	for (i = 0; i < len; i++)
383 		rx_p[i] = readw_relaxed(ss->base + SPRD_SPI_TXD);
384 
385 	ss->rx_buf += i << 1;
386 	return i << 1;
387 }
388 
sprd_spi_read_bufs_u32(struct sprd_spi * ss,u32 len)389 static int sprd_spi_read_bufs_u32(struct sprd_spi *ss, u32 len)
390 {
391 	u32 *rx_p = (u32 *)ss->rx_buf;
392 	int i;
393 
394 	for (i = 0; i < len; i++)
395 		rx_p[i] = readl_relaxed(ss->base + SPRD_SPI_TXD);
396 
397 	ss->rx_buf += i << 2;
398 	return i << 2;
399 }
400 
sprd_spi_txrx_bufs(struct spi_device * sdev,struct spi_transfer * t)401 static int sprd_spi_txrx_bufs(struct spi_device *sdev, struct spi_transfer *t)
402 {
403 	struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
404 	u32 trans_len = ss->trans_len, len;
405 	int ret, write_size = 0, read_size = 0;
406 
407 	while (trans_len) {
408 		len = trans_len > SPRD_SPI_FIFO_SIZE ? SPRD_SPI_FIFO_SIZE :
409 			trans_len;
410 		if (ss->trans_mode & SPRD_SPI_TX_MODE) {
411 			sprd_spi_set_tx_length(ss, len);
412 			write_size += ss->write_bufs(ss, len);
413 
414 			/*
415 			 * For our 3 wires mode or dual TX line mode, we need
416 			 * to request the controller to transfer.
417 			 */
418 			if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
419 				sprd_spi_tx_req(ss);
420 
421 			ret = sprd_spi_wait_for_tx_end(ss, t);
422 		} else {
423 			sprd_spi_set_rx_length(ss, len);
424 
425 			/*
426 			 * For our 3 wires mode or dual TX line mode, we need
427 			 * to request the controller to read.
428 			 */
429 			if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
430 				sprd_spi_rx_req(ss);
431 			else
432 				write_size += ss->write_bufs(ss, len);
433 
434 			ret = sprd_spi_wait_for_rx_end(ss, t);
435 		}
436 
437 		if (ret)
438 			goto complete;
439 
440 		if (ss->trans_mode & SPRD_SPI_RX_MODE)
441 			read_size += ss->read_bufs(ss, len);
442 
443 		trans_len -= len;
444 	}
445 
446 	if (ss->trans_mode & SPRD_SPI_TX_MODE)
447 		ret = write_size;
448 	else
449 		ret = read_size;
450 complete:
451 	sprd_spi_enter_idle(ss);
452 
453 	return ret;
454 }
455 
sprd_spi_irq_enable(struct sprd_spi * ss)456 static void sprd_spi_irq_enable(struct sprd_spi *ss)
457 {
458 	u32 val;
459 
460 	/* Clear interrupt status before enabling interrupt. */
461 	writel_relaxed(SPRD_SPI_TX_END_CLR | SPRD_SPI_RX_END_CLR,
462 		ss->base + SPRD_SPI_INT_CLR);
463 	/* Enable SPI interrupt only in DMA mode. */
464 	val = readl_relaxed(ss->base + SPRD_SPI_INT_EN);
465 	writel_relaxed(val | SPRD_SPI_TX_END_INT_EN |
466 		       SPRD_SPI_RX_END_INT_EN,
467 		       ss->base + SPRD_SPI_INT_EN);
468 }
469 
sprd_spi_irq_disable(struct sprd_spi * ss)470 static void sprd_spi_irq_disable(struct sprd_spi *ss)
471 {
472 	writel_relaxed(0, ss->base + SPRD_SPI_INT_EN);
473 }
474 
sprd_spi_dma_enable(struct sprd_spi * ss,bool enable)475 static void sprd_spi_dma_enable(struct sprd_spi *ss, bool enable)
476 {
477 	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL2);
478 
479 	if (enable)
480 		val |= SPRD_SPI_DMA_EN;
481 	else
482 		val &= ~SPRD_SPI_DMA_EN;
483 
484 	writel_relaxed(val, ss->base + SPRD_SPI_CTL2);
485 }
486 
sprd_spi_dma_submit(struct dma_chan * dma_chan,struct dma_slave_config * c,struct sg_table * sg,enum dma_transfer_direction dir)487 static int sprd_spi_dma_submit(struct dma_chan *dma_chan,
488 			       struct dma_slave_config *c,
489 			       struct sg_table *sg,
490 			       enum dma_transfer_direction dir)
491 {
492 	struct dma_async_tx_descriptor *desc;
