1 /* 2 * SuperH MSIOF SPI Master Interface 3 * 4 * Copyright (c) 2009 Magnus Damm 5 * Copyright (C) 2014 Glider bvba 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 */ 12 13 #include <linux/bitmap.h> 14 #include <linux/clk.h> 15 #include <linux/completion.h> 16 #include <linux/delay.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/dmaengine.h> 19 #include <linux/err.h> 20 #include <linux/gpio.h> 21 #include <linux/interrupt.h> 22 #include <linux/io.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/of_device.h> 27 #include <linux/platform_device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/sh_dma.h> 30 31 #include <linux/spi/sh_msiof.h> 32 #include <linux/spi/spi.h> 33 34 #include <asm/unaligned.h> 35 36 37 struct sh_msiof_chipdata { 38 u16 tx_fifo_size; 39 u16 rx_fifo_size; 40 u16 master_flags; 41 }; 42 43 struct sh_msiof_spi_priv { 44 struct spi_master *master; 45 void __iomem *mapbase; 46 struct clk *clk; 47 struct platform_device *pdev; 48 const struct sh_msiof_chipdata *chipdata; 49 struct sh_msiof_spi_info *info; 50 struct completion done; 51 unsigned int tx_fifo_size; 52 unsigned int rx_fifo_size; 53 void *tx_dma_page; 54 void *rx_dma_page; 55 dma_addr_t tx_dma_addr; 56 dma_addr_t rx_dma_addr; 57 }; 58 59 #define TMDR1 0x00 /* Transmit Mode Register 1 */ 60 #define TMDR2 0x04 /* Transmit Mode Register 2 */ 61 #define TMDR3 0x08 /* Transmit Mode Register 3 */ 62 #define RMDR1 0x10 /* Receive Mode Register 1 */ 63 #define RMDR2 0x14 /* Receive Mode Register 2 */ 64 #define RMDR3 0x18 /* Receive Mode Register 3 */ 65 #define TSCR 0x20 /* Transmit Clock Select Register */ 66 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */ 67 #define CTR 0x28 /* Control Register */ 68 #define FCTR 0x30 /* FIFO Control Register */ 69 #define STR 0x40 /* Status Register */ 70 #define IER 0x44 /* Interrupt Enable Register */ 71 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */ 72 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */ 73 #define TFDR 0x50 /* Transmit FIFO Data Register */ 74 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */ 75 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */ 76 #define RFDR 0x60 /* Receive FIFO Data Register */ 77 78 /* TMDR1 and RMDR1 */ 79 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */ 80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */ 81 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */ 82 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */ 83 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */ 84 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */ 85 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */ 86 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */ 87 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */ 88 #define MDR1_FLD_SHIFT 2 89 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */ 90 /* TMDR1 */ 91 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */ 92 93 /* TMDR2 and RMDR2 */ 94 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */ 95 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ 96 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */ 97 98 /* TSCR and RSCR */ 99 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */ 100 #define SCR_BRPS(i) (((i) - 1) << 8) 101 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */ 102 #define SCR_BRDV_DIV_2 0x0000 103 #define SCR_BRDV_DIV_4 0x0001 104 #define SCR_BRDV_DIV_8 0x0002 105 #define SCR_BRDV_DIV_16 0x0003 106 #define SCR_BRDV_DIV_32 0x0004 107 #define SCR_BRDV_DIV_1 0x0007 108 109 /* CTR */ 110 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */ 111 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */ 112 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */ 113 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */ 114 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */ 115 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */ 116 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */ 117 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */ 118 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */ 119 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */ 120 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */ 121 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */ 122 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */ 123 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */ 124 #define CTR_TXE 0x00000200 /* Transmit Enable */ 125 #define CTR_RXE 0x00000100 /* Receive Enable */ 126 127 /* FCTR */ 128 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */ 129 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */ 130 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */ 131 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */ 132 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */ 133 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */ 134 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */ 135 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */ 136 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */ 137 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */ 138 #define FCTR_TFUA_SHIFT 20 139 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT) 140 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */ 141 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */ 142 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */ 143 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */ 144 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */ 145 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */ 146 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */ 147 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */ 148 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */ 149 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */ 150 #define FCTR_RFUA_SHIFT 4 151 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT) 152 153 /* STR */ 154 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */ 155 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */ 156 #define STR_TEOF 0x00800000 /* Frame Transmission End */ 157 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */ 158 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */ 159 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */ 160 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */ 161 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */ 162 #define STR_REOF 0x00000080 /* Frame Reception End */ 163 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */ 164 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */ 165 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */ 166 167 /* IER */ 168 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */ 169 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */ 170 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */ 171 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */ 172 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */ 173 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */ 174 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */ 175 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */ 176 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */ 177 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */ 178 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */ 179 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */ 180 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */ 181 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */ 182 183 184 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) 185 { 186 switch (reg_offs) { 187 case TSCR: 188 case RSCR: 189 return ioread16(p->mapbase + reg_offs); 190 default: 191 return ioread32(p->mapbase + reg_offs); 192 } 193 } 194 195 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, 196 u32 value) 197 { 198 switch (reg_offs) { 199 case TSCR: 200 case RSCR: 201 iowrite16(value, p->mapbase + reg_offs); 202 break; 203 default: 204 iowrite32(value, p->mapbase + reg_offs); 205 break; 206 } 207 } 208 209 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, 210 u32 clr, u32 set) 211 { 212 u32 mask = clr | set; 213 u32 data; 214 int k; 215 216 data = sh_msiof_read(p, CTR); 217 data &= ~clr; 218 data |= set; 219 sh_msiof_write(p, CTR, data); 220 221 for (k = 100; k > 0; k--) { 222 if ((sh_msiof_read(p, CTR) & mask) == set) 223 break; 224 225 udelay(10); 226 } 227 228 return k > 0 ? 0 : -ETIMEDOUT; 229 } 230 231 static irqreturn_t sh_msiof_spi_irq(int irq, void *data) 232 { 233 struct sh_msiof_spi_priv *p = data; 234 235 /* just disable the interrupt and wake up */ 236 sh_msiof_write(p, IER, 0); 237 complete(&p->done); 238 239 return IRQ_HANDLED; 240 } 241 242 static struct { 243 unsigned short div; 244 unsigned short brdv; 245 } const sh_msiof_spi_div_table[] = { 246 { 1, SCR_BRDV_DIV_1 }, 247 { 2, SCR_BRDV_DIV_2 }, 248 { 4, SCR_BRDV_DIV_4 }, 249 { 8, SCR_BRDV_DIV_8 }, 250 { 16, SCR_BRDV_DIV_16 }, 251 { 32, SCR_BRDV_DIV_32 }, 252 }; 253 254 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, 255 unsigned long parent_rate, u32 spi_hz) 256 { 257 unsigned long div = 1024; 258 u32 brps, scr; 259 size_t k; 260 261 if (!WARN_ON(!spi_hz || !parent_rate)) 262 div = DIV_ROUND_UP(parent_rate, spi_hz); 263 264 