xref: /openbmc/linux/drivers/spi/spi-sh-msiof.c (revision d4295e12)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH MSIOF SPI Master Interface
4  *
5  * Copyright (c) 2009 Magnus Damm
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  * Copyright (C) 2014-2017 Glider bvba
8  */
9 
10 #include <linux/bitmap.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/gpio.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/sh_dma.h>
28 
29 #include <linux/spi/sh_msiof.h>
30 #include <linux/spi/spi.h>
31 
32 #include <asm/unaligned.h>
33 
34 struct sh_msiof_chipdata {
35 	u16 tx_fifo_size;
36 	u16 rx_fifo_size;
37 	u16 master_flags;
38 	u16 min_div_pow;
39 };
40 
41 struct sh_msiof_spi_priv {
42 	struct spi_master *master;
43 	void __iomem *mapbase;
44 	struct clk *clk;
45 	struct platform_device *pdev;
46 	struct sh_msiof_spi_info *info;
47 	struct completion done;
48 	struct completion done_txdma;
49 	unsigned int tx_fifo_size;
50 	unsigned int rx_fifo_size;
51 	unsigned int min_div_pow;
52 	void *tx_dma_page;
53 	void *rx_dma_page;
54 	dma_addr_t tx_dma_addr;
55 	dma_addr_t rx_dma_addr;
56 	unsigned short unused_ss;
57 	bool native_cs_inited;
58 	bool native_cs_high;
59 	bool slave_aborted;
60 };
61 
62 #define MAX_SS	3	/* Maximum number of native chip selects */
63 
64 #define TMDR1	0x00	/* Transmit Mode Register 1 */
65 #define TMDR2	0x04	/* Transmit Mode Register 2 */
66 #define TMDR3	0x08	/* Transmit Mode Register 3 */
67 #define RMDR1	0x10	/* Receive Mode Register 1 */
68 #define RMDR2	0x14	/* Receive Mode Register 2 */
69 #define RMDR3	0x18	/* Receive Mode Register 3 */
70 #define TSCR	0x20	/* Transmit Clock Select Register */
71 #define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
72 #define CTR	0x28	/* Control Register */
73 #define FCTR	0x30	/* FIFO Control Register */
74 #define STR	0x40	/* Status Register */
75 #define IER	0x44	/* Interrupt Enable Register */
76 #define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
77 #define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
78 #define TFDR	0x50	/* Transmit FIFO Data Register */
79 #define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
80 #define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
81 #define RFDR	0x60	/* Receive FIFO Data Register */
82 
83 /* TMDR1 and RMDR1 */
84 #define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
85 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
86 #define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
87 #define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
88 #define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
89 #define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
90 #define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
91 #define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
92 #define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
93 #define MDR1_FLD_SHIFT		  2
94 #define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
95 /* TMDR1 */
96 #define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
97 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
98 #define TMDR1_SYNCCH_SHIFT	 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
99 
100 /* TMDR2 and RMDR2 */
101 #define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
102 #define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
103 #define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
104 
105 /* TSCR and RSCR */
106 #define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
107 #define SCR_BRPS(i)	(((i) - 1) << 8)
108 #define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
109 #define SCR_BRDV_DIV_2	    0x0000
110 #define SCR_BRDV_DIV_4	    0x0001
111 #define SCR_BRDV_DIV_8	    0x0002
112 #define SCR_BRDV_DIV_16	    0x0003
113 #define SCR_BRDV_DIV_32	    0x0004
114 #define SCR_BRDV_DIV_1	    0x0007
115 
116 /* CTR */
117 #define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
118 #define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
119 #define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
120 #define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
121 #define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
122 #define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
123 #define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
124 #define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
125 #define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
126 #define CTR_TXDIZ_LOW	0x00000000 /*   0 */
127 #define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
128 #define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
129 #define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
130 #define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
131 #define CTR_TXE		0x00000200 /* Transmit Enable */
132 #define CTR_RXE		0x00000100 /* Receive Enable */
133 
134 /* FCTR */
135 #define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
136 #define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
137 #define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
138 #define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
139 #define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
140 #define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
141 #define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
142 #define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
143 #define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
144 #define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
145 #define FCTR_TFUA_SHIFT		20
146 #define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
147 #define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