493 	dma_cookie_t cookie;
494 	unsigned long flags;
495 	int ret;
496 
497 	ret = dmaengine_slave_config(dma_chan, c);
498 	if (ret < 0)
499 		return ret;
500 
501 	flags = SPRD_DMA_FLAGS(SPRD_DMA_CHN_MODE_NONE, SPRD_DMA_NO_TRG,
502 			       SPRD_DMA_FRAG_REQ, SPRD_DMA_TRANS_INT);
503 	desc = dmaengine_prep_slave_sg(dma_chan, sg->sgl, sg->nents, dir, flags);
504 	if (!desc)
505 		return  -ENODEV;
506 
507 	cookie = dmaengine_submit(desc);
508 	if (dma_submit_error(cookie))
509 		return dma_submit_error(cookie);
510 
511 	dma_async_issue_pending(dma_chan);
512 
513 	return 0;
514 }
515 
sprd_spi_dma_rx_config(struct sprd_spi * ss,struct spi_transfer * t)516 static int sprd_spi_dma_rx_config(struct sprd_spi *ss, struct spi_transfer *t)
517 {
518 	struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_RX];
519 	struct dma_slave_config config = {
520 		.src_addr = ss->phy_base,
521 		.src_addr_width = ss->dma.width,
522 		.dst_addr_width = ss->dma.width,
523 		.dst_maxburst = ss->dma.fragmens_len,
524 	};
525 	int ret;
526 
527 	ret = sprd_spi_dma_submit(dma_chan, &config, &t->rx_sg, DMA_DEV_TO_MEM);
528 	if (ret)
529 		return ret;
530 
531 	return ss->dma.rx_len;
532 }
533 
sprd_spi_dma_tx_config(struct sprd_spi * ss,struct spi_transfer * t)534 static int sprd_spi_dma_tx_config(struct sprd_spi *ss, struct spi_transfer *t)
535 {
536 	struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_TX];
537 	struct dma_slave_config config = {
538 		.dst_addr = ss->phy_base,
539 		.src_addr_width = ss->dma.width,
540 		.dst_addr_width = ss->dma.width,
541 		.src_maxburst = ss->dma.fragmens_len,
542 	};
543 	int ret;
544 
545 	ret = sprd_spi_dma_submit(dma_chan, &config, &t->tx_sg, DMA_MEM_TO_DEV);
546 	if (ret)
547 		return ret;
548 
549 	return t->len;
550 }
551 
sprd_spi_dma_request(struct sprd_spi * ss)552 static int sprd_spi_dma_request(struct sprd_spi *ss)
553 {
554 	ss->dma.dma_chan[SPRD_SPI_RX] = dma_request_chan(ss->dev, "rx_chn");
555 	if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_RX]))
556 		return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]),
557 				     "request RX DMA channel failed!\n");
558 
559 	ss->dma.dma_chan[SPRD_SPI_TX]  = dma_request_chan(ss->dev, "tx_chn");
560 	if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_TX])) {
561 		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
562 		return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]),
563 				     "request TX DMA channel failed!\n");
564 	}
565 
566 	return 0;
567 }
568 
sprd_spi_dma_release(struct sprd_spi * ss)569 static void sprd_spi_dma_release(struct sprd_spi *ss)
570 {
571 	if (ss->dma.dma_chan[SPRD_SPI_RX])
572 		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
573 
574 	if (ss->dma.dma_chan[SPRD_SPI_TX])
575 		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_TX]);
576 }
577 
sprd_spi_dma_txrx_bufs(struct spi_device * sdev,struct spi_transfer * t)578 static int sprd_spi_dma_txrx_bufs(struct spi_device *sdev,
579 				  struct spi_transfer *t)
580 {
581 	struct sprd_spi *ss = spi_master_get_devdata(sdev->master);
582 	u32 trans_len = ss->trans_len;
583 	int ret, write_size = 0;
584 
585 	reinit_completion(&ss->xfer_completion);
586 	sprd_spi_irq_enable(ss);
587 	if (ss->trans_mode & SPRD_SPI_TX_MODE) {
588 		write_size = sprd_spi_dma_tx_config(ss, t);
589 		sprd_spi_set_tx_length(ss, trans_len);
590 
591 		/*
592 		 * For our 3 wires mode or dual TX line mode, we need
593 		 * to request the controller to transfer.