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) { 265 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div); 266 if (brps <= 32) /* max of brdv is 32 */ 267 break; 268 } 269 270 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1); 271 272 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps); 273 sh_msiof_write(p, TSCR, scr); 274 if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX)) 275 sh_msiof_write(p, RSCR, scr); 276 } 277 278 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) 279 { 280 /* 281 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl 282 * b'000 : 0 283 * b'001 : 100 284 * b'010 : 200 285 * b'011 (SYNCDL only) : 300 286 * b'101 : 50 287 * b'110 : 150 288 */ 289 if (dtdl_or_syncdl % 100) 290 return dtdl_or_syncdl / 100 + 5; 291 else 292 return dtdl_or_syncdl / 100; 293 } 294 295 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) 296 { 297 u32 val; 298 299 if (!p->info) 300 return 0; 301 302 /* check if DTDL and SYNCDL is allowed value */ 303 if (p->info->dtdl > 200 || p->info->syncdl > 300) { 304 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); 305 return 0; 306 } 307 308 /* check if the sum of DTDL and SYNCDL becomes an integer value */ 309 if ((p->info->dtdl + p->info->syncdl) % 100) { 310 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); 311 return 0; 312 } 313 314 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT; 315 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT; 316 317 return val; 318 } 319 320 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, 321 u32 cpol, u32 cpha, 322 u32 tx_hi_z, u32 lsb_first, u32 cs_high) 323 { 324 u32 tmp; 325 int edge; 326 327 /* 328 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG 329 * 0 0 10 10 1 1 330 * 0 1 10 10 0 0 331 * 1 0 11 11 0 0 332 * 1 1 11 11 1 1 333 */ 334 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP; 335 tmp |= !cs_high << MDR1_SYNCAC_SHIFT; 336 tmp |= lsb_first << MDR1_BITLSB_SHIFT; 337 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); 338 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON); 339 if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) { 340 /* These bits are reserved if RX needs TX */ 341 tmp &= ~0x0000ffff; 342 } 343 sh_msiof_write(p, RMDR1, tmp); 344 345 tmp = 0; 346 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT; 347 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT; 348 349 edge = cpol ^ !cpha; 350 351 tmp |= edge << CTR_TEDG_SHIFT; 352 tmp |= edge << CTR_REDG_SHIFT; 353 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW; 354 sh_msiof_write(p, CTR, tmp); 355 } 356 357 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, 358 const void *tx_buf, void *rx_buf, 359 u32 bits, u32 words) 360 { 361 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words); 362 363 if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX)) 364 sh_msiof_write(p, TMDR2, dr2); 365 else 366 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1); 367 368 if (rx_buf) 369 sh_msiof_write(p, RMDR2, dr2); 370 } 371 372 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) 373 { 374 sh_msiof_write(p, STR, sh_msiof_read(p, STR)); 375 } 376 377 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, 378 const void *tx_buf, int words, int fs) 379 { 380 const u8 *buf_8 = tx_buf; 381 int k; 382 383 for (k = 0; k < words; k++) 384 sh_msiof_write(p, TFDR, buf_8[k] << fs); 385 } 386 387 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, 388 const void *tx_buf, int words, int fs) 389 { 390 const u16 *buf_16 = tx_buf; 391 int k; 392 393 for (k = 0; k < words; k++) 394 sh_msiof_write(p, TFDR, buf_16[k] << fs); 395 } 396 397 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, 398 const void *tx_buf, int words, int fs) 399 { 400 const u16 *buf_16 = tx_buf; 401 int k; 402 403 for (k = 0; k < words; k++) 404 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs); 405 } 406 407 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, 408 const void *tx_buf, int words, int fs) 409 { 410 const u32 *buf_32 = tx_buf; 411 int k; 412 413 for (k = 0; k < words; k++) 414 sh_msiof_write(p, TFDR, buf_32[k] << fs); 415 } 416 417 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, 418 const void *tx_buf, int words, int fs) 419 { 420 const u32 *buf_32 = tx_buf; 421 int k; 422 423 for (k = 0; k < words; k++) 424 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs); 425 } 426 427 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, 428 const void *tx_buf, int words, int fs) 429 { 430 const u32 *buf_32 = tx_buf; 431 int k; 432 433 for (k = 0; k < words; k++) 434 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs)); 