148 #define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
149 #define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
150 #define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
151 #define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
152 #define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
153 #define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
154 #define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
155 #define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
156 #define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
157 #define FCTR_RFUA_SHIFT		 4
158 #define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
159 
160 /* STR */
161 #define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
162 #define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
163 #define STR_TEOF	0x00800000 /* Frame Transmission End */
164 #define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
165 #define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
166 #define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
167 #define STR_RFFUL	0x00002000 /* Receive FIFO Full */
168 #define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
169 #define STR_REOF	0x00000080 /* Frame Reception End */
170 #define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
171 #define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
172 #define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
173 
174 /* IER */
175 #define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
176 #define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
177 #define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
178 #define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
179 #define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
180 #define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
181 #define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
182 #define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
183 #define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
184 #define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
185 #define IER_REOFE	0x00000080 /* Frame Reception End Enable */
186 #define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
187 #define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
188 #define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
189 
190 
191 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
192 {
193 	switch (reg_offs) {
194 	case TSCR:
195 	case RSCR:
196 		return ioread16(p->mapbase + reg_offs);
197 	default:
198 		return ioread32(p->mapbase + reg_offs);
199 	}
200 }
201 
202 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
203 			   u32 value)
204 {
205 	switch (reg_offs) {
206 	case TSCR:
207 	case RSCR:
208 		iowrite16(value, p->mapbase + reg_offs);
209 		break;
210 	default:
211 		iowrite32(value, p->mapbase + reg_offs);
212 		break;
213 	}
214 }
215 
216 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
217 				    u32 clr, u32 set)
218 {
219 	u32 mask = clr | set;
220 	u32 data;
221 	int k;
222 
223 	data = sh_msiof_read(p, CTR);
224 	data &= ~clr;
225 	data |= set;
226 	sh_msiof_write(p, CTR, data);
227 
228 	for (k = 100; k > 0; k--) {
229 		if ((sh_msiof_read(p, CTR) & mask) == set)
230 			break;
231 
232 		udelay(10);
233 	}
234 
235 	return k > 0 ? 0 : -ETIMEDOUT;
236 }
237 
238 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
239 {
240 	struct sh_msiof_spi_priv *p = data;
241 
242 	/* just disable the interrupt and wake up */
243 	sh_msiof_write(p, IER, 0);
244 	complete(&p->done);
245 
246 	return IRQ_HANDLED;
247 }
248 
249 static const u32 sh_msiof_spi_div_array[] = {
250 	SCR_BRDV_DIV_1, SCR_BRDV_DIV_2,	 SCR_BRDV_DIV_4,
251 	SCR_BRDV_DIV_8,	SCR_BRDV_DIV_16, SCR_BRDV_DIV_32,
252 };
253 
254 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
255 				      unsigned long parent_rate, u32 spi_hz)
256 {
257 	unsigned long div;
258 	u32 brps, scr;
259 	unsigned int div_pow = p->min_div_pow;
260 
261 	if (!spi_hz || !parent_rate) {
262 		WARN(1, "Invalid clock rate parameters %lu and %u\n",
263 		     parent_rate, spi_hz);
264 		return;
265 	}
266 
267 	div = DIV_ROUND_UP(parent_rate, spi_hz);
268 	if (div <= 1024) {
269 		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
270 		if (!div_pow && div <= 32 && div > 2)
271 			div_pow = 1;
272 
273 		if (div_pow)
274 			brps = (div + 1) >> div_pow;
275 		else
276 			brps = div;
277 
278 		for (; brps > 32; div_pow++)
279 			brps = (brps + 1) >> 1;
280 	} else {
281 		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
282 		dev_err(&p->pdev->dev,
283 			"Requested SPI transfer rate %d is too low\n", spi_hz);
284 		div_pow = 5;
285 		brps = 32;
286 	}
287 
288 	scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps);
289 	sh_msiof_write(p, TSCR, scr);
290 	if (!(p->master->flags & SPI_MASTER_MUST_TX))
291 		sh_msiof_write(p, RSCR, scr);
292 }
293 
294 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
295 {
296 	/*
297 	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
298 	 * b'000		: 0
299 	 * b'001		: 100
300 	 * b'010		: 200
301 	 * b'011 (SYNCDL only)	: 300
302 	 * b'101		: 50
303 	 * b'110		: 150
304 	 */
305 	if (dtdl_or_syncdl % 100)
306 		return dtdl_or_syncdl / 100 + 5;
307 	else
308 		return dtdl_or_syncdl / 100;
309 }
310 
311 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
312 {
313 	u32 val;
314 
315 	if (!p->info)
316 		return 0;
317 
318 	/* check if DTDL and SYNCDL is allowed value */
319 	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
320 		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
321 		return 0;
322 	}
323 
324 	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
