xref: /openbmc/linux/drivers/spi/spi-sh-msiof.c (revision d003d772)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH MSIOF SPI Controller Interface
4  *
5  * Copyright (c) 2009 Magnus Damm
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  * Copyright (C) 2014-2017 Glider bvba
8  */
9 
10 #include <linux/bitmap.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/gpio.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/sh_dma.h>
28 
29 #include <linux/spi/sh_msiof.h>
30 #include <linux/spi/spi.h>
31 
32 #include <asm/unaligned.h>
33 
34 struct sh_msiof_chipdata {
35 	u32 bits_per_word_mask;
36 	u16 tx_fifo_size;
37 	u16 rx_fifo_size;
38 	u16 ctlr_flags;
39 	u16 min_div_pow;
40 };
41 
42 struct sh_msiof_spi_priv {
43 	struct spi_controller *ctlr;
44 	void __iomem *mapbase;
45 	struct clk *clk;
46 	struct platform_device *pdev;
47 	struct sh_msiof_spi_info *info;
48 	struct completion done;
49 	struct completion done_txdma;
50 	unsigned int tx_fifo_size;
51 	unsigned int rx_fifo_size;
52 	unsigned int min_div_pow;
53 	void *tx_dma_page;
54 	void *rx_dma_page;
55 	dma_addr_t tx_dma_addr;
56 	dma_addr_t rx_dma_addr;
57 	unsigned short unused_ss;
58 	bool native_cs_inited;
59 	bool native_cs_high;
60 	bool slave_aborted;
61 };
62 
63 #define MAX_SS	3	/* Maximum number of native chip selects */
64 
65 #define TMDR1	0x00	/* Transmit Mode Register 1 */
66 #define TMDR2	0x04	/* Transmit Mode Register 2 */
67 #define TMDR3	0x08	/* Transmit Mode Register 3 */
68 #define RMDR1	0x10	/* Receive Mode Register 1 */
69 #define RMDR2	0x14	/* Receive Mode Register 2 */
70 #define RMDR3	0x18	/* Receive Mode Register 3 */
71 #define TSCR	0x20	/* Transmit Clock Select Register */
72 #define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
73 #define CTR	0x28	/* Control Register */
74 #define FCTR	0x30	/* FIFO Control Register */
75 #define STR	0x40	/* Status Register */
76 #define IER	0x44	/* Interrupt Enable Register */
77 #define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
78 #define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
79 #define TFDR	0x50	/* Transmit FIFO Data Register */
80 #define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
81 #define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
82 #define RFDR	0x60	/* Receive FIFO Data Register */
83 
84 /* TMDR1 and RMDR1 */
85 #define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
86 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
87 #define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
88 #define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
89 #define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
90 #define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
91 #define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
92 #define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
93 #define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
94 #define MDR1_FLD_SHIFT		  2
95 #define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
96 /* TMDR1 */
97 #define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
98 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
99 #define TMDR1_SYNCCH_SHIFT	 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
100 
101 /* TMDR2 and RMDR2 */
102 #define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
103 #define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
104 #define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
105 
106 /* TSCR and RSCR */
107 #define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
108 #define SCR_BRPS(i)	(((i) - 1) << 8)
109 #define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
110 #define SCR_BRDV_DIV_2	    0x0000
111 #define SCR_BRDV_DIV_4	    0x0001
112 #define SCR_BRDV_DIV_8	    0x0002
113 #define SCR_BRDV_DIV_16	    0x0003
114 #define SCR_BRDV_DIV_32	    0x0004
115 #define SCR_BRDV_DIV_1	    0x0007
116 
117 /* CTR */
118 #define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
119 #define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
120 #define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
121 #define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
122 #define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
123 #define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
124 #define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
125 #define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
126 #define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
127 #define CTR_TXDIZ_LOW	0x00000000 /*   0 */
128 #define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
129 #define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
130 #define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
131 #define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
132 #define CTR_TXE		0x00000200 /* Transmit Enable */
133 #define CTR_RXE		0x00000100 /* Receive Enable */
134 
135 /* FCTR */
136 #define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
137 #define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
138 #define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
139 #define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
140 #define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
141 #define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
142 #define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
143 #define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
144 #define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
145 #define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
146 #define FCTR_TFUA_SHIFT		20
147 #define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
148 #define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
