xref: /openbmc/linux/drivers/spi/spi-sh-msiof.c (revision a2cce7a9)
1 /*
2  * SuperH MSIOF SPI Master Interface
3  *
4  * Copyright (c) 2009 Magnus Damm
5  * Copyright (C) 2014 Glider bvba
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  */
12 
13 #include <linux/bitmap.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/gpio.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
30 
31 #include <linux/spi/sh_msiof.h>
32 #include <linux/spi/spi.h>
33 
34 #include <asm/unaligned.h>
35 
36 
37 struct sh_msiof_chipdata {
38 	u16 tx_fifo_size;
39 	u16 rx_fifo_size;
40 	u16 master_flags;
41 };
42 
43 struct sh_msiof_spi_priv {
44 	struct spi_master *master;
45 	void __iomem *mapbase;
46 	struct clk *clk;
47 	struct platform_device *pdev;
48 	const struct sh_msiof_chipdata *chipdata;
49 	struct sh_msiof_spi_info *info;
50 	struct completion done;
51 	unsigned int tx_fifo_size;
52 	unsigned int rx_fifo_size;
53 	void *tx_dma_page;
54 	void *rx_dma_page;
55 	dma_addr_t tx_dma_addr;
56 	dma_addr_t rx_dma_addr;
57 };
58 
59 #define TMDR1	0x00	/* Transmit Mode Register 1 */
60 #define TMDR2	0x04	/* Transmit Mode Register 2 */
61 #define TMDR3	0x08	/* Transmit Mode Register 3 */
62 #define RMDR1	0x10	/* Receive Mode Register 1 */
63 #define RMDR2	0x14	/* Receive Mode Register 2 */
64 #define RMDR3	0x18	/* Receive Mode Register 3 */
65 #define TSCR	0x20	/* Transmit Clock Select Register */
66 #define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
67 #define CTR	0x28	/* Control Register */
68 #define FCTR	0x30	/* FIFO Control Register */
69 #define STR	0x40	/* Status Register */
70 #define IER	0x44	/* Interrupt Enable Register */
71 #define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
72 #define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
73 #define TFDR	0x50	/* Transmit FIFO Data Register */
74 #define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
75 #define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
76 #define RFDR	0x60	/* Receive FIFO Data Register */
77 
78 /* TMDR1 and RMDR1 */
79 #define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81 #define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
82 #define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
83 #define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
84 #define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
85 #define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
86 #define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
87 #define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
88 #define MDR1_FLD_SHIFT		  2
89 #define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
90 /* TMDR1 */
91 #define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
92 
93 /* TMDR2 and RMDR2 */
94 #define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
95 #define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
96 #define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
97 
98 /* TSCR and RSCR */
99 #define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
100 #define SCR_BRPS(i)	(((i) - 1) << 8)
101 #define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
102 #define SCR_BRDV_DIV_2	    0x0000
103 #define SCR_BRDV_DIV_4	    0x0001
104 #define SCR_BRDV_DIV_8	    0x0002
105 #define SCR_BRDV_DIV_16	    0x0003
106 #define SCR_BRDV_DIV_32	    0x0004
107 #define SCR_BRDV_DIV_1	    0x0007
108 
109 /* CTR */
110 #define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
111 #define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
112 #define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
113 #define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
114 #define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
115 #define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
116 #define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
117 #define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
118 #define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
119 #define CTR_TXDIZ_LOW	0x00000000 /*   0 */
120 #define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
121 #define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
122 #define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
123 #define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
124 #define CTR_TXE		0x00000200 /* Transmit Enable */
125 #define CTR_RXE		0x00000100 /* Receive Enable */
126 
127 /* FCTR */
128 #define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
129 #define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
130 #define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
131 #define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
132 #define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
133 #define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
134 #define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
135 #define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
136 #define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
137 #define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
138 #define FCTR_TFUA_SHIFT		20
139 #define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