325 	if ((p->info->dtdl + p->info->syncdl) % 100) {
326 		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
327 		return 0;
328 	}
329 
330 	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
331 	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
332 
333 	return val;
334 }
335 
336 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
337 				      u32 cpol, u32 cpha,
338 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
339 {
340 	u32 tmp;
341 	int edge;
342 
343 	/*
344 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
345 	 *    0    0         10     10    1    1
346 	 *    0    1         10     10    0    0
347 	 *    1    0         11     11    0    0
348 	 *    1    1         11     11    1    1
349 	 */
350 	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
351 	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
352 	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
353 	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
354 	if (spi_controller_is_slave(p->master)) {
355 		sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
356 	} else {
357 		sh_msiof_write(p, TMDR1,
358 			       tmp | MDR1_TRMD | TMDR1_PCON |
359 			       (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
360 	}
361 	if (p->master->flags & SPI_MASTER_MUST_TX) {
362 		/* These bits are reserved if RX needs TX */
363 		tmp &= ~0x0000ffff;
364 	}
365 	sh_msiof_write(p, RMDR1, tmp);
366 
367 	tmp = 0;
368 	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
369 	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
370 
371 	edge = cpol ^ !cpha;
372 
373 	tmp |= edge << CTR_TEDG_SHIFT;
374 	tmp |= edge << CTR_REDG_SHIFT;
375 	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
376 	sh_msiof_write(p, CTR, tmp);
377 }
378 
379 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
380 				       const void *tx_buf, void *rx_buf,
381 				       u32 bits, u32 words)
382 {
383 	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
384 
385 	if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
386 		sh_msiof_write(p, TMDR2, dr2);
387 	else
388 		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
389 
390 	if (rx_buf)
391 		sh_msiof_write(p, RMDR2, dr2);
392 }
393 
394 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
395 {
396 	sh_msiof_write(p, STR,
397 		       sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ));
398 }
399 
400 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
401 				      const void *tx_buf, int words, int fs)
402 {
403 	const u8 *buf_8 = tx_buf;
404 	int k;
405 
406 	for (k = 0; k < words; k++)
407 		sh_msiof_write(p, TFDR, buf_8[k] << fs);
408 }
409 
410 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
411 				       const void *tx_buf, int words, int fs)
412 {
413 	const u16 *buf_16 = tx_buf;
414 	int k;
415 
416 	for (k = 0; k < words; k++)
417 		sh_msiof_write(p, TFDR, buf_16[k] << fs);
418 }
419 
420 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
421 					const void *tx_buf, int words, int fs)
422 {
423 	const u16 *buf_16 = tx_buf;
424 	int k;
425 
426 	for (k = 0; k < words; k++)
427 		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
428 }
429 
430 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
431 				       const void *tx_buf, int words, int fs)
432 {
433 	const u32 *buf_32 = tx_buf;
434 	int k;
435 
436 	for (k = 0; k < words; k++)
437 		sh_msiof_write(p, TFDR, buf_32[k] << fs);
438 }
439 
440 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
441 					const void *tx_buf, int words, int fs)
442 {
443 	const u32 *buf_32 = tx_buf;
444 	int k;
445 
446 	for (k = 0; k < words; k++)
447 		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
448 }
449 
450 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
451 					const void *tx_buf, int words, int fs)
452 {
453 	const u32 *buf_32 = tx_buf;
454 	int k;
455 
456 	for (k = 0; k < words; k++)
457 		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
458 }
459 
460 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
461 					 const void *tx_buf, int words, int fs)
462 {
463 	const u32 *buf_32 = tx_buf;
464 	int k;
465 
466 	for (k = 0; k < words; k++)
467 		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
468 }
469 
470 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
471 				     void *rx_buf, int words, int fs)
472 {
473 	u8 *buf_8 = rx_buf;
474 	int k;
475 
476 	for (k = 0; k < words; k++)
477 		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
478 }
479 
480 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
481 				      void *rx_buf, int words, int fs)
482 {
483 	u16 *buf_16 = rx_buf;
484 	int k;
485 
486 	for (k = 0; k < words; k++)
487 		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
488 }
489 
490 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
491 				       void *rx_buf, int words, int fs)
492 {
493 	u16 *buf_16 = rx_buf;
494 	int k;
495 
496 	for (k = 0; k < words; k++)
497 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
498 }
499 
500 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
501 				      void *rx_buf, int words, int fs)
502 {
503 	u32 *buf_32 = rx_buf;
504 	int k;
505 
506 	for (k = 0; k < words; k++)
507 		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
508 }
509 
510 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
511 				       void *rx_buf, int words, int fs)
512 {
513 	u32 *buf_32 = rx_buf;
514 	int k;
515 
516 	for (k = 0; k < words; k++)
517 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
518 }
519 
520 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
521 				       void *rx_buf, int words, int fs)
522 {
523 	u32 *buf_32 = rx_buf;
524 	int k;
525 
526 	for (k = 0; k < words; k++)
527 		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