149 #define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
150 #define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
151 #define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
152 #define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
153 #define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
154 #define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
155 #define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
156 #define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
157 #define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
158 #define FCTR_RFUA_SHIFT		 4
159 #define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
160 
161 /* STR */
162 #define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
163 #define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
164 #define STR_TEOF	0x00800000 /* Frame Transmission End */
165 #define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
166 #define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
167 #define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
168 #define STR_RFFUL	0x00002000 /* Receive FIFO Full */
169 #define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
170 #define STR_REOF	0x00000080 /* Frame Reception End */
171 #define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
172 #define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
173 #define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
174 
175 /* IER */
176 #define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
177 #define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
178 #define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
179 #define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
180 #define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
181 #define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
182 #define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
183 #define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
184 #define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
185 #define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
186 #define IER_REOFE	0x00000080 /* Frame Reception End Enable */
187 #define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
188 #define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
189 #define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
190 
191 
192 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
193 {
194 	switch (reg_offs) {
195 	case TSCR:
196 	case RSCR:
197 		return ioread16(p->mapbase + reg_offs);
198 	default:
199 		return ioread32(p->mapbase + reg_offs);
200 	}
201 }
202 
203 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
204 			   u32 value)
205 {
206 	switch (reg_offs) {
207 	case TSCR:
208 	case RSCR:
209 		iowrite16(value, p->mapbase + reg_offs);
210 		break;
211 	default:
212 		iowrite32(value, p->mapbase + reg_offs);
213 		break;
214 	}
215 }
216 
217 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
218 				    u32 clr, u32 set)
219 {
220 	u32 mask = clr | set;
221 	u32 data;
222 	int k;
223 
224 	data = sh_msiof_read(p, CTR);
225 	data &= ~clr;
226 	data |= set;
227 	sh_msiof_write(p, CTR, data);
228 
229 	for (k = 100; k > 0; k--) {
230 		if ((sh_msiof_read(p, CTR) & mask) == set)
231 			break;
232 
233 		udelay(10);
234 	}
235 
236 	return k > 0 ? 0 : -ETIMEDOUT;
237 }
238 
239 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
240 {
241 	struct sh_msiof_spi_priv *p = data;
242 
243 	/* just disable the interrupt and wake up */
244 	sh_msiof_write(p, IER, 0);
245 	complete(&p->done);
246 
247 	return IRQ_HANDLED;
248 }
249 
250 static const u32 sh_msiof_spi_div_array[] = {
251 	SCR_BRDV_DIV_1, SCR_BRDV_DIV_2,	 SCR_BRDV_DIV_4,
252 	SCR_BRDV_DIV_8,	SCR_BRDV_DIV_16, SCR_BRDV_DIV_32,
253 };
254 
255 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
256 				      unsigned long parent_rate, u32 spi_hz)
257 {
258 	unsigned long div;
259 	u32 brps, scr;
260 	unsigned int div_pow = p->min_div_pow;
261 
262 	if (!spi_hz || !parent_rate) {
263 		WARN(1, "Invalid clock rate parameters %lu and %u\n",
264 		     parent_rate, spi_hz);
265 		return;
266 	}
267 
268 	div = DIV_ROUND_UP(parent_rate, spi_hz);
269 	if (div <= 1024) {
270 		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
271 		if (!div_pow && div <= 32 && div > 2)
272 			div_pow = 1;
273 
274 		if (div_pow)
275 			brps = (div + 1) >> div_pow;
276 		else
277 			brps = div;
278 
279 		for (; brps > 32; div_pow++)
280 			brps = (brps + 1) >> 1;
281 	} else {
282 		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
283 		dev_err(&p->pdev->dev,
284 			"Requested SPI transfer rate %d is too low\n", spi_hz);
285 		div_pow = 5;
286 		brps = 32;
287 	}
288 
289 	scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps);
290 	sh_msiof_write(p, TSCR, scr);
291 	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
292 		sh_msiof_write(p, RSCR, scr);
293 }
294 
295 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
296 {
297 	/*
298 	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
299 	 * b'000		: 0
300 	 * b'001		: 100
301 	 * b'010		: 200
302 	 * b'011 (SYNCDL only)	: 300
303 	 * b'101		: 50
304 	 * b'110		: 150
305 	 */
306 	if (dtdl_or_syncdl % 100)
307 		return dtdl_or_syncdl / 100 + 5;
308 	else
309 		return dtdl_or_syncdl / 100;
310 }
311 
312 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
313 {
314 	u32 val;
315 
316 	if (!p->info)
317 		return 0;
318 
319 	/* check if DTDL and SYNCDL is allowed value */
320 	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
321 		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
322 		return 0;
323 	}
324 
325 	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