594 		 */
595 		if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
596 			sprd_spi_tx_req(ss);
597 	} else {
598 		sprd_spi_set_rx_length(ss, trans_len);
599 
600 		/*
601 		 * For our 3 wires mode or dual TX line mode, we need
602 		 * to request the controller to read.
603 		 */
604 		if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
605 			sprd_spi_rx_req(ss);
606 		else
607 			write_size = ss->write_bufs(ss, trans_len);
608 	}
609 
610 	if (write_size < 0) {
611 		ret = write_size;
612 		dev_err(ss->dev, "failed to write, ret = %d\n", ret);
613 		goto trans_complete;
614 	}
615 
616 	if (ss->trans_mode & SPRD_SPI_RX_MODE) {
617 		/*
618 		 * Set up the DMA receive data length, which must be an
619 		 * integral multiple of fragment length. But when the length
620 		 * of received data is less than fragment length, DMA can be
621 		 * configured to receive data according to the actual length
622 		 * of received data.
623 		 */
624 		ss->dma.rx_len = t->len > ss->dma.fragmens_len ?
625 			(t->len - t->len % ss->dma.fragmens_len) :
626 			 t->len;
627 		ret = sprd_spi_dma_rx_config(ss, t);
628 		if (ret < 0) {
629 			dev_err(&sdev->dev,
630 				"failed to configure rx DMA, ret = %d\n", ret);
631 			goto trans_complete;
632 		}
633 	}
634 
635 	sprd_spi_dma_enable(ss, true);
636 	wait_for_completion(&(ss->xfer_completion));
637 
638 	if (ss->trans_mode & SPRD_SPI_TX_MODE)
639 		ret = write_size;
640 	else
641 		ret = ss->dma.rx_len;
642 
643 trans_complete:
644 	sprd_spi_dma_enable(ss, false);
645 	sprd_spi_enter_idle(ss);
646 	sprd_spi_irq_disable(ss);
647 
648 	return ret;
649 }
650 
sprd_spi_set_speed(struct sprd_spi * ss,u32 speed_hz)651 static void sprd_spi_set_speed(struct sprd_spi *ss, u32 speed_hz)
652 {
653 	/*
654 	 * From SPI datasheet, the prescale calculation formula:
655 	 * prescale = SPI source clock / (2 * SPI_freq) - 1;
656 	 */
657 	u32 clk_div = DIV_ROUND_UP(ss->src_clk, speed_hz << 1) - 1;
658 
659 	/* Save the real hardware speed */
660 	ss->hw_speed_hz = (ss->src_clk >> 1) / (clk_div + 1);
661 	writel_relaxed(clk_div, ss->base + SPRD_SPI_CLKD);
662 }
663 
sprd_spi_init_hw(struct sprd_spi * ss,struct spi_transfer * t)664 static int sprd_spi_init_hw(struct sprd_spi *ss, struct spi_transfer *t)
665 {
666 	struct spi_delay *d = &t->word_delay;
667 	u16 word_delay, interval;
668 	u32 val;
669 
670 	if (d->unit != SPI_DELAY_UNIT_SCK)
671 		return -EINVAL;
672 
673 	val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
674 	val &= ~(SPRD_SPI_SCK_REV | SPRD_SPI_NG_TX | SPRD_SPI_NG_RX);
675 	/* Set default chip selection, clock phase and clock polarity */
676 	val |= ss->hw_mode & SPI_CPHA ? SPRD_SPI_NG_RX : SPRD_SPI_NG_TX;
677 	val |= ss->hw_mode & SPI_CPOL ? SPRD_SPI_SCK_REV : 0;
678 	writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
679 
680 	/*
681 	 * Set the intervals of two SPI frames, and the inteval calculation
682 	 * formula as below per datasheet:
683 	 * interval time (source clock cycles) = interval * 4 + 10.
