1 /* 2 * SuperH MSIOF SPI Master Interface 3 * 4 * Copyright (c) 2009 Magnus Damm 5 * Copyright (C) 2014 Glider bvba 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 */ 12 13 #include <linux/bitmap.h> 14 #include <linux/clk.h> 15 #include <linux/completion.h> 16 #include <linux/delay.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/dmaengine.h> 19 #include <linux/err.h> 20 #include <linux/gpio.h> 21 #include <linux/interrupt.h> 22 #include <linux/io.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/of_device.h> 27 #include <linux/platform_device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/sh_dma.h> 30 31 #include <linux/spi/sh_msiof.h> 32 #include <linux/spi/spi.h> 33 34 #include <asm/unaligned.h> 35 36 37 struct sh_msiof_chipdata { 38 u16 tx_fifo_size; 39 u16 rx_fifo_size; 40 u16 master_flags; 41 }; 42 43 struct sh_msiof_spi_priv { 44 struct spi_master *master; 45 void __iomem *mapbase; 46 struct clk *clk; 47 struct platform_device *pdev; 48 struct sh_msiof_spi_info *info; 49 struct completion done; 50 unsigned int tx_fifo_size; 51 unsigned int rx_fifo_size; 52 void *tx_dma_page; 53 void *rx_dma_page; 54 dma_addr_t tx_dma_addr; 55 dma_addr_t rx_dma_addr; 56 }; 57 58 #define TMDR1 0x00 /* Transmit Mode Register 1 */ 59 #define TMDR2 0x04 /* Transmit Mode Register 2 */ 60 #define TMDR3 0x08 /* Transmit Mode Register 3 */ 61 #define RMDR1 0x10 /* Receive Mode Register 1 */ 62 #define RMDR2 0x14 /* Receive Mode Register 2 */ 63 #define RMDR3 0x18 /* Receive Mode Register 3 */ 64 #define TSCR 0x20 /* Transmit Clock Select Register */ 65 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */ 66 #define CTR 0x28 /* Control Register */ 67 #define FCTR 0x30 /* FIFO Control Register */ 68 #define STR 0x40 /* Status Register */ 69 #define IER 0x44 /* Interrupt Enable Register */ 70 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */ 71 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */ 72 #define TFDR 0x50 /* Transmit FIFO Data Register */ 73 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */ 74 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */ 75 #define RFDR 0x60 /* Receive FIFO Data Register */ 76 77 /* TMDR1 and RMDR1 */ 78 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */ 79 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */ 80 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */ 81 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */ 82 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */ 83 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */ 84 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */ 85 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */ 86 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */ 87 #define MDR1_FLD_SHIFT 2 88 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */ 89 /* TMDR1 */ 90 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */ 91 92 /* TMDR2 and RMDR2 */ 93 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */ 94 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ 95 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */ 96 97 /* TSCR and RSCR */ 98 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */ 99 #define SCR_BRPS(i) (((i) - 1) << 8) 100 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */ 101 #define SCR_BRDV_DIV_2 0x0000 102 #define SCR_BRDV_DIV_4 0x0001 103 #define SCR_BRDV_DIV_8 0x0002 104 #define SCR_BRDV_DIV_16 0x0003 105 #define SCR_BRDV_DIV_32 0x0004 106 #define SCR_BRDV_DIV_1 0x0007 107 108 /* CTR */ 109 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */ 110 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */ 111 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */ 112 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */ 113 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */ 114 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */ 115 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */ 116 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */ 117 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */ 118 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */ 119 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */ 120 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */ 121 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */ 122 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */ 123 #define CTR_TXE 0x00000200 /* Transmit Enable */ 124 #define CTR_RXE 0x00000100 /* Receive Enable */ 125 126 /* FCTR */ 127 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */ 128 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */ 129 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */ 130 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */ 131 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */ 132 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */ 133 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */ 134 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */ 135 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */ 136 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */ 137 #define FCTR_TFUA_SHIFT 20 138 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT) 139 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */ 140 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */ 141 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */ 142 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */ 143 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */ 144 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */ 145 