326 	if ((p->info->dtdl + p->info->syncdl) % 100) {
327 		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
328 		return 0;
329 	}
330 
331 	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
332 	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
333 
334 	return val;
335 }
336 
337 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
338 				      u32 cpol, u32 cpha,
339 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
340 {
341 	u32 tmp;
342 	int edge;
343 
344 	/*
345 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
346 	 *    0    0         10     10    1    1
347 	 *    0    1         10     10    0    0
348 	 *    1    0         11     11    0    0
349 	 *    1    1         11     11    1    1
350 	 */
351 	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
352 	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
353 	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
354 	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
355 	if (spi_controller_is_slave(p->ctlr)) {
356 		sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
357 	} else {
358 		sh_msiof_write(p, TMDR1,
359 			       tmp | MDR1_TRMD | TMDR1_PCON |
360 			       (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
361 	}
362 	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
363 		/* These bits are reserved if RX needs TX */
364 		tmp &= ~0x0000ffff;
365 	}
366 	sh_msiof_write(p, RMDR1, tmp);
367 
368 	tmp = 0;
369 	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
370 	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
371 
372 	edge = cpol ^ !cpha;
373 
374 	tmp |= edge << CTR_TEDG_SHIFT;
375 	tmp |= edge << CTR_REDG_SHIFT;
376 	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
377 	sh_msiof_write(p, CTR, tmp);
378 }
379 
380 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
381 				       const void *tx_buf, void *rx_buf,
382 				       u32 bits, u32 words)
383 {
384 	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
385 
386 	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
387 		sh_msiof_write(p, TMDR2, dr2);
388 	else
389 		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
390 
391 	if (rx_buf)
392 		sh_msiof_write(p, RMDR2, dr2);
393 }
394 
395 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
396 {
397 	sh_msiof_write(p, STR,
398 		       sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ));
399 }
400 
401 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
402 				      const void *tx_buf, int words, int fs)
403 {
404 	const u8 *buf_8 = tx_buf;
405 	int k;
406 
407 	for (k = 0; k < words; k++)
408 		sh_msiof_write(p, TFDR, buf_8[k] << fs);
409 }
410 
411 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
412 				       const void *tx_buf, int words, int fs)
413 {
414 	const u16 *buf_16 = tx_buf;
415 	int k;
416 
417 	for (k = 0; k < words; k++)
418 		sh_msiof_write(p, TFDR, buf_16[k] << fs);
419 }
420 
421 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
422 					const void *tx_buf, int words, int fs)
423 {
424 	const u16 *buf_16 = tx_buf;
425 	int k;
426 
427 	for (k = 0; k < words; k++)
428 		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
429 }
430 
431 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
432 				       const void *tx_buf, int words, int fs)
433 {
434 	const u32 *buf_32 = tx_buf;
435 	int k;
436 
437 	for (k = 0; k < words; k++)
438 		sh_msiof_write(p, TFDR, buf_32[k] << fs);
439 }
440 
441 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
442 					const void *tx_buf, int words, int fs)
443 {
444 	const u32 *buf_32 = tx_buf;
445 	int k;
446 
447 	for (k = 0; k < words; k++)
448 		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
449 }
450 
451 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
452 					const void *tx_buf, int words, int fs)
453 {
454 	const u32 *buf_32 = tx_buf;
455 	int k;
456 
457 	for (k = 0; k < words; k++)
458 		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
459 }
460 
461 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
462 					 const void *tx_buf, int words, int fs)
463 {
464 	const u32 *buf_32 = tx_buf;
465 	int k;
466 
467 	for (k = 0; k < words; k++)
468 		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
469 }
470 
471 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
472 				     void *rx_buf, int words, int fs)
473 {
474 	u8 *buf_8 = rx_buf;
475 	int k;
476 
477 	for (k = 0; k < words; k++)
478 		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
479 }
480 
481 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
482 				      void *rx_buf, int words, int fs)
483 {
484 	u16 *buf_16 = rx_buf;
485 	int k;
486 
487 	for (k = 0; k < words; k++)
488 		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
489 }
490 
491 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
492 				       void *rx_buf, int words, int fs)
493 {
494 	u16 *buf_16 = rx_buf;
495 	int k;
496 
497 	for (k = 0; k < words; k++)
498 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
499 }
500 
501 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
502 				      void *rx_buf, int words, int fs)
503 {
504 	u32 *buf_32 = rx_buf;
505 	int k;
506 
507 	for (k = 0; k < words; k++)
508 		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
509 }
510 
511 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
512 				       void *rx_buf, int words, int fs)
513 {
514 	u32 *buf_32 = rx_buf;
515 	int k;
516 
517 	for (k = 0; k < words; k++)
518 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
519 }
520 
521 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
522 				       void *rx_buf, int words, int fs)
523 {
524 	u32 *buf_32 = rx_buf;
525 	int k;
526 
527 	for (k = 0; k < words; k++)