528 }
529 
530 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
531 				       void *rx_buf, int words, int fs)
532 {
533 	u32 *buf_32 = rx_buf;
534 	int k;
535 
536 	for (k = 0; k < words; k++)
537 		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
538 }
539 
540 static int sh_msiof_spi_setup(struct spi_device *spi)
541 {
542 	struct device_node	*np = spi->master->dev.of_node;
543 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
544 	u32 clr, set, tmp;
545 
546 	if (!np) {
547 		/*
548 		 * Use spi->controller_data for CS (same strategy as spi_gpio),
549 		 * if any. otherwise let HW control CS
550 		 */
551 		spi->cs_gpio = (uintptr_t)spi->controller_data;
552 	}
553 
554 	if (gpio_is_valid(spi->cs_gpio)) {
555 		gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
556 		return 0;
557 	}
558 
559 	if (spi_controller_is_slave(p->master))
560 		return 0;
561 
562 	if (p->native_cs_inited &&
563 	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
564 		return 0;
565 
566 	/* Configure native chip select mode/polarity early */
567 	clr = MDR1_SYNCMD_MASK;
568 	set = MDR1_SYNCMD_SPI;
569 	if (spi->mode & SPI_CS_HIGH)
570 		clr |= BIT(MDR1_SYNCAC_SHIFT);
571 	else
572 		set |= BIT(MDR1_SYNCAC_SHIFT);
573 	pm_runtime_get_sync(&p->pdev->dev);
574 	tmp = sh_msiof_read(p, TMDR1) & ~clr;
575 	sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
576 	tmp = sh_msiof_read(p, RMDR1) & ~clr;
577 	sh_msiof_write(p, RMDR1, tmp | set);
578 	pm_runtime_put(&p->pdev->dev);
579 	p->native_cs_high = spi->mode & SPI_CS_HIGH;
580 	p->native_cs_inited = true;
581 	return 0;
582 }
583 
584 static int sh_msiof_prepare_message(struct spi_master *master,
585 				    struct spi_message *msg)
586 {
587 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
588 	const struct spi_device *spi = msg->spi;
589 	u32 ss, cs_high;
590 
591 	/* Configure pins before asserting CS */
592 	if (gpio_is_valid(spi->cs_gpio)) {
593 		ss = p->unused_ss;
594 		cs_high = p->native_cs_high;
595 	} else {
596 		ss = spi->chip_select;
597 		cs_high = !!(spi->mode & SPI_CS_HIGH);
598 	}
599 	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
600 				  !!(spi->mode & SPI_CPHA),
601 				  !!(spi->mode & SPI_3WIRE),
602 				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
603 	return 0;
604 }
605 
606 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
607 {
608 	bool slave = spi_controller_is_slave(p->master);
609 	int ret = 0;
610 
611 	/* setup clock and rx/tx signals */
612 	if (!slave)
613 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
614 	if (rx_buf && !ret)
615 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
616 	if (!ret)
617 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
618 
619 	/* start by setting frame bit */
620 	if (!ret && !slave)
621 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
622 
623 	return ret;
624 }
625 
626 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
627 {
628 	bool slave = spi_controller_is_slave(p->master);
629 	int ret = 0;
630 
631 	/* shut down frame, rx/tx and clock signals */
632 	if (!slave)
633 		ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
634 	if (!ret)
635 		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
636 	if (rx_buf && !ret)
637 		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
638 	if (!ret && !slave)
639 		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
640 
641 	return ret;
642 }
643 
644 static int sh_msiof_slave_abort(struct spi_master *master)
645 {
646 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
647 
648 	p->slave_aborted = true;
649 	complete(&p->done);
650 	complete(&p->done_txdma);
651 	return 0;
652 }
653 
654 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
655 					struct completion *x)
656 {
657 	if (spi_controller_is_slave(p->master)) {
658 		if (wait_for_completion_interruptible(x) ||
659 		    p->slave_aborted) {
660 			dev_dbg(&p->pdev->dev, "interrupted\n");
661 			return -EINTR;
662 		}
663 	} else {
664 		if (!wait_for_completion_timeout(x, HZ)) {
665 			dev_err(&p->pdev->dev, "timeout\n");
666 			return -ETIMEDOUT;
667 		}
668 	}
669 
670 	return 0;
671 }
672 
673 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
674 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
675 						  const void *, int, int),
676 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
677 						  void *, int, int),
678 				  const void *tx_buf, void *rx_buf,
679 				  int words, int bits)
680 {
681 	int fifo_shift;
682 	int ret;
683 
684 	/* limit maximum word transfer to rx/tx fifo size */
685 	if (tx_buf)
686 		words = min_t(int, words, p->tx_fifo_size);
687 	if (rx_buf)
688 		words = min_t(int, words, p->rx_fifo_size);
689 
690 	/* the fifo contents need shifting */
691 	fifo_shift = 32 - bits;
692 
693 	/* default FIFO watermarks for PIO */
694 	sh_msiof_write(p, FCTR, 0);
695 
696 	/* setup msiof transfer mode registers */
697 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
698 	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
699 
700 	/* write tx fifo */
701 	if (tx_buf)
702 		tx_fifo(p, tx_buf, words, fifo_shift);
703 
704 	reinit_completion(&p->done);
705 	p->slave_aborted = false;
706 
707 	ret = sh_msiof_spi_start(p, rx_buf);
708 	if (ret) {
709 		dev_err(&p->pdev->dev, "failed to start hardware\n");
710 		goto stop_ier;
711 	}
712 
713 	/* wait for tx fifo to be emptied / rx fifo to be filled */
714 	ret = sh_msiof_wait_for_completion(p, &p->done);
715 	if (ret)
716 		goto stop_reset;
717 
718 	/* read rx fifo */
719 	if (rx_buf)
720 		rx_fifo(p, rx_buf, words, fifo_shift);
721 
722 	/* clear status bits */
723 	sh_msiof_reset_str(p);
724 
725 	ret = sh_msiof_spi_stop(p, rx_buf);