684 	 */
685 	word_delay = clamp_t(u16, d->value, SPRD_SPI_MIN_DELAY_CYCLE,
686 			     SPRD_SPI_MAX_DELAY_CYCLE);
687 	interval = DIV_ROUND_UP(word_delay - 10, 4);
688 	ss->word_delay = interval * 4 + 10;
689 	writel_relaxed(interval, ss->base + SPRD_SPI_CTL5);
690 
691 	/* Reset SPI fifo */
692 	writel_relaxed(1, ss->base + SPRD_SPI_FIFO_RST);
693 	writel_relaxed(0, ss->base + SPRD_SPI_FIFO_RST);
694 
695 	/* Set SPI work mode */
696 	val = readl_relaxed(ss->base + SPRD_SPI_CTL7);
697 	val &= ~SPRD_SPI_MODE_MASK;
698 
699 	if (ss->hw_mode & SPI_3WIRE)
700 		val |= SPRD_SPI_3WIRE_MODE << SPRD_SPI_MODE_OFFSET;
701 	else
702 		val |= SPRD_SPI_4WIRE_MODE << SPRD_SPI_MODE_OFFSET;
703 
704 	if (ss->hw_mode & SPI_TX_DUAL)
705 		val |= SPRD_SPI_DATA_LINE2_EN;
706 	else
707 		val &= ~SPRD_SPI_DATA_LINE2_EN;
708 
709 	writel_relaxed(val, ss->base + SPRD_SPI_CTL7);
710 
711 	return 0;
712 }
713 
sprd_spi_setup_transfer(struct spi_device * sdev,struct spi_transfer * t)714 static int sprd_spi_setup_transfer(struct spi_device *sdev,
715 				   struct spi_transfer *t)
716 {
717 	struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
718 	u8 bits_per_word = t->bits_per_word;
719 	u32 val, mode = 0;
720 	int ret;
721 
722 	ss->len = t->len;
723 	ss->tx_buf = t->tx_buf;
724 	ss->rx_buf = t->rx_buf;
725 
726 	ss->hw_mode = sdev->mode;
727 	ret = sprd_spi_init_hw(ss, t);
728 	if (ret)
729 		return ret;
730 
731 	/* Set tansfer speed and valid bits */
732 	sprd_spi_set_speed(ss, t->speed_hz);
733 	sprd_spi_set_transfer_bits(ss, bits_per_word);
734 
735 	if (bits_per_word > 16)
736 		bits_per_word = round_up(bits_per_word, 16);
737 	else
738 		bits_per_word = round_up(bits_per_word, 8);
739 
740 	switch (bits_per_word) {
741 	case 8:
742 		ss->trans_len = t->len;
743 		ss->read_bufs = sprd_spi_read_bufs_u8;
744 		ss->write_bufs = sprd_spi_write_bufs_u8;
745 		ss->dma.width = DMA_SLAVE_BUSWIDTH_1_BYTE;
746 		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP;
747 		break;
748 	case 16:
749 		ss->trans_len = t->len >> 1;
750 		ss->read_bufs = sprd_spi_read_bufs_u16;
751 		ss->write_bufs = sprd_spi_write_bufs_u16;
752 		ss->dma.width = DMA_SLAVE_BUSWIDTH_2_BYTES;
753 		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 1;
754 		break;
755 	case 32:
756 		ss->trans_len = t->len >> 2;
757 		ss->read_bufs = sprd_spi_read_bufs_u32;
758 		ss->write_bufs = sprd_spi_write_bufs_u32;
759 		ss->dma.width = DMA_SLAVE_BUSWIDTH_4_BYTES;
760 		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 2;
761 		break;
762 	default:
763 		return -EINVAL;
764 	}
765 
766 	/* Set transfer read or write mode */
767 	val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
768 	val &= ~SPRD_SPI_RTX_MD_MASK;
769 	if (t->tx_buf)
770 		mode |= SPRD_SPI_TX_MODE;
771 	if (t->rx_buf)
772 		mode |= SPRD_SPI_RX_MODE;
773 
774 	writel_relaxed(val | mode, ss->base + SPRD_SPI_CTL1);
775 
776 	ss->trans_mode = mode;
777 
778 	/*
779 	 * If in only receive mode, we need to trigger the SPI controller to
780 	 * receive data automatically.