528 		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
529 }
530 
531 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
532 				       void *rx_buf, int words, int fs)
533 {
534 	u32 *buf_32 = rx_buf;
535 	int k;
536 
537 	for (k = 0; k < words; k++)
538 		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
539 }
540 
541 static int sh_msiof_spi_setup(struct spi_device *spi)
542 {
543 	struct device_node *np = spi->controller->dev.of_node;
544 	struct sh_msiof_spi_priv *p =
545 		spi_controller_get_devdata(spi->controller);
546 	u32 clr, set, tmp;
547 
548 	if (!np) {
549 		/*
550 		 * Use spi->controller_data for CS (same strategy as spi_gpio),
551 		 * if any. otherwise let HW control CS
552 		 */
553 		spi->cs_gpio = (uintptr_t)spi->controller_data;
554 	}
555 
556 	if (gpio_is_valid(spi->cs_gpio)) {
557 		gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
558 		return 0;
559 	}
560 
561 	if (spi_controller_is_slave(p->ctlr))
562 		return 0;
563 
564 	if (p->native_cs_inited &&
565 	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
566 		return 0;
567 
568 	/* Configure native chip select mode/polarity early */
569 	clr = MDR1_SYNCMD_MASK;
570 	set = MDR1_SYNCMD_SPI;
571 	if (spi->mode & SPI_CS_HIGH)
572 		clr |= BIT(MDR1_SYNCAC_SHIFT);
573 	else
574 		set |= BIT(MDR1_SYNCAC_SHIFT);
575 	pm_runtime_get_sync(&p->pdev->dev);
576 	tmp = sh_msiof_read(p, TMDR1) & ~clr;
577 	sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
578 	tmp = sh_msiof_read(p, RMDR1) & ~clr;
579 	sh_msiof_write(p, RMDR1, tmp | set);
580 	pm_runtime_put(&p->pdev->dev);
581 	p->native_cs_high = spi->mode & SPI_CS_HIGH;
582 	p->native_cs_inited = true;
583 	return 0;
584 }
585 
586 static int sh_msiof_prepare_message(struct spi_controller *ctlr,
587 				    struct spi_message *msg)
588 {
589 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
590 	const struct spi_device *spi = msg->spi;
591 	u32 ss, cs_high;
592 
593 	/* Configure pins before asserting CS */
594 	if (gpio_is_valid(spi->cs_gpio)) {
595 		ss = p->unused_ss;
596 		cs_high = p->native_cs_high;
597 	} else {
598 		ss = spi->chip_select;
599 		cs_high = !!(spi->mode & SPI_CS_HIGH);
600 	}
601 	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
602 				  !!(spi->mode & SPI_CPHA),
603 				  !!(spi->mode & SPI_3WIRE),
604 				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
605 	return 0;
606 }
607 
608 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
609 {
610 	bool slave = spi_controller_is_slave(p->ctlr);
611 	int ret = 0;
612 
613 	/* setup clock and rx/tx signals */
614 	if (!slave)
615 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
616 	if (rx_buf && !ret)
617 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
618 	if (!ret)
619 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
620 
621 	/* start by setting frame bit */
622 	if (!ret && !slave)
623 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
624 
625 	return ret;
626 }
627 
628 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
629 {
630 	bool slave = spi_controller_is_slave(p->ctlr);
631 	int ret = 0;
632 
633 	/* shut down frame, rx/tx and clock signals */
634 	if (!slave)
635 		ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
636 	if (!ret)
637 		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
638 	if (rx_buf && !ret)
639 		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
640 	if (!ret && !slave)
641 		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
642 
643 	return ret;
644 }
645 
646 static int sh_msiof_slave_abort(struct spi_controller *ctlr)
647 {
648 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
649 
650 	p->slave_aborted = true;
651 	complete(&p->done);
652 	complete(&p->done_txdma);
653 	return 0;
654 }
655 
656 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
657 					struct completion *x)
658 {
659 	if (spi_controller_is_slave(p->ctlr)) {
660 		if (wait_for_completion_interruptible(x) ||
661 		    p->slave_aborted) {
662 			dev_dbg(&p->pdev->dev, "interrupted\n");
663 			return -EINTR;
664 		}
665 	} else {
666 		if (!wait_for_completion_timeout(x, HZ)) {
667 			dev_err(&p->pdev->dev, "timeout\n");
668 			return -ETIMEDOUT;
669 		}
670 	}
671 
672 	return 0;
673 }
674 
675 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
676 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
677 						  const void *, int, int),
678 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
679 						  void *, int, int),
680 				  const void *tx_buf, void *rx_buf,
681 				  int words, int bits)
682 {
683 	int fifo_shift;
684 	int ret;
685 
686 	/* limit maximum word transfer to rx/tx fifo size */
687 	if (tx_buf)
688 		words = min_t(int, words, p->tx_fifo_size);
689 	if (rx_buf)
690 		words = min_t(int, words, p->rx_fifo_size);
691 
692 	/* the fifo contents need shifting */
693 	fifo_shift = 32 - bits;
694 
695 	/* default FIFO watermarks for PIO */
696 	sh_msiof_write(p, FCTR, 0);
697 
698 	/* setup msiof transfer mode registers */
699 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
700 	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
701 
702 	/* write tx fifo */
703 	if (tx_buf)
704 		tx_fifo(p, tx_buf, words, fifo_shift);
705 
706 	reinit_completion(&p->done);
707 	p->slave_aborted = false;
708 
709 	ret = sh_msiof_spi_start(p, rx_buf);
710 	if (ret) {
711 		dev_err(&p->pdev->dev, "failed to start hardware\n");
712 		goto stop_ier;
713 	}
714 
715 	/* wait for tx fifo to be emptied / rx fifo to be filled */
716 	ret = sh_msiof_wait_for_completion(p, &p->done);
717 	if (ret)
718 		goto stop_reset;
719 
720 	/* read rx fifo */
721 	if (rx_buf)
722 		rx_fifo(p, rx_buf, words, fifo_shift);
723 
724 	/* clear status bits */
725 	sh_msiof_reset_str(p);
726 