140 #define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
141 #define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
142 #define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
143 #define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
144 #define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
145 #define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
146 #define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
147 #define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
148 #define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
149 #define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
150 #define FCTR_RFUA_SHIFT		 4
151 #define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
152 
153 /* STR */
154 #define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
155 #define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
156 #define STR_TEOF	0x00800000 /* Frame Transmission End */
157 #define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
158 #define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
159 #define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
160 #define STR_RFFUL	0x00002000 /* Receive FIFO Full */
161 #define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
162 #define STR_REOF	0x00000080 /* Frame Reception End */
163 #define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
164 #define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
165 #define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
166 
167 /* IER */
168 #define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
169 #define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
170 #define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
171 #define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
172 #define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
173 #define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
174 #define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
175 #define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
176 #define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
177 #define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
178 #define IER_REOFE	0x00000080 /* Frame Reception End Enable */
179 #define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
180 #define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
181 #define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
182 
183 
184 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
185 {
186 	switch (reg_offs) {
187 	case TSCR:
188 	case RSCR:
189 		return ioread16(p->mapbase + reg_offs);
190 	default:
191 		return ioread32(p->mapbase + reg_offs);
192 	}
193 }
194 
195 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
196 			   u32 value)
197 {
198 	switch (reg_offs) {
199 	case TSCR:
200 	case RSCR:
201 		iowrite16(value, p->mapbase + reg_offs);
202 		break;
203 	default:
204 		iowrite32(value, p->mapbase + reg_offs);
205 		break;
206 	}
207 }
208 
209 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
210 				    u32 clr, u32 set)
211 {
212 	u32 mask = clr | set;
213 	u32 data;
214 	int k;
215 
216 	data = sh_msiof_read(p, CTR);
217 	data &= ~clr;
218 	data |= set;
219 	sh_msiof_write(p, CTR, data);
220 
221 	for (k = 100; k > 0; k--) {
222 		if ((sh_msiof_read(p, CTR) & mask) == set)
223 			break;
224 
225 		udelay(10);
226 	}
227 
228 	return k > 0 ? 0 : -ETIMEDOUT;
229 }
230 
231 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
232 {
233 	struct sh_msiof_spi_priv *p = data;
234 
235 	/* just disable the interrupt and wake up */
236 	sh_msiof_write(p, IER, 0);
237 	complete(&p->done);
238 
239 	return IRQ_HANDLED;
240 }
241 
242 static struct {
243 	unsigned short div;
244 	unsigned short brdv;
245 } const sh_msiof_spi_div_table[] = {
246 	{ 1,	SCR_BRDV_DIV_1 },
247 	{ 2,	SCR_BRDV_DIV_2 },
248 	{ 4,	SCR_BRDV_DIV_4 },
249 	{ 8,	SCR_BRDV_DIV_8 },
250 	{ 16,	SCR_BRDV_DIV_16 },
251 	{ 32,	SCR_BRDV_DIV_32 },
252 };
253 
254 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
255 				      unsigned long parent_rate, u32 spi_hz)
256 {
257 	unsigned long div = 1024;
258 	u32 brps, scr;
259 	size_t k;
260 
261 	if (!WARN_ON(!spi_hz || !parent_rate))
262 		div = DIV_ROUND_UP(parent_rate, spi_hz);
263 
264 	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
265 		brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
266 		if (brps <= 32) /* max of brdv is 32 */
267 			break;
268 	}
269 
270 	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
271 
272 	scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
273 	sh_msiof_write(p, TSCR, scr);
274 	if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
275 		sh_msiof_write(p, RSCR, scr);
276 }
277 
278 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
279 {
280 	/*
281 	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
282 	 * b'000		: 0
283 	 * b'001		: 100
284 	 * b'010		: 200
285 	 * b'011 (SYNCDL only)	: 300
286 	 * b'101		: 50
287 	 * b'110		: 150
288 	 */
289 	if (dtdl_or_syncdl % 100)
290 		return dtdl_or_syncdl / 100 + 5;
291 	else
292 		return dtdl_or_syncdl / 100;
293 }
294 