435 } 436 437 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, 438 const void *tx_buf, int words, int fs) 439 { 440 const u32 *buf_32 = tx_buf; 441 int k; 442 443 for (k = 0; k < words; k++) 444 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs)); 445 } 446 447 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, 448 void *rx_buf, int words, int fs) 449 { 450 u8 *buf_8 = rx_buf; 451 int k; 452 453 for (k = 0; k < words; k++) 454 buf_8[k] = sh_msiof_read(p, RFDR) >> fs; 455 } 456 457 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, 458 void *rx_buf, int words, int fs) 459 { 460 u16 *buf_16 = rx_buf; 461 int k; 462 463 for (k = 0; k < words; k++) 464 buf_16[k] = sh_msiof_read(p, RFDR) >> fs; 465 } 466 467 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, 468 void *rx_buf, int words, int fs) 469 { 470 u16 *buf_16 = rx_buf; 471 int k; 472 473 for (k = 0; k < words; k++) 474 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]); 475 } 476 477 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, 478 void *rx_buf, int words, int fs) 479 { 480 u32 *buf_32 = rx_buf; 481 int k; 482 483 for (k = 0; k < words; k++) 484 buf_32[k] = sh_msiof_read(p, RFDR) >> fs; 485 } 486 487 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, 488 void *rx_buf, int words, int fs) 489 { 490 u32 *buf_32 = rx_buf; 491 int k; 492 493 for (k = 0; k < words; k++) 494 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]); 495 } 496 497 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, 498 void *rx_buf, int words, int fs) 499 { 500 u32 *buf_32 = rx_buf; 501 int k; 502 503 for (k = 0; k < words; k++) 504 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs); 505 } 506 507 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, 508 void *rx_buf, int words, int fs) 509 { 510 u32 *buf_32 = rx_buf; 511 int k; 512 513 for (k = 0; k < words; k++) 514 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]); 515 } 516 517 static int sh_msiof_spi_setup(struct spi_device *spi) 518 { 519 struct device_node *np = spi->master->dev.of_node; 520 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master); 521 522 pm_runtime_get_sync(&p->pdev->dev); 523 524 if (!np) { 525 /* 526 * Use spi->controller_data for CS (same strategy as spi_gpio), 527 * if any. otherwise let HW control CS 528 */ 529 spi->cs_gpio = (uintptr_t)spi->controller_data; 530 } 531 532 /* Configure pins before deasserting CS */ 533 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL), 534 !!(spi->mode & SPI_CPHA), 535 !!(spi->mode & SPI_3WIRE), 536 !!(spi->mode & SPI_LSB_FIRST), 537 !!(spi->mode & SPI_CS_HIGH)); 538 539 if (spi->cs_gpio >= 0) 540 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH)); 541 542 543 pm_runtime_put(&p->pdev->dev); 544 545 return 0; 546 } 547 548 static int sh_msiof_prepare_message(struct spi_master *master, 549 struct spi_message *msg) 550 { 551 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 552 const struct spi_device *spi = msg->spi; 553 554 /* Configure pins before asserting CS */ 555 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL), 556 !!(spi->mode & SPI_CPHA), 557 !!(spi->mode & SPI_3WIRE), 558 !!(spi->mode & SPI_LSB_FIRST), 559 !!(spi->mode & SPI_CS_HIGH)); 560 return 0; 561 } 562 563 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) 564 { 565 int ret; 566 567 /* setup clock and rx/tx signals */ 568 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE); 569 if (rx_buf && !ret) 570 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE); 571 if (!ret) 572 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE); 573 574 /* start by setting frame bit */ 575 if (!ret) 576 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE); 577 578 return ret; 579 } 580 581 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) 582 { 583 int ret; 584 585 /* shut down frame, rx/tx and clock signals */ 586 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0); 587 if (!ret) 588 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0); 589 if (rx_buf && !ret) 590 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0); 591 if (!ret) 592 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0); 593 594 return ret; 595 } 596 597 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, 598 void (*tx_fifo)(struct sh_msiof_spi_priv *, 599 const void *, int, int), 600 void (*rx_fifo)(struct sh_msiof_spi_priv *, 601 void *, int, int), 602 const void *tx_buf, void *rx_buf, 603 int words, int bits) 604 { 605 int fifo_shift; 606 int ret; 607 608 /* limit maximum word transfer to rx/tx fifo size */ 609 if (tx_buf) 610 words = min_t(int, words, p->tx_fifo_size); 611 if (rx_buf) 612 words = min_t(int, words, p->rx_fifo_size); 613 614 /* the fifo contents need shifting */ 615 fifo_shift = 32 - bits; 616 617 /* default FIFO watermarks for PIO */ 618 sh_msiof_write(p, FCTR, 0); 619 620 /* setup msiof transfer mode registers */ 621 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); 622 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE); 623 624 /* write tx fifo */ 625 if (tx_buf) 626 tx_fifo(p, tx_buf, words, fifo_shift); 627 628 reinit_completion(&p->done); 629 630 ret = sh_msiof_spi_start(p, rx_buf); 631 if (ret) { 632 dev_err(&p->pdev->dev, "failed to start hardware\n"); 633 goto stop_ier; 634 } 635 636 /* wait for tx fifo to be emptied / rx fifo to be filled */ 637 if (!wait_for_completion_timeout(&p->done, HZ)) { 638 dev_err(&p->pdev->dev, "PIO timeout\n"); 639 ret = -ETIMEDOUT; 640 goto stop_reset; 641 } 642 643 /* read rx fifo */ 644 if (rx_buf) 645 rx_fifo(p, rx_buf, words, fifo_shift); 646 647 /* clear status bits */ 648 sh_msiof_reset_str(p); 649 650 ret = sh_msiof_spi_stop(p, rx_buf); 651 if (ret) { 652 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 653 return ret; 654 } 655 656 return words; 657 658 stop_reset: 659 sh_msiof_reset_str(p); 660 sh_msiof_spi_stop(p, rx_buf); 661 stop_ier: 662 sh_msiof_write(p, IER, 0); 663 return ret; 664 } 665 666 static void sh_msiof_dma_complete(void *arg) 667 { 668 struct sh_msiof_spi_priv *p = arg; 669 670 sh_msiof_write(p, IER, 0); 671 complete(&p->done); 672 } 673 674 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, 675 void *rx, unsigned int len) 676 { 677 u32 ier_bits = 0; 678 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 679 dma_cookie_t cookie; 680 int ret; 681 682 /* First prepare and submit the DMA request(s), as this may fail */ 683 if (rx) { 684 ier_bits |= IER_RDREQE | IER_RDMAE; 685 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx, 686 p->rx_dma_addr, len, DMA_FROM_DEVICE, 687 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 688 if (!desc_rx) 689 return -EAGAIN; 690 691 desc_rx->callback = sh_msiof_dma_complete; 692 desc_rx->callback_param = p; 693 cookie = dmaengine_submit(desc_rx); 694 if (dma_submit_error(cookie)) 695 return cookie; 696 } 697 698 if (tx) { 699 ier_bits |= IER_TDREQE | IER_TDMAE; 700 dma_sync_single_for_device(p->master->dma_tx->device->dev, 701 p->tx_dma_addr, len, DMA_TO_DEVICE); 702 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx, 703 p->tx_dma_addr, len, DMA_TO_DEVICE, 704 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 705 if (!desc_tx) { 706 ret = -EAGAIN; 707 goto no_dma_tx; 708 } 709 710 if (rx) { 711 /* No callback */ 712 desc_tx->callback = NULL; 713 } else { 714 desc_tx->callback = sh_msiof_dma_complete; 715 desc_tx->callback_param = p; 716 } 717 cookie = dmaengine_submit(desc_tx); 718 if (dma_submit_error(cookie)) { 719 ret = cookie; 720 goto no_dma_tx; 721 } 722 } 723 724 /* 1 stage FIFO watermarks for DMA */ 725 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1); 726 727 /* setup msiof transfer mode registers (32-bit words) */ 728 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); 729 730 sh_msiof_write(p, IER, ier_bits); 731 732 reinit_completion(&p->done); 733 734 /* Now start DMA */ 735 if (rx) 736 dma_async_issue_pending(p->master->dma_rx); 737 if (tx) 738 dma_async_issue_pending(p->master->dma_tx); 739 740 ret = sh_msiof_spi_start(p, rx); 741 if (ret) { 742 dev_err(&p->pdev->dev, "failed to start hardware\n"); 743 goto stop_dma; 744 } 745 746 /* wait for tx fifo to be emptied / rx fifo to be filled */ 747 if (!wait_for_completion_timeout(&p->done, HZ)) { 748 dev_err(&p->pdev->dev, "DMA timeout\n"); 749 ret = -ETIMEDOUT; 750 goto stop_reset; 751 } 752 753 /* clear status bits */ 754 sh_msiof_reset_str(p); 755 756 ret = sh_msiof_spi_stop(p, rx); 757 if (ret) { 758 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 759 return ret; 760 } 761 762 if (rx) 763 dma_sync_single_for_cpu(p->master->dma_rx->device->dev, 764 p->rx_dma_addr, len, 765 DMA_FROM_DEVICE); 766 767 return 0; 768 769 stop_reset: 770 sh_msiof_reset_str(p); 771 sh_msiof_spi_stop(p, rx); 772 stop_dma: 773 if (tx) 774 dmaengine_terminate_all(p->master->dma_tx); 775 no_dma_tx: 776 if (rx) 777 dmaengine_terminate_all(p->master->dma_rx); 778 sh_msiof_write(p, IER, 0); 779 return ret; 780 } 781 782 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) 783 { 784 /* src or dst can be unaligned, but not both */ 785 if ((unsigned long)src & 3) { 786 while (words--) { 787 *dst++ = swab32(get_unaligned(src)); 788 src++; 789 } 790 } else if ((unsigned