727 	ret = sh_msiof_spi_stop(p, rx_buf);
728 	if (ret) {
729 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
730 		return ret;
731 	}
732 
733 	return words;
734 
735 stop_reset:
736 	sh_msiof_reset_str(p);
737 	sh_msiof_spi_stop(p, rx_buf);
738 stop_ier:
739 	sh_msiof_write(p, IER, 0);
740 	return ret;
741 }
742 
743 static void sh_msiof_dma_complete(void *arg)
744 {
745 	complete(arg);
746 }
747 
748 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
749 			     void *rx, unsigned int len)
750 {
751 	u32 ier_bits = 0;
752 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
753 	dma_cookie_t cookie;
754 	int ret;
755 
756 	/* First prepare and submit the DMA request(s), as this may fail */
757 	if (rx) {
758 		ier_bits |= IER_RDREQE | IER_RDMAE;
759 		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
760 					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
761 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
762 		if (!desc_rx)
763 			return -EAGAIN;
764 
765 		desc_rx->callback = sh_msiof_dma_complete;
766 		desc_rx->callback_param = &p->done;
767 		cookie = dmaengine_submit(desc_rx);
768 		if (dma_submit_error(cookie))
769 			return cookie;
770 	}
771 
772 	if (tx) {
773 		ier_bits |= IER_TDREQE | IER_TDMAE;
774 		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
775 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
776 		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
777 					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
778 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
779 		if (!desc_tx) {
780 			ret = -EAGAIN;
781 			goto no_dma_tx;
782 		}
783 
784 		desc_tx->callback = sh_msiof_dma_complete;
785 		desc_tx->callback_param = &p->done_txdma;
786 		cookie = dmaengine_submit(desc_tx);
787 		if (dma_submit_error(cookie)) {
788 			ret = cookie;
789 			goto no_dma_tx;
790 		}
791 	}
792 
793 	/* 1 stage FIFO watermarks for DMA */
794 	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
795 
796 	/* setup msiof transfer mode registers (32-bit words) */
797 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
798 
799 	sh_msiof_write(p, IER, ier_bits);
800 
801 	reinit_completion(&p->done);
802 	if (tx)
803 		reinit_completion(&p->done_txdma);
804 	p->slave_aborted = false;
805 
806 	/* Now start DMA */
807 	if (rx)
808 		dma_async_issue_pending(p->ctlr->dma_rx);
809 	if (tx)
810 		dma_async_issue_pending(p->ctlr->dma_tx);
811 
812 	ret = sh_msiof_spi_start(p, rx);
813 	if (ret) {
814 		dev_err(&p->pdev->dev, "failed to start hardware\n");
815 		goto stop_dma;
816 	}
817 
818 	if (tx) {
819 		/* wait for tx DMA completion */
820 		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
821 		if (ret)
822 			goto stop_reset;
823 	}
824 
825 	if (rx) {
826 		/* wait for rx DMA completion */
827 		ret = sh_msiof_wait_for_completion(p, &p->done);
828 		if (ret)
829 			goto stop_reset;
830 
831 		sh_msiof_write(p, IER, 0);
832 	} else {
833 		/* wait for tx fifo to be emptied */
834 		sh_msiof_write(p, IER, IER_TEOFE);
835 		ret = sh_msiof_wait_for_completion(p, &p->done);
836 		if (ret)
837 			goto stop_reset;
838 	}
839 
840 	/* clear status bits */
841 	sh_msiof_reset_str(p);
842 
843 	ret = sh_msiof_spi_stop(p, rx);
844 	if (ret) {
845 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
846 		return ret;
847 	}
848 
849 	if (rx)
850 		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
851 					p->rx_dma_addr, len, DMA_FROM_DEVICE);
852 
853 	return 0;
854 
855 stop_reset:
856 	sh_msiof_reset_str(p);
857 	sh_msiof_spi_stop(p, rx);
858 stop_dma:
859 	if (tx)
860 		dmaengine_terminate_all(p->ctlr->dma_tx);
861 no_dma_tx:
862 	if (rx)
863 		dmaengine_terminate_all(p->ctlr->dma_rx);
864 	sh_msiof_write(p, IER, 0);
865 	return ret;
866 }
867 
868 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
869 {
870 	/* src or dst can be unaligned, but not both */
871 	if ((unsigned long)src & 3) {
872 		while (words--) {
873 			*dst++ = swab32(get_unaligned(src));
874 			src++;
875 		}
876 	} else if ((unsigned long)dst & 3) {
877 		while (words--) {
878 			put_unaligned(swab32(*src++), dst);
879 			dst++;
880 		}
881 	} else {
882 		while (words--)
883 			*dst++ = swab32(*src++);
884 	}
885 }
886 
887 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
888 {
889 	/* src or dst can be unaligned, but not both */
890 	if ((unsigned long)src & 3) {
891 		while (words--) {
892 			*dst++ = swahw32(get_unaligned(src));
893 			src++;
894 		}
895 	} else if ((unsigned long)dst & 3) {
896 		while (words--) {
897 			put_unaligned(swahw32(*src++), dst);
898 			dst++;
899 		}
900 	} else {
901 		while (words--)
902 			*dst++ = swahw32(*src++);
903 	}
904 }
905 
906 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
907 {
908 	memcpy(dst, src, words * 4);
909 }
910 
911 static int sh_msiof_transfer_one(struct spi_controller *ctlr,
912 				 struct spi_device *spi,
913 				 struct spi_transfer *t)
914 {
915 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
916 	void (*copy32)(u32 *, const u32 *, unsigned int);
917 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
918 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
919 	const void *tx_buf = t->tx_buf;
920 	void *rx_buf = t->rx_buf;
921 	unsigned int len = t->len;
922 	unsigned int bits = t->bits_per_word;
923 	unsigned int bytes_per_word;
924 	unsigned int words;
925 	int n;
926 	bool swab;
927 	int ret;
928 
929 	/* setup clocks (clock already enabled in chipselect()) */
930 	if (!spi_controller_is_slave(p->ctlr))
931 		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
932 
933 	while (ctlr->dma_tx && len > 15) {
934 		/*
935 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
936 		 *  words, with byte resp. word swapping.