295 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
296 {
297 	u32 val;
298 
299 	if (!p->info)
300 		return 0;
301 
302 	/* check if DTDL and SYNCDL is allowed value */
303 	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
304 		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
305 		return 0;
306 	}
307 
308 	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
309 	if ((p->info->dtdl + p->info->syncdl) % 100) {
310 		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
311 		return 0;
312 	}
313 
314 	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
315 	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
316 
317 	return val;
318 }
319 
320 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
321 				      u32 cpol, u32 cpha,
322 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
323 {
324 	u32 tmp;
325 	int edge;
326 
327 	/*
328 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
329 	 *    0    0         10     10    1    1
330 	 *    0    1         10     10    0    0
331 	 *    1    0         11     11    0    0
332 	 *    1    1         11     11    1    1
333 	 */
334 	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
335 	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
336 	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
337 	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
338 	sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
339 	if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
340 		/* These bits are reserved if RX needs TX */
341 		tmp &= ~0x0000ffff;
342 	}
343 	sh_msiof_write(p, RMDR1, tmp);
344 
345 	tmp = 0;
346 	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
347 	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
348 
349 	edge = cpol ^ !cpha;
350 
351 	tmp |= edge << CTR_TEDG_SHIFT;
352 	tmp |= edge << CTR_REDG_SHIFT;
353 	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
354 	sh_msiof_write(p, CTR, tmp);
355 }
356 
357 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
358 				       const void *tx_buf, void *rx_buf,
359 				       u32 bits, u32 words)
360 {
361 	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
362 
363 	if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
364 		sh_msiof_write(p, TMDR2, dr2);
365 	else
366 		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
367 
368 	if (rx_buf)
369 		sh_msiof_write(p, RMDR2, dr2);
370 }
371 
372 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
373 {
374 	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
375 }
376 
377 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
378 				      const void *tx_buf, int words, int fs)
379 {
380 	const u8 *buf_8 = tx_buf;
381 	int k;
382 
383 	for (k = 0; k < words; k++)
384 		sh_msiof_write(p, TFDR, buf_8[k] << fs);
385 }
386 
387 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
388 				       const void *tx_buf, int words, int fs)
389 {
390 	const u16 *buf_16 = tx_buf;
391 	int k;
392 
393 	for (k = 0; k < words; k++)
394 		sh_msiof_write(p, TFDR, buf_16[k] << fs);
395 }
396 
397 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
398 					const void *tx_buf, int words, int fs)
399 {
400 	const u16 *buf_16 = tx_buf;
401 	int k;
402 
403 	for (k = 0; k < words; k++)
404 		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
405 }
406 
407 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
408 				       const void *tx_buf, int words, int fs)
409 {
410 	const u32 *buf_32 = tx_buf;
411 	int k;
412 
413 	for (k = 0; k < words; k++)
414 		sh_msiof_write(p, TFDR, buf_32[k] << fs);
415 }
416 
417 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
418 					const void *tx_buf, int words, int fs)
419 {
420 	const u32 *buf_32 = tx_buf;
421 	int k;
422 
423 	for (k = 0; k < words; k++)
424 		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
425 }
426 
427 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
428 					const void *tx_buf, int words, int fs)
429 {
430 	const u32 *buf_32 = tx_buf;
431 	int k;
432 
433 	for (k = 0; k < words; k++)
434 		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
435 }
436 
437 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
438 					 const void *tx_buf, int words, int fs)
439 {
440 	const u32 *buf_32 = tx_buf;
441 	int k;
442 
443 	for (k = 0; k < words; k++)
444 		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
445 }
446 
447 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
448 				     void *rx_buf, int words, int fs)
449 {
450 	u8 *buf_8 = rx_buf;
451 	int k;
452 
453 	for (k = 0; k < words; k++)
454 		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
455 }
456 
457 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
458 				      void *rx_buf, int words, int fs)
459 {
460 	u16 *buf_16 = rx_buf;
461 	int k;
462 
463 	for (k = 0; k < words; k++)
464 		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
465 }
466 
467 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
468 				       void *rx_buf, int words, int fs)
469 {
470 	u16 *buf_16 = rx_buf;
471 	int k;
472 
473 	for (k = 0; k < words; k++)
474 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
475 }
476 