long)dst & 3) { 791 while (words--) { 792 put_unaligned(swab32(*src++), dst); 793 dst++; 794 } 795 } else { 796 while (words--) 797 *dst++ = swab32(*src++); 798 } 799 } 800 801 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) 802 { 803 /* src or dst can be unaligned, but not both */ 804 if ((unsigned long)src & 3) { 805 while (words--) { 806 *dst++ = swahw32(get_unaligned(src)); 807 src++; 808 } 809 } else if ((unsigned long)dst & 3) { 810 while (words--) { 811 put_unaligned(swahw32(*src++), dst); 812 dst++; 813 } 814 } else { 815 while (words--) 816 *dst++ = swahw32(*src++); 817 } 818 } 819 820 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) 821 { 822 memcpy(dst, src, words * 4); 823 } 824 825 static int sh_msiof_transfer_one(struct spi_master *master, 826 struct spi_device *spi, 827 struct spi_transfer *t) 828 { 829 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 830 void (*copy32)(u32 *, const u32 *, unsigned int); 831 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); 832 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); 833 const void *tx_buf = t->tx_buf; 834 void *rx_buf = t->rx_buf; 835 unsigned int len = t->len; 836 unsigned int bits = t->bits_per_word; 837 unsigned int bytes_per_word; 838 unsigned int words; 839 int n; 840 bool swab; 841 int ret; 842 843 /* setup clocks (clock already enabled in chipselect()) */ 844 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz); 845 846 while (master->dma_tx && len > 15) { 847 /* 848 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit 849 * words, with byte resp. word swapping. 850 */ 851 unsigned int l = 0; 852 853 if (tx_buf) 854 l = min(len, p->tx_fifo_size * 4); 855 if (rx_buf) 856 l = min(len, p->rx_fifo_size * 4); 857 858 if (bits <= 8) { 859 if (l & 3) 860 break; 861 copy32 = copy_bswap32; 862 } else if (bits <= 16) { 863 if (l & 1) 864 break; 865 copy32 = copy_wswap32; 866 } else { 867 copy32 = copy_plain32; 868 } 869 870 if (tx_buf) 871 copy32(p->tx_dma_page, tx_buf, l / 4); 872 873 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); 874 if (ret == -EAGAIN) { 875 pr_warn_once("%s %s: DMA not available, falling back to PIO\n", 876 dev_driver_string(&p->pdev->dev), 877 dev_name(&p->pdev->dev)); 878 break; 879 } 880 if (ret) 881 return ret; 882 883 if (rx_buf) { 884 copy32(rx_buf, p->rx_dma_page, l / 4); 885 rx_buf += l; 886 } 887 if (tx_buf) 888 tx_buf += l; 889 890 len -= l; 891 if (!len) 892 return 0; 893 } 894 895 if (bits <= 8 && len > 15 && !(len & 3)) { 896 bits = 32; 897 swab = true; 898 } else { 899 swab = false; 900 } 901 902 /* setup bytes per word and fifo read/write functions */ 903 if (bits <= 8) { 904 bytes_per_word = 1; 905 tx_fifo = sh_msiof_spi_write_fifo_8; 906 rx_fifo = sh_msiof_spi_read_fifo_8; 907 } else if (bits <= 16) { 908 bytes_per_word = 2; 909 if ((unsigned long)tx_buf & 0x01) 910 tx_fifo = sh_msiof_spi_write_fifo_16u; 911 else 912 tx_fifo = sh_msiof_spi_write_fifo_16; 913 914 if ((unsigned long)rx_buf & 0x01) 915 rx_fifo = sh_msiof_spi_read_fifo_16u; 916 else 917 rx_fifo = sh_msiof_spi_read_fifo_16; 918 } else if (swab) { 919 bytes_per_word = 4; 920 if ((unsigned long)tx_buf & 0x03) 921 tx_fifo = sh_msiof_spi_write_fifo_s32u; 922 else 923 tx_fifo = sh_msiof_spi_write_fifo_s32; 924 925 if ((unsigned long)rx_buf & 0x03) 926 rx_fifo = sh_msiof_spi_read_fifo_s32u; 927 else 928 rx_fifo = sh_msiof_spi_read_fifo_s32; 929 } else { 930 bytes_per_word = 4; 931 if ((unsigned long)tx_buf & 0x03) 932 tx_fifo = sh_msiof_spi_write_fifo_32u; 933 else 934 tx_fifo = sh_msiof_spi_write_fifo_32; 935 936 if ((unsigned long)rx_buf & 0x03) 937 rx_fifo = sh_msiof_spi_read_fifo_32u; 938 else 939 rx_fifo = sh_msiof_spi_read_fifo_32; 940 } 941 942 /* transfer in fifo sized chunks */ 943 words = len / bytes_per_word; 944 945 while (words > 0) { 946 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, 947 words, bits); 948 if (n < 0) 949 return n; 950 951 if (tx_buf) 952 tx_buf += n * bytes_per_word; 953 if (rx_buf) 954 rx_buf += n * bytes_per_word; 955 words -= n; 956 } 957 958 return 0; 959 } 960 961 static const struct sh_msiof_chipdata sh_data = { 962 .tx_fifo_size = 64, 963 .rx_fifo_size = 64, 964 .master_flags = 0, 965 }; 966 967 static const struct sh_msiof_chipdata r8a779x_data = { 968 .tx_fifo_size = 64, 969 .rx_fifo_size = 64, 970 .master_flags = SPI_MASTER_MUST_TX, 971 }; 972 973 static const struct of_device_id sh_msiof_match[] = { 974 { .compatible = "renesas,sh-msiof", .data = &sh_data }, 975 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, 976 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data }, 977 