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */ 146 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */ 147 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */ 148 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */ 149 #define FCTR_RFUA_SHIFT 4 150 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT) 151 152 /* STR */ 153 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */ 154 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */ 155 #define STR_TEOF 0x00800000 /* Frame Transmission End */ 156 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */ 157 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */ 158 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */ 159 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */ 160 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */ 161 #define STR_REOF 0x00000080 /* Frame Reception End */ 162 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */ 163 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */ 164 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */ 165 166 /* IER */ 167 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */ 168 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */ 169 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */ 170 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */ 171 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */ 172 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */ 173 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */ 174 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */ 175 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */ 176 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */ 177 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */ 178 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */ 179 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */ 180 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */ 181 182 183 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) 184 { 185 switch (reg_offs) { 186 case TSCR: 187 case RSCR: 188 return ioread16(p->mapbase + reg_offs); 189 default: 190 return ioread32(p->mapbase + reg_offs); 191 } 192 } 193 194 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, 195 u32 value) 196 { 197 switch (reg_offs) { 198 case TSCR: 199 case RSCR: 200 iowrite16(value, p->mapbase + reg_offs); 201 break; 202 default: 203 iowrite32(value, p->mapbase + reg_offs); 204 break; 205 } 206 } 207 208 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, 209 u32 clr, u32 set) 210 { 211 u32 mask = clr | set; 212 u32 data; 213 int k; 214 215 data = sh_msiof_read(p, CTR); 216 data &= ~clr; 217 data |= set; 218 sh_msiof_write(p, CTR, data); 219 220 for (k = 100; k > 0; k--) { 221 if ((sh_msiof_read(p, CTR) & mask) == set) 222 break; 223 224 udelay(10); 225 } 226 227 return k > 0 ? 0 : -ETIMEDOUT; 228 } 229 230 static irqreturn_t sh_msiof_spi_irq(int irq, void *data) 231 { 232 struct sh_msiof_spi_priv *p = data; 233 234 /* just disable the interrupt and wake up */ 235 sh_msiof_write(p, IER, 0); 236 complete(&p->done); 237 238 return IRQ_HANDLED; 239 } 240 241 static struct { 242 unsigned short div; 243 unsigned short brdv; 244 } const sh_msiof_spi_div_table[] = { 245 { 1, SCR_BRDV_DIV_1 }, 246 { 2, SCR_BRDV_DIV_2 }, 247 { 4, SCR_BRDV_DIV_4 }, 248 { 8, SCR_BRDV_DIV_8 }, 249 { 16, SCR_BRDV_DIV_16 }, 250 { 32, SCR_BRDV_DIV_32 }, 251 }; 252 253 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, 254 unsigned long parent_rate, u32 spi_hz) 255 { 256 unsigned long div = 1024; 257 u32 brps, scr; 258 size_t k; 259 260 if (!WARN_ON(!spi_hz || !parent_rate)) 261 div = DIV_ROUND_UP(parent_rate, spi_hz); 262 263 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) { 264 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div); 265 if (brps <= 32) /* max of brdv is 32 */ 266 break; 267 } 268 269 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1); 270 271 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps); 272 sh_msiof_write(p, TSCR, scr); 273 if (!(p->master->flags & SPI_MASTER_MUST_TX)) 274 sh_msiof_write(p, RSCR, scr); 275 } 276 277 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) 278 { 279 /* 280 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl 281 * b'000 : 0 282 * b'001 : 100 283 * b'010 : 200 284 * b'011 (SYNCDL only) : 300 285 * b'101 : 50 286 * b'110 : 150 287 */ 288 if (dtdl_or_syncdl % 100) 289 return dtdl_or_syncdl / 100 + 5; 290 else 291 return dtdl_or_syncdl / 100; 292 } 293 294 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) 295 { 296 u32 val; 297 298 if (!p->info) 299 return 0; 300 301 /* check if DTDL and SYNCDL is allowed value */ 302 if (p->info->dtdl > 200 || p->info->syncdl > 300) { 303 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); 304 return 0; 305 } 306 307 /* check if the sum of DTDL and SYNCDL becomes an integer value */ 308 if ((p->info->dtdl + p->info->syncdl) % 100) { 309 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); 310 return 0; 311 } 312 313 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT; 314 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT; 315 316 return val; 317 } 318 319 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, 320 u32 cpol, u32 cpha, 321 u32 tx_hi_z, u32 lsb_first, u32 cs_high) 322 { 323 u32 tmp; 324 int edge; 325 326 /* 327 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG 328 * 0 0 10 10 1 1 329 * 0 1 10 10 0 0 330 * 1 0 11 11 0 0 331 * 1 1 11 11 1 1 332 */ 333 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP; 334 