781 	 */
782 	if (ss->trans_mode == SPRD_SPI_RX_MODE)
783 		ss->write_bufs = sprd_spi_write_only_receive;
784 
785 	return 0;
786 }
787 
sprd_spi_transfer_one(struct spi_controller * sctlr,struct spi_device * sdev,struct spi_transfer * t)788 static int sprd_spi_transfer_one(struct spi_controller *sctlr,
789 				 struct spi_device *sdev,
790 				 struct spi_transfer *t)
791 {
792 	int ret;
793 
794 	ret = sprd_spi_setup_transfer(sdev, t);
795 	if (ret)
796 		goto setup_err;
797 
798 	if (sctlr->can_dma(sctlr, sdev, t))
799 		ret = sprd_spi_dma_txrx_bufs(sdev, t);
800 	else
801 		ret = sprd_spi_txrx_bufs(sdev, t);
802 
803 	if (ret == t->len)
804 		ret = 0;
805 	else if (ret >= 0)
806 		ret = -EREMOTEIO;
807 
808 setup_err:
809 	spi_finalize_current_transfer(sctlr);
810 
811 	return ret;
812 }
813 
sprd_spi_handle_irq(int irq,void * data)814 static irqreturn_t sprd_spi_handle_irq(int irq, void *data)
815 {
816 	struct sprd_spi *ss = (struct sprd_spi *)data;
817 	u32 val = readl_relaxed(ss->base + SPRD_SPI_INT_MASK_STS);
818 
819 	if (val & SPRD_SPI_MASK_TX_END) {
820 		writel_relaxed(SPRD_SPI_TX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
821 		if (!(ss->trans_mode & SPRD_SPI_RX_MODE))
822 			complete(&ss->xfer_completion);
823 
824 		return IRQ_HANDLED;
825 	}
826 
827 	if (val & SPRD_SPI_MASK_RX_END) {
828 		writel_relaxed(SPRD_SPI_RX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
829 		if (ss->dma.rx_len < ss->len) {
830 			ss->rx_buf += ss->dma.rx_len;
831 			ss->dma.rx_len +=
832 				ss->read_bufs(ss, ss->len - ss->dma.rx_len);
833 		}
834 		complete(&ss->xfer_completion);
835 
836 		return IRQ_HANDLED;
837 	}
838 
839 	return IRQ_NONE;
840 }
841 
sprd_spi_irq_init(struct platform_device * pdev,struct sprd_spi * ss)842 static int sprd_spi_irq_init(struct platform_device *pdev, struct sprd_spi *ss)
843 {
844 	int ret;
845 
846 	ss->irq = platform_get_irq(pdev, 0);
847 	if (ss->irq < 0)
848 		return ss->irq;
849 
850 	ret = devm_request_irq(&pdev->dev, ss->irq, sprd_spi_handle_irq,
851 				0, pdev->name, ss);
852 	if (ret)
853 		dev_err(&pdev->dev, "failed to request spi irq %d, ret = %d\n",
854 			ss->irq, ret);
855 
856 	return ret;
857 }
858 
sprd_spi_clk_init(struct platform_device * pdev,struct sprd_spi * ss)859 static int sprd_spi_clk_init(struct platform_device *pdev, struct sprd_spi *ss)
860 {
861 	struct clk *clk_spi, *clk_parent;
862 
863 	clk_spi = devm_clk_get(&pdev->dev, "spi");
864 	if (IS_ERR(clk_spi)) {
865 		dev_warn(&pdev->dev, "can't get the spi clock\n");
866 		clk_spi = NULL;
867 	}
868 
869 	clk_parent = devm_clk_get(&pdev->dev, "source");
870 	if (IS_ERR(clk_parent)) {
871 		dev_warn(&pdev->dev, "can't get the source clock\n");
872 		clk_parent = NULL;
873 	}
874 
875 	ss->clk = devm_clk_get(&pdev->dev, "enable");
876 	if (IS_ERR(ss->clk)) {
877 		dev_err(&pdev->dev, "can't get the enable clock\n");
878 		return PTR_ERR(ss->clk);
879 	}