937 		 */
938 		unsigned int l = 0;
939 
940 		if (tx_buf)
941 			l = min(round_down(len, 4), p->tx_fifo_size * 4);
942 		if (rx_buf)
943 			l = min(round_down(len, 4), p->rx_fifo_size * 4);
944 
945 		if (bits <= 8) {
946 			copy32 = copy_bswap32;
947 		} else if (bits <= 16) {
948 			copy32 = copy_wswap32;
949 		} else {
950 			copy32 = copy_plain32;
951 		}
952 
953 		if (tx_buf)
954 			copy32(p->tx_dma_page, tx_buf, l / 4);
955 
956 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
957 		if (ret == -EAGAIN) {
958 			dev_warn_once(&p->pdev->dev,
959 				"DMA not available, falling back to PIO\n");
960 			break;
961 		}
962 		if (ret)
963 			return ret;
964 
965 		if (rx_buf) {
966 			copy32(rx_buf, p->rx_dma_page, l / 4);
967 			rx_buf += l;
968 		}
969 		if (tx_buf)
970 			tx_buf += l;
971 
972 		len -= l;
973 		if (!len)
974 			return 0;
975 	}
976 
977 	if (bits <= 8 && len > 15) {
978 		bits = 32;
979 		swab = true;
980 	} else {
981 		swab = false;
982 	}
983 
984 	/* setup bytes per word and fifo read/write functions */
985 	if (bits <= 8) {
986 		bytes_per_word = 1;
987 		tx_fifo = sh_msiof_spi_write_fifo_8;
988 		rx_fifo = sh_msiof_spi_read_fifo_8;
989 	} else if (bits <= 16) {
990 		bytes_per_word = 2;
991 		if ((unsigned long)tx_buf & 0x01)
992 			tx_fifo = sh_msiof_spi_write_fifo_16u;
993 		else
994 			tx_fifo = sh_msiof_spi_write_fifo_16;
995 
996 		if ((unsigned long)rx_buf & 0x01)
997 			rx_fifo = sh_msiof_spi_read_fifo_16u;
998 		else
999 			rx_fifo = sh_msiof_spi_read_fifo_16;
1000 	} else if (swab) {
1001 		bytes_per_word = 4;
1002 		if ((unsigned long)tx_buf & 0x03)
1003 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1004 		else
1005 			tx_fifo = sh_msiof_spi_write_fifo_s32;
1006 
1007 		if ((unsigned long)rx_buf & 0x03)
1008 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1009 		else
1010 			rx_fifo = sh_msiof_spi_read_fifo_s32;
1011 	} else {
1012 		bytes_per_word = 4;
1013 		if ((unsigned long)tx_buf & 0x03)
1014 			tx_fifo = sh_msiof_spi_write_fifo_32u;
1015 		else
1016 			tx_fifo = sh_msiof_spi_write_fifo_32;
1017 
1018 		if ((unsigned long)rx_buf & 0x03)
1019 			rx_fifo = sh_msiof_spi_read_fifo_32u;
1020 		else
1021 			rx_fifo = sh_msiof_spi_read_fifo_32;
1022 	}
1023 
1024 	/* transfer in fifo sized chunks */
1025 	words = len / bytes_per_word;
1026 
1027 	while (words > 0) {
1028 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1029 					   words, bits);
1030 		if (n < 0)
1031 			return n;
1032 
1033 		if (tx_buf)
1034 			tx_buf += n * bytes_per_word;
1035 		if (rx_buf)
1036 			rx_buf += n * bytes_per_word;
1037 		words -= n;
1038 
1039 		if (words == 0 && (len % bytes_per_word)) {
1040 			words = len % bytes_per_word;
1041 			bits = t->bits_per_word;
1042 			bytes_per_word = 1;
1043 			tx_fifo = sh_msiof_spi_write_fifo_8;
1044 			rx_fifo = sh_msiof_spi_read_fifo_8;
1045 		}
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 static const struct sh_msiof_chipdata sh_data = {
1052 	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1053 	.tx_fifo_size = 64,
1054 	.rx_fifo_size = 64,
1055 	.ctlr_flags = 0,
1056 	.min_div_pow = 0,
1057 };
1058 
1059 static const struct sh_msiof_chipdata rcar_gen2_data = {
1060 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1061 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1062 	.tx_fifo_size = 64,
1063 	.rx_fifo_size = 64,
1064 	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1065 	.min_div_pow = 0,
1066 };
1067 
1068 static const struct sh_msiof_chipdata rcar_gen3_data = {
1069 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1070 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1071 	.tx_fifo_size = 64,
1072 	.rx_fifo_size = 64,
1073 	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1074 	.min_div_pow = 1,
1075 };
1076 
1077 static const struct of_device_id sh_msiof_match[] = {
1078 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1079 	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1080 	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1081 	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1082 	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1083 	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1084 	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1085 	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1086 	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1087 	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1088 	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1089 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1090 	{},
1091 };
1092 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1093 
1094 #ifdef CONFIG_OF
1095 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1096 {
1097 	struct sh_msiof_spi_info *info;
1098 	struct device_node *np = dev->of_node;
1099 	u32 num_cs = 1;
1100 
1101 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1102 	if (!info)
1103 		return NULL;
1104 
1105 	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1106 							    : MSIOF_SPI_MASTER;
1107 
1108 	/* Parse the MSIOF properties */
1109 	if (info->mode == MSIOF_SPI_MASTER)
1110 		of_property_read_u32(np, "num-cs", &num_cs);
1111 	of_property_read_u32(np, "renesas,tx-fifo-size",
1112 					&info->tx_fifo_override);