726 	if (ret) {
727 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
728 		return ret;
729 	}
730 
731 	return words;
732 
733 stop_reset:
734 	sh_msiof_reset_str(p);
735 	sh_msiof_spi_stop(p, rx_buf);
736 stop_ier:
737 	sh_msiof_write(p, IER, 0);
738 	return ret;
739 }
740 
741 static void sh_msiof_dma_complete(void *arg)
742 {
743 	complete(arg);
744 }
745 
746 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
747 			     void *rx, unsigned int len)
748 {
749 	u32 ier_bits = 0;
750 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
751 	dma_cookie_t cookie;
752 	int ret;
753 
754 	/* First prepare and submit the DMA request(s), as this may fail */
755 	if (rx) {
756 		ier_bits |= IER_RDREQE | IER_RDMAE;
757 		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
758 					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
759 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
760 		if (!desc_rx)
761 			return -EAGAIN;
762 
763 		desc_rx->callback = sh_msiof_dma_complete;
764 		desc_rx->callback_param = &p->done;
765 		cookie = dmaengine_submit(desc_rx);
766 		if (dma_submit_error(cookie))
767 			return cookie;
768 	}
769 
770 	if (tx) {
771 		ier_bits |= IER_TDREQE | IER_TDMAE;
772 		dma_sync_single_for_device(p->master->dma_tx->device->dev,
773 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
774 		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
775 					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
776 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
777 		if (!desc_tx) {
778 			ret = -EAGAIN;
779 			goto no_dma_tx;
780 		}
781 
782 		desc_tx->callback = sh_msiof_dma_complete;
783 		desc_tx->callback_param = &p->done_txdma;
784 		cookie = dmaengine_submit(desc_tx);
785 		if (dma_submit_error(cookie)) {
786 			ret = cookie;
787 			goto no_dma_tx;
788 		}
789 	}
790 
791 	/* 1 stage FIFO watermarks for DMA */
792 	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
793 
794 	/* setup msiof transfer mode registers (32-bit words) */
795 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
796 
797 	sh_msiof_write(p, IER, ier_bits);
798 
799 	reinit_completion(&p->done);
800 	if (tx)
801 		reinit_completion(&p->done_txdma);
802 	p->slave_aborted = false;
803 
804 	/* Now start DMA */
805 	if (rx)
806 		dma_async_issue_pending(p->master->dma_rx);
807 	if (tx)
808 		dma_async_issue_pending(p->master->dma_tx);
809 
810 	ret = sh_msiof_spi_start(p, rx);
811 	if (ret) {
812 		dev_err(&p->pdev->dev, "failed to start hardware\n");
813 		goto stop_dma;
814 	}
815 
816 	if (tx) {
817 		/* wait for tx DMA completion */
818 		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
819 		if (ret)
820 			goto stop_reset;
821 	}
822 
823 	if (rx) {
824 		/* wait for rx DMA completion */
825 		ret = sh_msiof_wait_for_completion(p, &p->done);
826 		if (ret)
827 			goto stop_reset;
828 
829 		sh_msiof_write(p, IER, 0);
830 	} else {
831 		/* wait for tx fifo to be emptied */
832 		sh_msiof_write(p, IER, IER_TEOFE);
833 		ret = sh_msiof_wait_for_completion(p, &p->done);
834 		if (ret)
835 			goto stop_reset;
836 	}
837 
838 	/* clear status bits */
839 	sh_msiof_reset_str(p);
840 
841 	ret = sh_msiof_spi_stop(p, rx);
842 	if (ret) {
843 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
844 		return ret;
845 	}
846 
847 	if (rx)
848 		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
849 					p->rx_dma_addr, len,
850 					DMA_FROM_DEVICE);
851 
852 	return 0;
853 
854 stop_reset:
855 	sh_msiof_reset_str(p);
856 	sh_msiof_spi_stop(p, rx);
857 stop_dma:
858 	if (tx)
859 		dmaengine_terminate_all(p->master->dma_tx);
860 no_dma_tx:
861 	if (rx)
862 		dmaengine_terminate_all(p->master->dma_rx);
863 	sh_msiof_write(p, IER, 0);
864 	return ret;
865 }
866 
867 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
868 {
869 	/* src or dst can be unaligned, but not both */
870 	if ((unsigned long)src & 3) {
871 		while (words--) {
872 			*dst++ = swab32(get_unaligned(src));
873 			src++;
874 		}
875 	} else if ((unsigned long)dst & 3) {
876 		while (words--) {
877 			put_unaligned(swab32(*src++), dst);
878 			dst++;
879 		}
880 	} else {
881 		while (words--)
882 			*dst++ = swab32(*src++);
883 	}
884 }
885 
886 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
887 {
888 	/* src or dst can be unaligned, but not both */
889 	if ((unsigned long)src & 3) {
890 		while (words--) {
891 			*dst++ = swahw32(get_unaligned(src));
892 			src++;
893 		}
894 	} else if ((unsigned long)dst & 3) {
895 		while (words--) {
896 			put_unaligned(swahw32(*src++), dst);
897 			dst++;
898 		}
899 	} else {
900 		while (words--)
901 			*dst++ = swahw32(*src++);
902 	}
903 }
904 
905 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
906 {
907 	memcpy(dst, src, words * 4);
908 }
909 
910 static int sh_msiof_transfer_one(struct spi_master *master,
911 				 struct spi_device *spi,
912 				 struct spi_transfer *t)
913 {
914 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
915 	void (*copy32)(u32 *, const u32 *, unsigned int);
916 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
917 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
918 	const void *tx_buf = t->tx_buf;
919 	void *rx_buf = t->rx_buf;
920 	unsigned int len = t->len;
921 	unsigned int bits = t->bits_per_word;
922 	unsigned int bytes_per_word;
923 	unsigned int words;
924 	int n;
925 	bool swab;
926 	int ret;
927 
928 	/* setup clocks (clock already enabled in chipselect()) */
929 	if (!spi_controller_is_slave(p->master))
930 		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
931 
932 	while (master->dma_tx && len > 15) {
933 		/*
934 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
935 		 *  words, with byte resp. word swapping.