477 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
478 				      void *rx_buf, int words, int fs)
479 {
480 	u32 *buf_32 = rx_buf;
481 	int k;
482 
483 	for (k = 0; k < words; k++)
484 		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
485 }
486 
487 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
488 				       void *rx_buf, int words, int fs)
489 {
490 	u32 *buf_32 = rx_buf;
491 	int k;
492 
493 	for (k = 0; k < words; k++)
494 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
495 }
496 
497 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
498 				       void *rx_buf, int words, int fs)
499 {
500 	u32 *buf_32 = rx_buf;
501 	int k;
502 
503 	for (k = 0; k < words; k++)
504 		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
505 }
506 
507 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
508 				       void *rx_buf, int words, int fs)
509 {
510 	u32 *buf_32 = rx_buf;
511 	int k;
512 
513 	for (k = 0; k < words; k++)
514 		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
515 }
516 
517 static int sh_msiof_spi_setup(struct spi_device *spi)
518 {
519 	struct device_node	*np = spi->master->dev.of_node;
520 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
521 
522 	pm_runtime_get_sync(&p->pdev->dev);
523 
524 	if (!np) {
525 		/*
526 		 * Use spi->controller_data for CS (same strategy as spi_gpio),
527 		 * if any. otherwise let HW control CS
528 		 */
529 		spi->cs_gpio = (uintptr_t)spi->controller_data;
530 	}
531 
532 	/* Configure pins before deasserting CS */
533 	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
534 				  !!(spi->mode & SPI_CPHA),
535 				  !!(spi->mode & SPI_3WIRE),
536 				  !!(spi->mode & SPI_LSB_FIRST),
537 				  !!(spi->mode & SPI_CS_HIGH));
538 
539 	if (spi->cs_gpio >= 0)
540 		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
541 
542 
543 	pm_runtime_put(&p->pdev->dev);
544 
545 	return 0;
546 }
547 
548 static int sh_msiof_prepare_message(struct spi_master *master,
549 				    struct spi_message *msg)
550 {
551 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
552 	const struct spi_device *spi = msg->spi;
553 
554 	/* Configure pins before asserting CS */
555 	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
556 				  !!(spi->mode & SPI_CPHA),
557 				  !!(spi->mode & SPI_3WIRE),
558 				  !!(spi->mode & SPI_LSB_FIRST),
559 				  !!(spi->mode & SPI_CS_HIGH));
560 	return 0;
561 }
562 
563 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
564 {
565 	int ret;
566 
567 	/* setup clock and rx/tx signals */
568 	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
569 	if (rx_buf && !ret)
570 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
571 	if (!ret)
572 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
573 
574 	/* start by setting frame bit */
575 	if (!ret)
576 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
577 
578 	return ret;
579 }
580 
581 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
582 {
583 	int ret;
584 
585 	/* shut down frame, rx/tx and clock signals */
586 	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
587 	if (!ret)
588 		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
589 	if (rx_buf && !ret)
590 		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
591 	if (!ret)
592 		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
593 
594 	return ret;
595 }
596 
597 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
598 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
599 						  const void *, int, int),
600 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
601 						  void *, int, int),
602 				  const void *tx_buf, void *rx_buf,
603 				  int words, int bits)
604 {
605 	int fifo_shift;
606 	int ret;
607 
608 	/* limit maximum word transfer to rx/tx fifo size */
609 	if (tx_buf)
610 		words = min_t(int, words, p->tx_fifo_size);
611 	if (rx_buf)
612 		words = min_t(int, words, p->rx_fifo_size);
613 
614 	/* the fifo contents need shifting */
615 	fifo_shift = 32 - bits;
616 
617 	/* default FIFO watermarks for PIO */
618 	sh_msiof_write(p, FCTR, 0);
619 
620 	/* setup msiof transfer mode registers */
621 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
622 	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
623 
624 	/* write tx fifo */
625 	if (tx_buf)
626 		tx_fifo(p, tx_buf, words, fifo_shift);
627 
628 	reinit_completion(&p->done);
629 
630 	ret = sh_msiof_spi_start(p, rx_buf);
631 	if (ret) {
632 		dev_err(&p->pdev->dev, "failed to start hardware\n");
633 		goto stop_ier;
634 	}
635 
636 	/* wait for tx fifo to be emptied / rx fifo to be filled */
637 	if (!wait_for_completion_timeout(&p->done, HZ)) {
638 		dev_err(&p->pdev->dev, "PIO timeout\n");
639 		ret = -ETIMEDOUT;
640 		goto stop_reset;
641 	}
642 
643 	/* read rx fifo */
644 	if (rx_buf)
645 		rx_fifo(p, rx_buf, words, fifo_shift);
646 
647 	/* clear status bits */
648 	sh_msiof_reset_str(p);
649 
650 	ret = sh_msiof_spi_stop(p, rx_buf);
651 	if (ret) {
652 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
653 		return ret;
654 	}
655 
656 	return words;
657 
658 stop_reset:
659 	sh_msiof_reset_str(p);
660 	sh_msiof_spi_stop(p, rx_buf);
661 stop_ier:
662 	sh_msiof_write(p, IER, 0);
663 	return ret;
664 }
665 
666 static void sh_msiof_dma_complete(void *arg)
667 {
668 	struct sh_msiof_spi_priv *p = arg;
669 
670 	sh_msiof_write(p, IER, 0);
671 	complete(&p->done);
672 }
673 
674 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
675 			     void *rx, unsigned int len)
676 {
677 	u32 ier_bits = 0;
678 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
679 	dma_cookie_t cookie;
680 	int ret;
681 
682 	/* First prepare and submit the DMA request(s), as this may fail */
683 	if (rx) {
684 		ier_bits |= IER_RDREQE | IER_RDMAE;
685 		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
686 					p->rx_dma_addr, len, DMA_FROM_DEVICE,
687 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
688 		if (!desc_rx)
689 			return -EAGAIN;
690 
691 		desc_rx->callback = sh_msiof_dma_complete;
692 		desc_rx->callback_param = p;
693 		cookie = dmaengine_submit(desc_rx);
694 		if (dma_submit_error(cookie))
695 			return cookie;
696 	}
697 
698 	if (tx) {
699 		ier_bits |= IER_TDREQE | IER_TDMAE;
700 		dma_sync_single_for_device(p->master->dma_tx->device->dev,
701 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
702 		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
703 					p->tx_dma_addr, len, DMA_TO_DEVICE,
704 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
705 		if (!desc_tx) {
706 			ret = -EAGAIN;
707 			goto no_dma_tx;
708 		}
709 
710 		if (rx) {
711 			/* No callback */
712 			desc_tx->callback = NULL;
713 		} else {
714 			desc_tx->callback = sh_msiof_dma_complete;
715 			desc_tx->callback_param = p;
716 		}
717 		cookie = dmaengine_submit(desc_tx);
718 		if (dma_submit_error(cookie)) {
719 			ret = cookie;
720 			goto no_dma_tx;
721 		}
722 	}
723 
724 	/* 1 stage FIFO watermarks for DMA */
725 	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
726 
727 	/* setup msiof transfer mode registers (32-bit words) */
728 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
729 
730 	sh_msiof_write(p, IER, ier_bits);
731 
732 	reinit_completion(&p->done);
733 
734 	/* Now start DMA */
735 	if (rx)
736 		dma_async_issue_pending(p->master->dma_rx);
737 	if (tx)
738 		dma_async_issue_pending(p->master->dma_tx);
739 
740 	ret = sh_msiof_spi_start(p, rx);
741 	if (ret) {
742 		dev_err(&p->pdev->dev, "failed to start hardware\n");
743 		goto stop_dma;
744 	}
745 
746 	/* wait for tx fifo to be emptied / rx fifo to be filled */
747 	if (!wait_for_completion_timeout(&p->done, HZ)) {
748 		dev_err(&p->pdev->dev, "DMA timeout\n");
749 		ret = -ETIMEDOUT;
750 		goto stop_reset;
751 	}
752 
753 	/* clear status bits */
754 	sh_msiof_reset_str(p);
755 
756 	ret = sh_msiof_spi_stop(p, rx);
757 	if (ret) {
758 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
759 		return ret;
760 	}
761 
762 	if (rx)
763 		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
764 					p->rx_dma_addr, len,
765 					DMA_FROM_DEVICE);
766 
767 	return 0;
768 
769 stop_reset:
770 	sh_msiof_reset_str(p);
771 	sh_msiof_spi_stop(p, rx);
772 stop_dma:
773 	if (tx)
774 		dmaengine_terminate_all(p->master->dma_tx);
775 no_dma_tx:
776 	if (rx)
777 		dmaengine_terminate_all(p->master->dma_rx);
778 	sh_msiof_write(p, IER, 0);
779 	return ret;
780 }
781 
782 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
783 {
784 	/* src or dst can be unaligned, but not both */
785 	if ((unsigned long)src & 3) {
786 		while (words--) {
787 			*dst++ = swab32(get_unaligned(src));
788 			src++;
789 		}
790 	} else if ((unsigned long)dst & 3) {
791 		while (words--) {
792 			put_unaligned(swab32(*src++), dst);
793 			dst++;
794 		}
795 	} else {
796 		while (words--)
797 			*dst++ = swab32(*src++);
798 	}
799 }
800 
801 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
802 {
803 	/* src or dst can be unaligned, but not both */
804 	if ((unsigned long)src & 3) {
805 		while (words--) {
806 			*dst++ = swahw32(get_unaligned(src));
807 			src++;
808 		}
809 	} else if ((unsigned long)dst & 3) {
810 		while (words--) {
811 			put_unaligned(swahw32(*src++), dst);
812 			dst++;
813 		}
814 	} else {
815 		while (words--)
816 			*dst++ = swahw32(*src++);
817 	}
818 }
819 
820 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
821 {
822 	memcpy(dst, src, words * 4);
823 }
824 
825 static int sh_msiof_transfer_one(struct spi_master *master,
826 				 struct spi_device *spi,
827 				 struct spi_transfer *t)
828 {
829 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
830 	void (*copy32)(u32 *, const u32 *, unsigned int);
831 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
832 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
833 	const void *tx_buf = t->tx_buf;
834 	void *rx_buf = t->rx_buf;
835 	unsigned int len = t->len;
836 	unsigned int bits = t->bits_per_word;
837 	unsigned int bytes_per_word;
838 	unsigned int words;
839 	int n;
840 	bool swab;
841 	int ret;
842 
843 	/* setup clocks (clock already enabled in chipselect()) */
844 	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
845 
846 	while (master->dma_tx && len > 15) {
847 		/*
848 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
849 		 *  words, with byte resp. word swapping.