1113 	of_property_read_u32(np, "renesas,rx-fifo-size",
1114 					&info->rx_fifo_override);
1115 	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1116 	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1117 
1118 	info->num_chipselect = num_cs;
1119 
1120 	return info;
1121 }
1122 #else
1123 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1124 {
1125 	return NULL;
1126 }
1127 #endif
1128 
1129 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1130 {
1131 	struct device *dev = &p->pdev->dev;
1132 	unsigned int used_ss_mask = 0;
1133 	unsigned int cs_gpios = 0;
1134 	unsigned int num_cs, i;
1135 	int ret;
1136 
1137 	ret = gpiod_count(dev, "cs");
1138 	if (ret <= 0)
1139 		return 0;
1140 
1141 	num_cs = max_t(unsigned int, ret, p->ctlr->num_chipselect);
1142 	for (i = 0; i < num_cs; i++) {
1143 		struct gpio_desc *gpiod;
1144 
1145 		gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1146 		if (!IS_ERR(gpiod)) {
1147 			cs_gpios++;
1148 			continue;
1149 		}
1150 
1151 		if (PTR_ERR(gpiod) != -ENOENT)
1152 			return PTR_ERR(gpiod);
1153 
1154 		if (i >= MAX_SS) {
1155 			dev_err(dev, "Invalid native chip select %d\n", i);
1156 			return -EINVAL;
1157 		}
1158 		used_ss_mask |= BIT(i);
1159 	}
1160 	p->unused_ss = ffz(used_ss_mask);
1161 	if (cs_gpios && p->unused_ss >= MAX_SS) {
1162 		dev_err(dev, "No unused native chip select available\n");
1163 		return -EINVAL;
1164 	}
1165 	return 0;
1166 }
1167 
1168 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1169 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1170 {
1171 	dma_cap_mask_t mask;
1172 	struct dma_chan *chan;
1173 	struct dma_slave_config cfg;
1174 	int ret;
1175 
1176 	dma_cap_zero(mask);
1177 	dma_cap_set(DMA_SLAVE, mask);
1178 
1179 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1180 				(void *)(unsigned long)id, dev,
1181 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1182 	if (!chan) {
1183 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1184 		return NULL;
1185 	}
1186 
1187 	memset(&cfg, 0, sizeof(cfg));
1188 	cfg.direction = dir;
1189 	if (dir == DMA_MEM_TO_DEV) {
1190 		cfg.dst_addr = port_addr;
1191 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1192 	} else {
1193 		cfg.src_addr = port_addr;
1194 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1195 	}
1196 
1197 	ret = dmaengine_slave_config(chan, &cfg);
1198 	if (ret) {
1199 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1200 		dma_release_channel(chan);
1201 		return NULL;
1202 	}
1203 
1204 	return chan;
1205 }
1206 
1207 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1208 {
1209 	struct platform_device *pdev = p->pdev;
1210 	struct device *dev = &pdev->dev;
1211 	const struct sh_msiof_spi_info *info = p->info;
1212 	unsigned int dma_tx_id, dma_rx_id;
1213 	const struct resource *res;
1214 	struct spi_controller *ctlr;
1215 	struct device *tx_dev, *rx_dev;
1216 
1217 	if (dev->of_node) {
1218 		/* In the OF case we will get the slave IDs from the DT */
1219 		dma_tx_id = 0;
1220 		dma_rx_id = 0;
1221 	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1222 		dma_tx_id = info->dma_tx_id;
1223 		dma_rx_id = info->dma_rx_id;
1224 	} else {
1225 		/* The driver assumes no error */
1226 		return 0;
1227 	}
1228 
1229 	/* The DMA engine uses the second register set, if present */
1230 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1231 	if (!res)
1232 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1233 
1234 	ctlr = p->ctlr;
1235 	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1236 						 dma_tx_id, res->start + TFDR);
1237 	if (!ctlr->dma_tx)
1238 		return -ENODEV;
1239 
1240 	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1241 						 dma_rx_id, res->start + RFDR);
1242 	if (!ctlr->dma_rx)
1243 		goto free_tx_chan;
1244 
1245 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1246 	if (!p->tx_dma_page)
1247 		goto free_rx_chan;
1248 
1249 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1250 	if (!p->rx_dma_page)
1251 		goto free_tx_page;
1252 
1253 	tx_dev = ctlr->dma_tx->device->dev;
1254 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1255 					DMA_TO_DEVICE);
1256 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1257 		goto free_rx_page;
1258 
1259 	rx_dev = ctlr->dma_rx->device->dev;
1260 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1261 					DMA_FROM_DEVICE);
1262 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1263 		goto unmap_tx_page;
1264 
1265 	dev_info(dev, "DMA available");
1266 	return 0;
1267 
1268 unmap_tx_page:
1269 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1270 free_rx_page:
1271 	free_page((unsigned long)p->rx_dma_page);
1272 free_tx_page:
1273 	free_page((unsigned long)p->tx_dma_page);
1274 free_rx_chan:
1275 	dma_release_channel(ctlr->dma_rx);
1276 free_tx_chan:
1277 	dma_release_channel(ctlr->dma_tx);
1278 	ctlr->dma_tx = NULL;
1279 	return -ENODEV;
1280 }
1281 
1282 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1283 {
1284 	struct spi_controller *ctlr = p->ctlr;
1285 
1286 	if (!ctlr->dma_tx)
1287 		return;
1288 
1289 	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1290 			 DMA_FROM_DEVICE);
1291 	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1292 			 DMA_TO_DEVICE);
1293 	free_page((unsigned long)p->rx_dma_page);