936 		 */
937 		unsigned int l = 0;
938 
939 		if (tx_buf)
940 			l = min(len, p->tx_fifo_size * 4);
941 		if (rx_buf)
942 			l = min(len, p->rx_fifo_size * 4);
943 
944 		if (bits <= 8) {
945 			if (l & 3)
946 				break;
947 			copy32 = copy_bswap32;
948 		} else if (bits <= 16) {
949 			if (l & 3)
950 				break;
951 			copy32 = copy_wswap32;
952 		} else {
953 			copy32 = copy_plain32;
954 		}
955 
956 		if (tx_buf)
957 			copy32(p->tx_dma_page, tx_buf, l / 4);
958 
959 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
960 		if (ret == -EAGAIN) {
961 			dev_warn_once(&p->pdev->dev,
962 				"DMA not available, falling back to PIO\n");
963 			break;
964 		}
965 		if (ret)
966 			return ret;
967 
968 		if (rx_buf) {
969 			copy32(rx_buf, p->rx_dma_page, l / 4);
970 			rx_buf += l;
971 		}
972 		if (tx_buf)
973 			tx_buf += l;
974 
975 		len -= l;
976 		if (!len)
977 			return 0;
978 	}
979 
980 	if (bits <= 8 && len > 15 && !(len & 3)) {
981 		bits = 32;
982 		swab = true;
983 	} else {
984 		swab = false;
985 	}
986 
987 	/* setup bytes per word and fifo read/write functions */
988 	if (bits <= 8) {
989 		bytes_per_word = 1;
990 		tx_fifo = sh_msiof_spi_write_fifo_8;
991 		rx_fifo = sh_msiof_spi_read_fifo_8;
992 	} else if (bits <= 16) {
993 		bytes_per_word = 2;
994 		if ((unsigned long)tx_buf & 0x01)
995 			tx_fifo = sh_msiof_spi_write_fifo_16u;
996 		else
997 			tx_fifo = sh_msiof_spi_write_fifo_16;
998 
999 		if ((unsigned long)rx_buf & 0x01)
1000 			rx_fifo = sh_msiof_spi_read_fifo_16u;
1001 		else
1002 			rx_fifo = sh_msiof_spi_read_fifo_16;
1003 	} else if (swab) {
1004 		bytes_per_word = 4;
1005 		if ((unsigned long)tx_buf & 0x03)
1006 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1007 		else
1008 			tx_fifo = sh_msiof_spi_write_fifo_s32;
1009 
1010 		if ((unsigned long)rx_buf & 0x03)
1011 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1012 		else
1013 			rx_fifo = sh_msiof_spi_read_fifo_s32;
1014 	} else {
1015 		bytes_per_word = 4;
1016 		if ((unsigned long)tx_buf & 0x03)
1017 			tx_fifo = sh_msiof_spi_write_fifo_32u;
1018 		else
1019 			tx_fifo = sh_msiof_spi_write_fifo_32;
1020 
1021 		if ((unsigned long)rx_buf & 0x03)
1022 			rx_fifo = sh_msiof_spi_read_fifo_32u;
1023 		else
1024 			rx_fifo = sh_msiof_spi_read_fifo_32;
1025 	}
1026 
1027 	/* transfer in fifo sized chunks */
1028 	words = len / bytes_per_word;
1029 
1030 	while (words > 0) {
1031 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1032 					   words, bits);
1033 		if (n < 0)
1034 			return n;
1035 
1036 		if (tx_buf)
1037 			tx_buf += n * bytes_per_word;
1038 		if (rx_buf)
1039 			rx_buf += n * bytes_per_word;
1040 		words -= n;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static const struct sh_msiof_chipdata sh_data = {
1047 	.tx_fifo_size = 64,
1048 	.rx_fifo_size = 64,
1049 	.master_flags = 0,
1050 	.min_div_pow = 0,
1051 };
1052 
1053 static const struct sh_msiof_chipdata rcar_gen2_data = {
1054 	.tx_fifo_size = 64,
1055 	.rx_fifo_size = 64,
1056 	.master_flags = SPI_MASTER_MUST_TX,
1057 	.min_div_pow = 0,
1058 };
1059 
1060 static const struct sh_msiof_chipdata rcar_gen3_data = {
1061 	.tx_fifo_size = 64,
1062 	.rx_fifo_size = 64,
1063 	.master_flags = SPI_MASTER_MUST_TX,
1064 	.min_div_pow = 1,
1065 };
1066 
1067 static const struct of_device_id sh_msiof_match[] = {
1068 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1069 	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1070 	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1071 	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1072 	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1073 	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1074 	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1075 	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1076 	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1077 	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1078 	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1079 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1080 	{},
1081 };
1082 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1083 
1084 #ifdef CONFIG_OF
1085 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1086 {
1087 	struct sh_msiof_spi_info *info;
1088 	struct device_node *np = dev->of_node;
1089 	u32 num_cs = 1;
1090 
1091 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1092 	if (!info)
1093 		return NULL;
1094 
1095 	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1096 							    : MSIOF_SPI_MASTER;
1097 
1098 	/* Parse the MSIOF properties */
1099 	if (info->mode == MSIOF_SPI_MASTER)
1100 		of_property_read_u32(np, "num-cs", &num_cs);
1101 	of_property_read_u32(np, "renesas,tx-fifo-size",
1102 					&info->tx_fifo_override);
1103 	of_property_read_u32(np, "renesas,rx-fifo-size",
1104 					&info->rx_fifo_override);
1105 	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1106 	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1107 
1108 	info->num_chipselect = num_cs;
1109 
1110 	return info;
1111 }
1112 #else
1113 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1114 {
1115 	return NULL;
1116 }
1117 #endif
1118 
1119 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1120 {