880 
881 	if (!clk_set_parent(clk_spi, clk_parent))
882 		ss->src_clk = clk_get_rate(clk_spi);
883 	else
884 		ss->src_clk = SPRD_SPI_DEFAULT_SOURCE;
885 
886 	return 0;
887 }
888 
sprd_spi_can_dma(struct spi_controller * sctlr,struct spi_device * spi,struct spi_transfer * t)889 static bool sprd_spi_can_dma(struct spi_controller *sctlr,
890 			     struct spi_device *spi, struct spi_transfer *t)
891 {
892 	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
893 
894 	return ss->dma.enable && (t->len > SPRD_SPI_FIFO_SIZE);
895 }
896 
sprd_spi_dma_init(struct platform_device * pdev,struct sprd_spi * ss)897 static int sprd_spi_dma_init(struct platform_device *pdev, struct sprd_spi *ss)
898 {
899 	int ret;
900 
901 	ret = sprd_spi_dma_request(ss);
902 	if (ret) {
903 		if (ret == -EPROBE_DEFER)
904 			return ret;
905 
906 		dev_warn(&pdev->dev,
907 			 "failed to request dma, enter no dma mode, ret = %d\n",
908 			 ret);
909 
910 		return 0;
911 	}
912 
913 	ss->dma.enable = true;
914 
915 	return 0;
916 }
917 
sprd_spi_probe(struct platform_device * pdev)918 static int sprd_spi_probe(struct platform_device *pdev)
919 {
920 	struct spi_controller *sctlr;
921 	struct resource *res;
922 	struct sprd_spi *ss;
923 	int ret;
924 
925 	pdev->id = of_alias_get_id(pdev->dev.of_node, "spi");
926 	sctlr = spi_alloc_master(&pdev->dev, sizeof(*ss));
927 	if (!sctlr)
928 		return -ENOMEM;
929 
930 	ss = spi_controller_get_devdata(sctlr);
931 	ss->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
932 	if (IS_ERR(ss->base)) {
933 		ret = PTR_ERR(ss->base);
934 		goto free_controller;
935 	}
936 
937 	ss->phy_base = res->start;
938 	ss->dev = &pdev->dev;
939 	sctlr->dev.of_node = pdev->dev.of_node;
940 	sctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE | SPI_TX_DUAL;
941 	sctlr->bus_num = pdev->id;
942 	sctlr->set_cs = sprd_spi_chipselect;
943 	sctlr->transfer_one = sprd_spi_transfer_one;
944 	sctlr->can_dma = sprd_spi_can_dma;
945 	sctlr->auto_runtime_pm = true;
946 	sctlr->max_speed_hz = min_t(u32, ss->src_clk >> 1,
947 				    SPRD_SPI_MAX_SPEED_HZ);
948 
949 	init_completion(&ss->xfer_completion);
950 	platform_set_drvdata(pdev, sctlr);
951 	ret = sprd_spi_clk_init(pdev, ss);
952 	if (ret)
953 		goto free_controller;
954 
955 	ret = sprd_spi_irq_init(pdev, ss);
956 	if (ret)
957 		goto free_controller;
958 
959 	ret = sprd_spi_dma_init(pdev, ss);
960 	if (ret)
961 		goto free_controller;
962 
963 	ret = clk_prepare_enable(ss->clk);
964 	if (ret)
965 		goto release_dma;
966 
967 	ret = pm_runtime_set_active(&pdev->dev);
968 	if (ret < 0)
969 		goto disable_clk;
970 
971 	pm_runtime_set_autosuspend_delay(&pdev->dev,
972 					 SPRD_SPI_AUTOSUSPEND_DELAY);
973 	pm_runtime_use_autosuspend(&pdev->dev);
974 	pm_runtime_enable(&pdev->dev);
975 	ret = pm_runtime_get_sync(&pdev->dev);
976 	if (ret < 0) {
977 		dev_err(&pdev->dev, "failed to resume SPI controller\n");
978 		goto err_rpm_put;