1294 	free_page((unsigned long)p->tx_dma_page);
1295 	dma_release_channel(ctlr->dma_rx);
1296 	dma_release_channel(ctlr->dma_tx);
1297 }
1298 
1299 static int sh_msiof_spi_probe(struct platform_device *pdev)
1300 {
1301 	struct resource	*r;
1302 	struct spi_controller *ctlr;
1303 	const struct sh_msiof_chipdata *chipdata;
1304 	struct sh_msiof_spi_info *info;
1305 	struct sh_msiof_spi_priv *p;
1306 	int i;
1307 	int ret;
1308 
1309 	chipdata = of_device_get_match_data(&pdev->dev);
1310 	if (chipdata) {
1311 		info = sh_msiof_spi_parse_dt(&pdev->dev);
1312 	} else {
1313 		chipdata = (const void *)pdev->id_entry->driver_data;
1314 		info = dev_get_platdata(&pdev->dev);
1315 	}
1316 
1317 	if (!info) {
1318 		dev_err(&pdev->dev, "failed to obtain device info\n");
1319 		return -ENXIO;
1320 	}
1321 
1322 	if (info->mode == MSIOF_SPI_SLAVE)
1323 		ctlr = spi_alloc_slave(&pdev->dev,
1324 				       sizeof(struct sh_msiof_spi_priv));
1325 	else
1326 		ctlr = spi_alloc_master(&pdev->dev,
1327 					sizeof(struct sh_msiof_spi_priv));
1328 	if (ctlr == NULL)
1329 		return -ENOMEM;
1330 
1331 	p = spi_controller_get_devdata(ctlr);
1332 
1333 	platform_set_drvdata(pdev, p);
1334 	p->ctlr = ctlr;
1335 	p->info = info;
1336 	p->min_div_pow = chipdata->min_div_pow;
1337 
1338 	init_completion(&p->done);
1339 	init_completion(&p->done_txdma);
1340 
1341 	p->clk = devm_clk_get(&pdev->dev, NULL);
1342 	if (IS_ERR(p->clk)) {
1343 		dev_err(&pdev->dev, "cannot get clock\n");
1344 		ret = PTR_ERR(p->clk);
1345 		goto err1;
1346 	}
1347 
1348 	i = platform_get_irq(pdev, 0);
1349 	if (i < 0) {
1350 		dev_err(&pdev->dev, "cannot get IRQ\n");
1351 		ret = i;
1352 		goto err1;
1353 	}
1354 
1355 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1356 	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1357 	if (IS_ERR(p->mapbase)) {
1358 		ret = PTR_ERR(p->mapbase);
1359 		goto err1;
1360 	}
1361 
1362 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1363 			       dev_name(&pdev->dev), p);
1364 	if (ret) {
1365 		dev_err(&pdev->dev, "unable to request irq\n");
1366 		goto err1;
1367 	}
1368 
1369 	p->pdev = pdev;
1370 	pm_runtime_enable(&pdev->dev);
1371 
1372 	/* Platform data may override FIFO sizes */
1373 	p->tx_fifo_size = chipdata->tx_fifo_size;
1374 	p->rx_fifo_size = chipdata->rx_fifo_size;
1375 	if (p->info->tx_fifo_override)
1376 		p->tx_fifo_size = p->info->tx_fifo_override;
1377 	if (p->info->rx_fifo_override)
1378 		p->rx_fifo_size = p->info->rx_fifo_override;
1379 
1380 	/* Setup GPIO chip selects */
1381 	ctlr->num_chipselect = p->info->num_chipselect;
1382 	ret = sh_msiof_get_cs_gpios(p);
1383 	if (ret)
1384 		goto err1;
1385 
1386 	/* init controller code */
1387 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1388 	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1389 	ctlr->flags = chipdata->ctlr_flags;
1390 	ctlr->bus_num = pdev->id;
1391 	ctlr->dev.of_node = pdev->dev.of_node;
1392 	ctlr->setup = sh_msiof_spi_setup;
1393 	ctlr->prepare_message = sh_msiof_prepare_message;
1394 	ctlr->slave_abort = sh_msiof_slave_abort;
1395 	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1396 	ctlr->auto_runtime_pm = true;
1397 	ctlr->transfer_one = sh_msiof_transfer_one;
1398 
1399 	ret = sh_msiof_request_dma(p);
1400 	if (ret < 0)
1401 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1402 
1403 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1404 	if (ret < 0) {
1405 		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1406 		goto err2;
1407 	}
1408 
1409 	return 0;
1410 
1411  err2:
1412 	sh_msiof_release_dma(p);
1413 	pm_runtime_disable(&pdev->dev);
1414  err1:
1415 	spi_controller_put(ctlr);
1416 	return ret;
1417 }
1418 
1419 static int sh_msiof_spi_remove(struct platform_device *pdev)
1420 {
1421 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1422 
1423 	sh_msiof_release_dma(p);
1424 	pm_runtime_disable(&pdev->dev);
1425 	return 0;
1426 }
1427 
1428 static const struct platform_device_id spi_driver_ids[] = {
1429 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1430 	{},
1431 };
1432 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1433 
1434 #ifdef CONFIG_PM_SLEEP
1435 static int sh_msiof_spi_suspend(struct device *dev)
1436 {
1437 	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1438 
1439 	return spi_controller_suspend(p->ctlr);
1440 }
1441 
1442 static int sh_msiof_spi_resume(struct device *dev)
1443 {
1444 	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1445 
1446 	return spi_controller_resume(p->ctlr);
1447 }
1448 
1449 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1450 			 sh_msiof_spi_resume);
1451 #define DEV_PM_OPS	&sh_msiof_spi_pm_ops
1452 #else
1453 #define DEV_PM_OPS	NULL
1454 #endif /* CONFIG_PM_SLEEP */
1455 
1456 static struct platform_driver sh_msiof_spi_drv = {
1457 	.probe		= sh_msiof_spi_probe,
1458 	.remove		= sh_msiof_spi_remove,
1459 	.id_table	= spi_driver_ids,
1460 	.driver		= {
1461 		.name		= "spi_sh_msiof",
1462 		.pm		= DEV_PM_OPS,
1463 		.of_match_table = of_match_ptr(sh_msiof_match),
1464 	},
1465 };
1466 module_platform_driver(sh_msiof_spi_drv);
1467 
1468 MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1469 MODULE_AUTHOR("Magnus Damm");
1470 MODULE_LICENSE("GPL v2");
1471 MODULE_ALIAS("platform:spi_sh_msiof");
1472