850 		 */
851 		unsigned int l = 0;
852 
853 		if (tx_buf)
854 			l = min(len, p->tx_fifo_size * 4);
855 		if (rx_buf)
856 			l = min(len, p->rx_fifo_size * 4);
857 
858 		if (bits <= 8) {
859 			if (l & 3)
860 				break;
861 			copy32 = copy_bswap32;
862 		} else if (bits <= 16) {
863 			if (l & 1)
864 				break;
865 			copy32 = copy_wswap32;
866 		} else {
867 			copy32 = copy_plain32;
868 		}
869 
870 		if (tx_buf)
871 			copy32(p->tx_dma_page, tx_buf, l / 4);
872 
873 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
874 		if (ret == -EAGAIN) {
875 			pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
876 				     dev_driver_string(&p->pdev->dev),
877 				     dev_name(&p->pdev->dev));
878 			break;
879 		}
880 		if (ret)
881 			return ret;
882 
883 		if (rx_buf) {
884 			copy32(rx_buf, p->rx_dma_page, l / 4);
885 			rx_buf += l;
886 		}
887 		if (tx_buf)
888 			tx_buf += l;
889 
890 		len -= l;
891 		if (!len)
892 			return 0;
893 	}
894 
895 	if (bits <= 8 && len > 15 && !(len & 3)) {
896 		bits = 32;
897 		swab = true;
898 	} else {
899 		swab = false;
900 	}
901 
902 	/* setup bytes per word and fifo read/write functions */
903 	if (bits <= 8) {
904 		bytes_per_word = 1;
905 		tx_fifo = sh_msiof_spi_write_fifo_8;
906 		rx_fifo = sh_msiof_spi_read_fifo_8;
907 	} else if (bits <= 16) {
908 		bytes_per_word = 2;
909 		if ((unsigned long)tx_buf & 0x01)
910 			tx_fifo = sh_msiof_spi_write_fifo_16u;
911 		else
912 			tx_fifo = sh_msiof_spi_write_fifo_16;
913 
914 		if ((unsigned long)rx_buf & 0x01)
915 			rx_fifo = sh_msiof_spi_read_fifo_16u;
916 		else
917 			rx_fifo = sh_msiof_spi_read_fifo_16;
918 	} else if (swab) {
919 		bytes_per_word = 4;
920 		if ((unsigned long)tx_buf & 0x03)
921 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
922 		else
923 			tx_fifo = sh_msiof_spi_write_fifo_s32;
924 
925 		if ((unsigned long)rx_buf & 0x03)
926 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
927 		else
928 			rx_fifo = sh_msiof_spi_read_fifo_s32;
929 	} else {
930 		bytes_per_word = 4;
931 		if ((unsigned long)tx_buf & 0x03)
932 			tx_fifo = sh_msiof_spi_write_fifo_32u;
933 		else
934 			tx_fifo = sh_msiof_spi_write_fifo_32;
935 
936 		if ((unsigned long)rx_buf & 0x03)
937 			rx_fifo = sh_msiof_spi_read_fifo_32u;
938 		else
939 			rx_fifo = sh_msiof_spi_read_fifo_32;
940 	}
941 
942 	/* transfer in fifo sized chunks */
943 	words = len / bytes_per_word;
944 
945 	while (words > 0) {
946 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
947 					   words, bits);
948 		if (n < 0)
949 			return n;
950 
951 		if (tx_buf)
952 			tx_buf += n * bytes_per_word;
953 		if (rx_buf)
954 			rx_buf += n * bytes_per_word;
955 		words -= n;
956 	}
957 
958 	return 0;
959 }
960 
961 static const struct sh_msiof_chipdata sh_data = {
962 	.tx_fifo_size = 64,
963 	.rx_fifo_size = 64,
964 	.master_flags = 0,
965 };
966 
967 static const struct sh_msiof_chipdata r8a779x_data = {
968 	.tx_fifo_size = 64,
969 	.rx_fifo_size = 64,
970 	.master_flags = SPI_MASTER_MUST_TX,
971 };
972 
973 static const struct of_device_id sh_msiof_match[] = {
974 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data },
975 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
976 	{ .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
977 	{ .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
978 	{ .compatible = "renesas,msiof-r8a7792",   .data = &r8a779x_data },
979 	{ .compatible = "renesas,msiof-r8a7793",   .data = &r8a779x_data },
980 	{ .compatible = "renesas,msiof-r8a7794",   .data = &r8a779x_data },
981 	{},
982 };
983 MODULE_DEVICE_TABLE(of, sh_msiof_match);
984 
985 #ifdef CONFIG_OF
986 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
987 {
988 	struct sh_msiof_spi_info *info;
989 	struct device_node *np = dev->of_node;
990 	u32 num_cs = 1;
991 
992 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
993 	if (!info)
994 		return NULL;
995 
996 	/* Parse the MSIOF properties */
997 	of_property_read_u32(np, "num-cs", &num_cs);
998 	of_property_read_u32(np, "renesas,tx-fifo-size",
999 					&info->tx_fifo_override);
1000 	of_property_read_u32(np, "renesas,rx-fifo-size",
1001 					&info->rx_fifo_override);
1002 	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1003 	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1004 