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data }, 978 { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data }, 979 { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data }, 980 { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data }, 981 {}, 982 }; 983 MODULE_DEVICE_TABLE(of, sh_msiof_match); 984 985 #ifdef CONFIG_OF 986 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 987 { 988 struct sh_msiof_spi_info *info; 989 struct device_node *np = dev->of_node; 990 u32 num_cs = 1; 991 992 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); 993 if (!info) 994 return NULL; 995 996 /* Parse the MSIOF properties */ 997 of_property_read_u32(np, "num-cs", &num_cs); 998 of_property_read_u32(np, "renesas,tx-fifo-size", 999 &info->tx_fifo_override); 1000 of_property_read_u32(np, "renesas,rx-fifo-size", 1001 &info->rx_fifo_override); 1002 of_property_read_u32(np, "renesas,dtdl", &info->dtdl); 1003 of_property_read_u32(np, "renesas,syncdl", &info->syncdl); 1004 1005 info->num_chipselect = num_cs; 1006 1007 return info; 1008 } 1009 #else 1010 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 1011 { 1012 return NULL; 1013 } 1014 #endif 1015 1016 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, 1017 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) 1018 { 1019 dma_cap_mask_t mask; 1020 struct dma_chan *chan; 1021 struct dma_slave_config cfg; 1022 int ret; 1023 1024 dma_cap_zero(mask); 1025 dma_cap_set(DMA_SLAVE, mask); 1026 1027 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1028 (void *)(unsigned long)id, dev, 1029 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1030 if (!chan) { 1031 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1032 return NULL; 1033 } 1034 1035 memset(&cfg, 0, sizeof(cfg)); 1036 cfg.direction = dir; 1037 if (dir == DMA_MEM_TO_DEV) { 1038 cfg.dst_addr = port_addr; 1039 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1040 } else { 1041 cfg.src_addr = port_addr; 1042 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1043 } 1044 1045 ret = dmaengine_slave_config(chan, &cfg); 1046 if (ret) { 1047 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1048 dma_release_channel(chan); 1049 return NULL; 1050 } 1051 1052 return chan; 1053 } 1054 1055 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) 1056 { 1057 struct platform_device *pdev = p->pdev; 1058 struct device *dev = &pdev->dev; 1059 const struct sh_msiof_spi_info *info = dev_get_platdata(dev); 1060 unsigned int dma_tx_id, dma_rx_id; 1061 const struct resource *res; 1062 struct spi_master *master; 1063 struct device *tx_dev, *rx_dev; 1064 1065 if (dev->of_node) { 1066 /* In the OF case we will get the slave IDs from the DT */ 1067 dma_tx_id = 0; 1068 dma_rx_id = 0; 1069 } else if (info && info->dma_tx_id && info->dma_rx_id) { 1070 dma_tx_id = info->dma_tx_id; 1071 dma_rx_id = info->dma_rx_id; 1072 } else { 1073 /* The driver assumes no error */ 1074 return 0; 1075 } 1076 1077 /* The DMA engine uses the second register set, if present */ 1078 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1079 if (!res) 1080 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1081 1082 master = p->master; 1083 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, 1084 dma_tx_id, 1085 res->start + TFDR); 1086 if (!master->dma_tx) 1087 return -ENODEV; 1088 1089 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, 1090 dma_rx_id, 1091 res->start + RFDR); 1092 if (!master->dma_rx) 1093 goto free_tx_chan; 1094 1095 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1096 if (!p->tx_dma_page) 1097 goto free_rx_chan; 1098 1099 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1100 if (!p->rx_dma_page) 1101 goto free_tx_page; 1102 1103 tx_dev = master->dma_tx->device->dev; 1104 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, 1105 DMA_TO_DEVICE); 1106 if (dma_mapping_error(tx_dev, p->tx_dma_addr)) 1107 goto free_rx_page; 1108 1109 rx_dev = master->dma_rx->device->dev; 1110 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, 1111 DMA_FROM_DEVICE); 1112 if (dma_mapping_error(rx_dev, p->rx_dma_addr)) 1113 goto unmap_tx_page; 1114 1115 dev_info(dev, "DMA available"); 1116 return 0; 1117 1118 unmap_tx_page: 1119 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); 1120 free_rx_page: 1121 free_page((unsigned long)p->rx_dma_page); 1122 free_tx_page: 1123 free_page((unsigned long)p->tx_dma_page); 1124 free_rx_chan: 1125 dma_release_channel(master->dma_rx); 1126 free_tx_chan: 1127 dma_release_channel(master->dma_tx); 1128 master->dma_tx = NULL; 1129 return -ENODEV; 1130 } 1131 1132 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) 