979 	}
980 
981 	ret = devm_spi_register_controller(&pdev->dev, sctlr);
982 	if (ret)
983 		goto err_rpm_put;
984 
985 	pm_runtime_mark_last_busy(&pdev->dev);
986 	pm_runtime_put_autosuspend(&pdev->dev);
987 
988 	return 0;
989 
990 err_rpm_put:
991 	pm_runtime_put_noidle(&pdev->dev);
992 	pm_runtime_disable(&pdev->dev);
993 disable_clk:
994 	clk_disable_unprepare(ss->clk);
995 release_dma:
996 	sprd_spi_dma_release(ss);
997 free_controller:
998 	spi_controller_put(sctlr);
999 
1000 	return ret;
1001 }
1002 
sprd_spi_remove(struct platform_device * pdev)1003 static void sprd_spi_remove(struct platform_device *pdev)
1004 {
1005 	struct spi_controller *sctlr = platform_get_drvdata(pdev);
1006 	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1007 	int ret;
1008 
1009 	ret = pm_runtime_get_sync(ss->dev);
1010 	if (ret < 0)
1011 		dev_err(ss->dev, "failed to resume SPI controller\n");
1012 
1013 	spi_controller_suspend(sctlr);
1014 
1015 	if (ret >= 0) {
1016 		if (ss->dma.enable)
1017 			sprd_spi_dma_release(ss);
1018 		clk_disable_unprepare(ss->clk);
1019 	}
1020 	pm_runtime_put_noidle(&pdev->dev);
1021 	pm_runtime_disable(&pdev->dev);
1022 }
1023 
sprd_spi_runtime_suspend(struct device * dev)1024 static int __maybe_unused sprd_spi_runtime_suspend(struct device *dev)
1025 {
1026 	struct spi_controller *sctlr = dev_get_drvdata(dev);
1027 	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1028 
1029 	if (ss->dma.enable)
1030 		sprd_spi_dma_release(ss);
1031 
1032 	clk_disable_unprepare(ss->clk);
1033 
1034 	return 0;
1035 }
1036 
sprd_spi_runtime_resume(struct device * dev)1037 static int __maybe_unused sprd_spi_runtime_resume(struct device *dev)
1038 {
1039 	struct spi_controller *sctlr = dev_get_drvdata(dev);
1040 	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1041 	int ret;
1042 
1043 	ret = clk_prepare_enable(ss->clk);
1044 	if (ret)
1045 		return ret;
1046 
1047 	if (!ss->dma.enable)
1048 		return 0;
1049 
1050 	ret = sprd_spi_dma_request(ss);
1051 	if (ret)
1052 		clk_disable_unprepare(ss->clk);
1053 
1054 	return ret;
1055 }
1056 
1057 static const struct dev_pm_ops sprd_spi_pm_ops = {
1058 	SET_RUNTIME_PM_OPS(sprd_spi_runtime_suspend,
1059 			   sprd_spi_runtime_resume, NULL)
1060 };
1061 
1062 static const struct of_device_id sprd_spi_of_match[] = {
1063 	{ .compatible = "sprd,sc9860-spi", },
1064 	{ /* sentinel */ }
1065 };
1066 MODULE_DEVICE_TABLE(of, sprd_spi_of_match);
1067 
1068 static struct platform_driver sprd_spi_driver = {
1069 	.driver = {
1070 		.name = "sprd-spi",
1071 		.of_match_table = sprd_spi_of_match,
1072 		.pm = &sprd_spi_pm_ops,
1073 	},
1074 	.probe = sprd_spi_probe,
1075 	.remove_new = sprd_spi_remove,
1076 };
1077 
1078 module_platform_driver(sprd_spi_driver);
1079 
1080 MODULE_DESCRIPTION("Spreadtrum SPI Controller driver");
1081 MODULE_AUTHOR("Lanqing Liu <lanqing.liu@spreadtrum.com>");
1082 MODULE_LICENSE("GPL v2");
1083