1005 	info->num_chipselect = num_cs;
1006 
1007 	return info;
1008 }
1009 #else
1010 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1011 {
1012 	return NULL;
1013 }
1014 #endif
1015 
1016 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1017 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1018 {
1019 	dma_cap_mask_t mask;
1020 	struct dma_chan *chan;
1021 	struct dma_slave_config cfg;
1022 	int ret;
1023 
1024 	dma_cap_zero(mask);
1025 	dma_cap_set(DMA_SLAVE, mask);
1026 
1027 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1028 				(void *)(unsigned long)id, dev,
1029 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1030 	if (!chan) {
1031 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1032 		return NULL;
1033 	}
1034 
1035 	memset(&cfg, 0, sizeof(cfg));
1036 	cfg.direction = dir;
1037 	if (dir == DMA_MEM_TO_DEV) {
1038 		cfg.dst_addr = port_addr;
1039 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1040 	} else {
1041 		cfg.src_addr = port_addr;
1042 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1043 	}
1044 
1045 	ret = dmaengine_slave_config(chan, &cfg);
1046 	if (ret) {
1047 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1048 		dma_release_channel(chan);
1049 		return NULL;
1050 	}
1051 
1052 	return chan;
1053 }
1054 
1055 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1056 {
1057 	struct platform_device *pdev = p->pdev;
1058 	struct device *dev = &pdev->dev;
1059 	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1060 	unsigned int dma_tx_id, dma_rx_id;
1061 	const struct resource *res;
1062 	struct spi_master *master;
1063 	struct device *tx_dev, *rx_dev;
1064 
1065 	if (dev->of_node) {
1066 		/* In the OF case we will get the slave IDs from the DT */
1067 		dma_tx_id = 0;
1068 		dma_rx_id = 0;
1069 	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1070 		dma_tx_id = info->dma_tx_id;
1071 		dma_rx_id = info->dma_rx_id;
1072 	} else {
1073 		/* The driver assumes no error */
1074 		return 0;
1075 	}
1076 
1077 	/* The DMA engine uses the second register set, if present */
1078 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1079 	if (!res)
1080 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1081 
1082 	master = p->master;
1083 	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1084 						   dma_tx_id,
1085 						   res->start + TFDR);
1086 	if (!master->dma_tx)
1087 		return -ENODEV;
1088 
1089 	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1090 						   dma_rx_id,
1091 						   res->start + RFDR);
1092 	if (!master->dma_rx)
1093 		goto free_tx_chan;
1094 
1095 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1096 	if (!p->tx_dma_page)
1097 		goto free_rx_chan;
1098 
1099 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1100 	if (!p->rx_dma_page)
1101 		goto free_tx_page;
1102 
1103 	tx_dev = master->dma_tx->device->dev;
1104 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1105 					DMA_TO_DEVICE);
1106 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1107 		goto free_rx_page;
1108 
1109 	rx_dev = master->dma_rx->device->dev;
1110 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1111 					DMA_FROM_DEVICE);
1112 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1113 		goto unmap_tx_page;
1114 
1115 	dev_info(dev, "DMA available");
1116 	return 0;
1117 
1118 unmap_tx_page:
1119 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1120 free_rx_page:
1121 	free_page((unsigned long)p->rx_dma_page);
1122 free_tx_page:
1123 	free_page((unsigned long)p->tx_dma_page);
1124 free_rx_chan:
1125 	dma_release_channel(master->dma_rx);
1126 free_tx_chan:
1127 	dma_release_channel(master->dma_tx);
1128 	master->dma_tx = NULL;
1129 	return -ENODEV;
1130 }
1131 
1132 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1133 {
1134 	struct spi_master *master = p->master;
1135 	struct device *dev;
1136 
1137 	if (!master->dma_tx)
1138 		return;
1139 
1140 	dev = &p->pdev->dev;
1141 	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1142 			 PAGE_SIZE, DMA_FROM_DEVICE);
1143 	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1144 			 PAGE_SIZE, DMA_TO_DEVICE);
1145 	free_page((unsigned long)p->rx_dma_page);
1146 	free_page((unsigned long)p->tx_dma_page);
1147 	dma_release_channel(master->dma_rx);