1121 	struct device *dev = &p->pdev->dev;
1122 	unsigned int used_ss_mask = 0;
1123 	unsigned int cs_gpios = 0;
1124 	unsigned int num_cs, i;
1125 	int ret;
1126 
1127 	ret = gpiod_count(dev, "cs");
1128 	if (ret <= 0)
1129 		return 0;
1130 
1131 	num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
1132 	for (i = 0; i < num_cs; i++) {
1133 		struct gpio_desc *gpiod;
1134 
1135 		gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1136 		if (!IS_ERR(gpiod)) {
1137 			cs_gpios++;
1138 			continue;
1139 		}
1140 
1141 		if (PTR_ERR(gpiod) != -ENOENT)
1142 			return PTR_ERR(gpiod);
1143 
1144 		if (i >= MAX_SS) {
1145 			dev_err(dev, "Invalid native chip select %d\n", i);
1146 			return -EINVAL;
1147 		}
1148 		used_ss_mask |= BIT(i);
1149 	}
1150 	p->unused_ss = ffz(used_ss_mask);
1151 	if (cs_gpios && p->unused_ss >= MAX_SS) {
1152 		dev_err(dev, "No unused native chip select available\n");
1153 		return -EINVAL;
1154 	}
1155 	return 0;
1156 }
1157 
1158 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1159 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1160 {
1161 	dma_cap_mask_t mask;
1162 	struct dma_chan *chan;
1163 	struct dma_slave_config cfg;
1164 	int ret;
1165 
1166 	dma_cap_zero(mask);
1167 	dma_cap_set(DMA_SLAVE, mask);
1168 
1169 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1170 				(void *)(unsigned long)id, dev,
1171 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1172 	if (!chan) {
1173 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1174 		return NULL;
1175 	}
1176 
1177 	memset(&cfg, 0, sizeof(cfg));
1178 	cfg.direction = dir;
1179 	if (dir == DMA_MEM_TO_DEV) {
1180 		cfg.dst_addr = port_addr;
1181 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1182 	} else {
1183 		cfg.src_addr = port_addr;
1184 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1185 	}
1186 
1187 	ret = dmaengine_slave_config(chan, &cfg);
1188 	if (ret) {
1189 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1190 		dma_release_channel(chan);
1191 		return NULL;
1192 	}
1193 
1194 	return chan;
1195 }
1196 
1197 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1198 {
1199 	struct platform_device *pdev = p->pdev;
1200 	struct device *dev = &pdev->dev;
1201 	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1202 	unsigned int dma_tx_id, dma_rx_id;
1203 	const struct resource *res;
1204 	struct spi_master *master;
1205 	struct device *tx_dev, *rx_dev;
1206 
1207 	if (dev->of_node) {
1208 		/* In the OF case we will get the slave IDs from the DT */
1209 		dma_tx_id = 0;
1210 		dma_rx_id = 0;
1211 	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1212 		dma_tx_id = info->dma_tx_id;
1213 		dma_rx_id = info->dma_rx_id;
1214 	} else {
1215 		/* The driver assumes no error */
1216 		return 0;
1217 	}
1218 
1219 	/* The DMA engine uses the second register set, if present */
1220 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1221 	if (!res)
1222 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1223 
1224 	master = p->master;
1225 	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1226 						   dma_tx_id,
1227 						   res->start + TFDR);
1228 	if (!master->dma_tx)
1229 		return -ENODEV;
1230 
1231 	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1232 						   dma_rx_id,
1233 						   res->start + RFDR);
1234 	if (!master->dma_rx)
1235 		goto free_tx_chan;
1236 
1237 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1238 	if (!p->tx_dma_page)
1239 		goto free_rx_chan;
1240 
1241 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1242 	if (!p->rx_dma_page)
1243 		goto free_tx_page;
1244 
1245 	tx_dev = master->dma_tx->device->dev;
1246 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1247 					DMA_TO_DEVICE);
1248 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1249 		goto free_rx_page;
1250 
1251 	rx_dev = master->dma_rx->device->dev;
1252 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1253 					DMA_FROM_DEVICE);
1254 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1255 		goto unmap_tx_page;
1256 
1257 	dev_info(dev, "DMA available");
1258 	return 0;
1259 
1260 unmap_tx_page:
1261 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1262 free_rx_page:
1263 	free_page((unsigned long)p->rx_dma_page);
1264 free_tx_page:
1265 	free_page((unsigned long)p->tx_dma_page);
1266 free_rx_chan:
1267 	dma_release_channel(master->dma_rx);
1268 free_tx_chan:
1269 	dma_release_channel(master->dma_tx);
1270 	master->dma_tx = NULL;
1271 	return -ENODEV;
1272 }
1273 
1274 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1275 {
1276 	struct spi_master *master = p->master;
1277 
1278 	if (!master->dma_tx)
1279 		return;
1280 
1281 	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1282 			 PAGE_SIZE, DMA_FROM_DEVICE);
1283 	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1284 			 PAGE_SIZE, DMA_TO_DEVICE);
1285 	free_page((unsigned long)p->rx_dma_page);
1286 	free_page((unsigned long)p->tx_dma_page);
1287 	dma_release_channel(master->dma_rx);
1288 	dma_release_channel(master->dma_tx);
1289 }
1290 
1291 static int sh_msiof_spi_probe(struct platform_device *pdev)
1292 {
1293 	struct resource	*r;