1133 { 1134 struct spi_master *master = p->master; 1135 struct device *dev; 1136 1137 if (!master->dma_tx) 1138 return; 1139 1140 dev = &p->pdev->dev; 1141 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr, 1142 PAGE_SIZE, DMA_FROM_DEVICE); 1143 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr, 1144 PAGE_SIZE, DMA_TO_DEVICE); 1145 free_page((unsigned long)p->rx_dma_page); 1146 free_page((unsigned long)p->tx_dma_page); 1147 dma_release_channel(master->dma_rx); 1148 dma_release_channel(master->dma_tx); 1149 } 1150 1151 static int sh_msiof_spi_probe(struct platform_device *pdev) 1152 { 1153 struct resource *r; 1154 struct spi_master *master; 1155 const struct of_device_id *of_id; 1156 struct sh_msiof_spi_priv *p; 1157 int i; 1158 int ret; 1159 1160 master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv)); 1161 if (master == NULL) { 1162 dev_err(&pdev->dev, "failed to allocate spi master\n"); 1163 return -ENOMEM; 1164 } 1165 1166 p = spi_master_get_devdata(master); 1167 1168 platform_set_drvdata(pdev, p); 1169 p->master = master; 1170 1171 of_id = of_match_device(sh_msiof_match, &pdev->dev); 1172 if (of_id) { 1173 p->chipdata = of_id->data; 1174 p->info = sh_msiof_spi_parse_dt(&pdev->dev); 1175 } else { 1176 p->chipdata = (const void *)pdev->id_entry->driver_data; 1177 p->info = dev_get_platdata(&pdev->dev); 1178 } 1179 1180 if (!p->info) { 1181 dev_err(&pdev->dev, "failed to obtain device info\n"); 1182 ret = -ENXIO; 1183 goto err1; 1184 } 1185 1186 init_completion(&p->done); 1187 1188 p->clk = devm_clk_get(&pdev->dev, NULL); 1189 if (IS_ERR(p->clk)) { 1190 dev_err(&pdev->dev, "cannot get clock\n"); 1191 ret = PTR_ERR(p->clk); 1192 goto err1; 1193 } 1194 1195 i = platform_get_irq(pdev, 0); 1196 if (i < 0) { 1197 dev_err(&pdev->dev, "cannot get platform IRQ\n"); 1198 ret = -ENOENT; 1199 goto err1; 1200 } 1201 1202 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1203 p->mapbase = devm_ioremap_resource(&pdev->dev, r); 1204 if (IS_ERR(p->mapbase)) { 1205 ret = PTR_ERR(p->mapbase); 1206 goto err1; 1207 } 1208 1209 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, 1210 dev_name(&pdev->dev), p); 1211 if (ret) { 1212 dev_err(&pdev->dev, "unable to request irq\n"); 1213 goto err1; 1214 } 1215 1216 p->pdev = pdev; 1217 pm_runtime_enable(&pdev->dev); 1218 1219 /* Platform data may override FIFO sizes */ 1220 p->tx_fifo_size = p->chipdata->tx_fifo_size; 1221 p->rx_fifo_size = p->chipdata->rx_fifo_size; 1222 if (p->info->tx_fifo_override) 1223 p->tx_fifo_size = p->info->tx_fifo_override; 1224 if (p->info->rx_fifo_override) 1225 p->rx_fifo_size = p->info->rx_fifo_override; 1226 1227 /* init master code */ 1228 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1229 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; 1230 master->flags = p->chipdata->master_flags; 1231 master->bus_num = pdev->id; 1232 master->dev.of_node = pdev->dev.of_node; 1233 master->num_chipselect = p->info->num_chipselect; 1234 master->setup = sh_msiof_spi_setup; 1235 master->prepare_message = sh_msiof_prepare_message; 1236 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32); 1237 master->auto_runtime_pm = true; 1238 master->transfer_one = sh_msiof_transfer_one; 1239 1240 ret = sh_msiof_request_dma(p); 1241 if (ret < 0) 1242 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1243 1244 ret = devm_spi_register_master(&pdev->dev, master); 1245 if (ret < 0) { 1246 dev_err(&pdev->dev, "spi_register_master error.\n"); 1247 goto err2; 1248 } 1249 1250 return 0; 1251 1252 err2: 1253 sh_msiof_release_dma(p); 1254 pm_runtime_disable(&pdev->dev); 1255 err1: 1256 spi_master_put(master); 1257 return ret; 1258 } 1259 1260 static int sh_msiof_spi_remove(struct platform_device *pdev) 1261 { 1262 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); 1263 1264 sh_msiof_release_dma(p); 1265 pm_runtime_disable(&pdev->dev); 1266 return 0; 1267 } 1268 1269 static const struct platform_device_id spi_driver_ids[] = { 1270 { "spi_sh_msiof", (kernel_ulong_t)&sh_data }, 1271 {}, 1272 }; 1273 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1274 1275 static struct platform_driver sh_msiof_spi_drv = { 1276 .probe = sh_msiof_spi_probe, 1277 .remove = sh_msiof_spi_remove, 1278 .id_table = spi_driver_ids, 1279 .driver = { 1280 .name = "spi_sh_msiof", 1281 .of_match_table = of_match_ptr(sh_msiof_match), 1282 }, 1283 }; 1284 module_platform_driver(sh_msiof_spi_drv); 1285 1286 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver"); 1287 MODULE_AUTHOR("Magnus Damm"); 1288 MODULE_LICENSE("GPL v2"); 1289 MODULE_ALIAS("platform:spi_sh_msiof"); 1290