1148 	dma_release_channel(master->dma_tx);
1149 }
1150 
1151 static int sh_msiof_spi_probe(struct platform_device *pdev)
1152 {
1153 	struct resource	*r;
1154 	struct spi_master *master;
1155 	const struct of_device_id *of_id;
1156 	struct sh_msiof_spi_priv *p;
1157 	int i;
1158 	int ret;
1159 
1160 	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1161 	if (master == NULL) {
1162 		dev_err(&pdev->dev, "failed to allocate spi master\n");
1163 		return -ENOMEM;
1164 	}
1165 
1166 	p = spi_master_get_devdata(master);
1167 
1168 	platform_set_drvdata(pdev, p);
1169 	p->master = master;
1170 
1171 	of_id = of_match_device(sh_msiof_match, &pdev->dev);
1172 	if (of_id) {
1173 		p->chipdata = of_id->data;
1174 		p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1175 	} else {
1176 		p->chipdata = (const void *)pdev->id_entry->driver_data;
1177 		p->info = dev_get_platdata(&pdev->dev);
1178 	}
1179 
1180 	if (!p->info) {
1181 		dev_err(&pdev->dev, "failed to obtain device info\n");
1182 		ret = -ENXIO;
1183 		goto err1;
1184 	}
1185 
1186 	init_completion(&p->done);
1187 
1188 	p->clk = devm_clk_get(&pdev->dev, NULL);
1189 	if (IS_ERR(p->clk)) {
1190 		dev_err(&pdev->dev, "cannot get clock\n");
1191 		ret = PTR_ERR(p->clk);
1192 		goto err1;
1193 	}
1194 
1195 	i = platform_get_irq(pdev, 0);
1196 	if (i < 0) {
1197 		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1198 		ret = -ENOENT;
1199 		goto err1;
1200 	}
1201 
1202 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1203 	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1204 	if (IS_ERR(p->mapbase)) {
1205 		ret = PTR_ERR(p->mapbase);
1206 		goto err1;
1207 	}
1208 
1209 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1210 			       dev_name(&pdev->dev), p);
1211 	if (ret) {
1212 		dev_err(&pdev->dev, "unable to request irq\n");
1213 		goto err1;
1214 	}
1215 
1216 	p->pdev = pdev;
1217 	pm_runtime_enable(&pdev->dev);
1218 
1219 	/* Platform data may override FIFO sizes */
1220 	p->tx_fifo_size = p->chipdata->tx_fifo_size;
1221 	p->rx_fifo_size = p->chipdata->rx_fifo_size;
1222 	if (p->info->tx_fifo_override)
1223 		p->tx_fifo_size = p->info->tx_fifo_override;
1224 	if (p->info->rx_fifo_override)
1225 		p->rx_fifo_size = p->info->rx_fifo_override;
1226 
1227 	/* init master code */
1228 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1229 	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1230 	master->flags = p->chipdata->master_flags;
1231 	master->bus_num = pdev->id;
1232 	master->dev.of_node = pdev->dev.of_node;
1233 	master->num_chipselect = p->info->num_chipselect;
1234 	master->setup = sh_msiof_spi_setup;
1235 	master->prepare_message = sh_msiof_prepare_message;
1236 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1237 	master->auto_runtime_pm = true;
1238 	master->transfer_one = sh_msiof_transfer_one;
1239 
1240 	ret = sh_msiof_request_dma(p);
1241 	if (ret < 0)
1242 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1243 
1244 	ret = devm_spi_register_master(&pdev->dev, master);
1245 	if (ret < 0) {
1246 		dev_err(&pdev->dev, "spi_register_master error.\n");
1247 		goto err2;
1248 	}
1249 
1250 	return 0;
1251 
1252  err2:
1253 	sh_msiof_release_dma(p);
1254 	pm_runtime_disable(&pdev->dev);
1255  err1:
1256 	spi_master_put(master);
1257 	return ret;
1258 }
1259 
1260 static int sh_msiof_spi_remove(struct platform_device *pdev)
1261 {
1262 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1263 
1264 	sh_msiof_release_dma(p);
1265 	pm_runtime_disable(&pdev->dev);
1266 	return 0;
1267 }
1268 
1269 static const struct platform_device_id spi_driver_ids[] = {
1270 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1271 	{},
1272 };
1273 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1274 
1275 static struct platform_driver sh_msiof_spi_drv = {
1276 	.probe		= sh_msiof_spi_probe,
1277 	.remove		= sh_msiof_spi_remove,
1278 	.id_table	= spi_driver_ids,
1279 	.driver		= {
1280 		.name		= "spi_sh_msiof",
1281 		.of_match_table = of_match_ptr(sh_msiof_match),
1282 	},
1283 };
1284 module_platform_driver(sh_msiof_spi_drv);
1285 
1286 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1287 MODULE_AUTHOR("Magnus Damm");
1288 MODULE_LICENSE("GPL v2");
1289 MODULE_ALIAS("platform:spi_sh_msiof");
1290