1294 	struct spi_master *master;
1295 	const struct sh_msiof_chipdata *chipdata;
1296 	struct sh_msiof_spi_info *info;
1297 	struct sh_msiof_spi_priv *p;
1298 	int i;
1299 	int ret;
1300 
1301 	chipdata = of_device_get_match_data(&pdev->dev);
1302 	if (chipdata) {
1303 		info = sh_msiof_spi_parse_dt(&pdev->dev);
1304 	} else {
1305 		chipdata = (const void *)pdev->id_entry->driver_data;
1306 		info = dev_get_platdata(&pdev->dev);
1307 	}
1308 
1309 	if (!info) {
1310 		dev_err(&pdev->dev, "failed to obtain device info\n");
1311 		return -ENXIO;
1312 	}
1313 
1314 	if (info->mode == MSIOF_SPI_SLAVE)
1315 		master = spi_alloc_slave(&pdev->dev,
1316 					 sizeof(struct sh_msiof_spi_priv));
1317 	else
1318 		master = spi_alloc_master(&pdev->dev,
1319 					  sizeof(struct sh_msiof_spi_priv));
1320 	if (master == NULL)
1321 		return -ENOMEM;
1322 
1323 	p = spi_master_get_devdata(master);
1324 
1325 	platform_set_drvdata(pdev, p);
1326 	p->master = master;
1327 	p->info = info;
1328 	p->min_div_pow = chipdata->min_div_pow;
1329 
1330 	init_completion(&p->done);
1331 	init_completion(&p->done_txdma);
1332 
1333 	p->clk = devm_clk_get(&pdev->dev, NULL);
1334 	if (IS_ERR(p->clk)) {
1335 		dev_err(&pdev->dev, "cannot get clock\n");
1336 		ret = PTR_ERR(p->clk);
1337 		goto err1;
1338 	}
1339 
1340 	i = platform_get_irq(pdev, 0);
1341 	if (i < 0) {
1342 		dev_err(&pdev->dev, "cannot get IRQ\n");
1343 		ret = i;
1344 		goto err1;
1345 	}
1346 
1347 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1348 	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1349 	if (IS_ERR(p->mapbase)) {
1350 		ret = PTR_ERR(p->mapbase);
1351 		goto err1;
1352 	}
1353 
1354 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1355 			       dev_name(&pdev->dev), p);
1356 	if (ret) {
1357 		dev_err(&pdev->dev, "unable to request irq\n");
1358 		goto err1;
1359 	}
1360 
1361 	p->pdev = pdev;
1362 	pm_runtime_enable(&pdev->dev);
1363 
1364 	/* Platform data may override FIFO sizes */
1365 	p->tx_fifo_size = chipdata->tx_fifo_size;
1366 	p->rx_fifo_size = chipdata->rx_fifo_size;
1367 	if (p->info->tx_fifo_override)
1368 		p->tx_fifo_size = p->info->tx_fifo_override;
1369 	if (p->info->rx_fifo_override)
1370 		p->rx_fifo_size = p->info->rx_fifo_override;
1371 
1372 	/* Setup GPIO chip selects */
1373 	master->num_chipselect = p->info->num_chipselect;
1374 	ret = sh_msiof_get_cs_gpios(p);
1375 	if (ret)
1376 		goto err1;
1377 
1378 	/* init master code */
1379 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1380 	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1381 	master->flags = chipdata->master_flags;
1382 	master->bus_num = pdev->id;
1383 	master->dev.of_node = pdev->dev.of_node;
1384 	master->setup = sh_msiof_spi_setup;
1385 	master->prepare_message = sh_msiof_prepare_message;
1386 	master->slave_abort = sh_msiof_slave_abort;
1387 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1388 	master->auto_runtime_pm = true;
1389 	master->transfer_one = sh_msiof_transfer_one;
1390 
1391 	ret = sh_msiof_request_dma(p);
1392 	if (ret < 0)
1393 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1394 
1395 	ret = devm_spi_register_master(&pdev->dev, master);
1396 	if (ret < 0) {
1397 		dev_err(&pdev->dev, "spi_register_master error.\n");
1398 		goto err2;
1399 	}
1400 
1401 	return 0;
1402 
1403  err2:
1404 	sh_msiof_release_dma(p);
1405 	pm_runtime_disable(&pdev->dev);
1406  err1:
1407 	spi_master_put(master);
1408 	return ret;
1409 }
1410 
1411 static int sh_msiof_spi_remove(struct platform_device *pdev)
1412 {
1413 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1414 
1415 	sh_msiof_release_dma(p);
1416 	pm_runtime_disable(&pdev->dev);
1417 	return 0;
1418 }
1419 
1420 static const struct platform_device_id spi_driver_ids[] = {
1421 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1422 	{},
1423 };
1424 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1425 
1426 #ifdef CONFIG_PM_SLEEP
1427 static int sh_msiof_spi_suspend(struct device *dev)
1428 {
1429 	struct platform_device *pdev = to_platform_device(dev);
1430 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1431 
1432 	return spi_master_suspend(p->master);
1433 }
1434 
1435 static int sh_msiof_spi_resume(struct device *dev)
1436 {
1437 	struct platform_device *pdev = to_platform_device(dev);
1438 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1439 
1440 	return spi_master_resume(p->master);
1441 }
1442 
1443 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1444 			 sh_msiof_spi_resume);
1445 #define DEV_PM_OPS	&sh_msiof_spi_pm_ops
1446 #else
1447 #define DEV_PM_OPS	NULL
1448 #endif /* CONFIG_PM_SLEEP */
1449 
1450 static struct platform_driver sh_msiof_spi_drv = {
1451 	.probe		= sh_msiof_spi_probe,
1452 	.remove		= sh_msiof_spi_remove,
1453 	.id_table	= spi_driver_ids,
1454 	.driver		= {
1455 		.name		= "spi_sh_msiof",
1456 		.pm		= DEV_PM_OPS,
1457 		.of_match_table = of_match_ptr(sh_msiof_match),
1458 	},
1459 };
1460 module_platform_driver(sh_msiof_spi_drv);
1461 
1462 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1463 MODULE_AUTHOR("Magnus Damm");
1464 MODULE_LICENSE("GPL v2");
1465 MODULE_ALIAS("platform:spi_sh_msiof");
1466