tmp |= !cs_high << MDR1_SYNCAC_SHIFT; 335 tmp |= lsb_first << MDR1_BITLSB_SHIFT; 336 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); 337 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON); 338 if (p->master->flags & SPI_MASTER_MUST_TX) { 339 /* These bits are reserved if RX needs TX */ 340 tmp &= ~0x0000ffff; 341 } 342 sh_msiof_write(p, RMDR1, tmp); 343 344 tmp = 0; 345 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT; 346 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT; 347 348 edge = cpol ^ !cpha; 349 350 tmp |= edge << CTR_TEDG_SHIFT; 351 tmp |= edge << CTR_REDG_SHIFT; 352 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW; 353 sh_msiof_write(p, CTR, tmp); 354 } 355 356 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, 357 const void *tx_buf, void *rx_buf, 358 u32 bits, u32 words) 359 { 360 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words); 361 362 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX)) 363 sh_msiof_write(p, TMDR2, dr2); 364 else 365 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1); 366 367 if (rx_buf) 368 sh_msiof_write(p, RMDR2, dr2); 369 } 370 371 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) 372 { 373 sh_msiof_write(p, STR, sh_msiof_read(p, STR)); 374 } 375 376 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, 377 const void *tx_buf, int words, int fs) 378 { 379 const u8 *buf_8 = tx_buf; 380 int k; 381 382 for (k = 0; k < words; k++) 383 sh_msiof_write(p, TFDR, buf_8[k] << fs); 384 } 385 386 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, 387 const void *tx_buf, int words, int fs) 388 { 389 const u16 *buf_16 = tx_buf; 390 int k; 391 392 for (k = 0; k < words; k++) 393 sh_msiof_write(p, TFDR, buf_16[k] << fs); 394 } 395 396 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, 397 const void *tx_buf, int words, int fs) 398 { 399 const u16 *buf_16 = tx_buf; 400 int k; 401 402 for (k = 0; k < words; k++) 403 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs); 404 } 405 406 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, 407 const void *tx_buf, int words, int fs) 408 { 409 const u32 *buf_32 = tx_buf; 410 int k; 411 412 for (k = 0; k < words; k++) 413 sh_msiof_write(p, TFDR, buf_32[k] << fs); 414 } 415 416 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, 417 const void *tx_buf, int words, int fs) 418 { 419 const u32 *buf_32 = tx_buf; 420 int k; 421 422 for (k = 0; k < words; k++) 423 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs); 424 } 425 426 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, 427 const void *tx_buf, int words, int fs) 428 { 429 const u32 *buf_32 = tx_buf; 430 int k; 431 432 for (k = 0; k < words; k++) 433 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs)); 434 } 435 436 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, 437 const void *tx_buf, int words, int fs) 438 { 439 const u32 *buf_32 = tx_buf; 440 int k; 441 442 for (k = 0; k < words; k++) 443 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs)); 444 } 445 446 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, 447 void *rx_buf, int words, int fs) 448 { 449 u8 *buf_8 = rx_buf; 450 int k; 451 452 for (k = 0; k < words; k++) 453 buf_8[k] = sh_msiof_read(p, RFDR) >> fs; 454 } 455 456 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, 457 void *rx_buf, int words, int fs) 458 { 459 u16 *buf_16 = rx_buf; 460 int k; 461 462 for (k = 0; k < words; k++) 463 buf_16[k] = sh_msiof_read(p, RFDR) >> fs; 464 } 465 466 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, 467 void *rx_buf, int words, int fs) 468 { 469 u16 *buf_16 = rx_buf; 470 int k; 471 472 for (k = 0; k < words; k++) 473 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]); 474 } 475 476 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, 477 void *rx_buf, int words, int fs) 478 { 479 u32 *buf_32 = rx_buf; 480 int k; 481 482 for (k = 0; k < words; k++) 483 buf_32[k] = sh_msiof_read(p, RFDR) >> fs; 484 } 485 486 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, 487 void *rx_buf, int words, int fs) 488 { 489 u32 *buf_32 = rx_buf; 490 int k; 491 492 for (k = 0; k < words; k++) 493 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]); 494 } 495 496 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, 497 void *rx_buf, int words, int fs) 498 { 499 u32 *buf_32 = rx_buf; 500 int k; 501 502 for (k = 0; k < words; k++) 503 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs); 504 } 505 506 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, 507 void *rx_buf, int words, int fs) 508 { 509 u32 *buf_32 = rx_buf; 510 int k; 511 512 for (k = 0; k < words; k++) 513 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]); 514 } 515 516 static int sh_msiof_spi_setup(struct spi_device *spi) 517 { 518 struct device_node *np = spi->master->dev.of_node; 519 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master); 520 521 pm_runtime_get_sync(&p->pdev->dev); 522 523 if (!np) { 524 /* 525 * Use spi->controller_data for CS (same strategy as spi_gpio), 526 * if any. otherwise let HW control CS 527 */ 528 spi->cs_gpio = (uintptr_t)spi->controller_data; 529 } 530 531 /* Configure pins before deasserting CS */ 532 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL), 533 !!(spi->mode & SPI_CPHA), 534 !!(spi->mode & SPI_3WIRE), 535 !!(spi->mode & SPI_LSB_FIRST), 536 !!(spi->mode & SPI_CS_HIGH)); 537 538 if (spi->cs_gpio >= 0) 539 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH)); 540 541 542 pm_runtime_put(&p->pdev->dev); 543 544 return 0; 545 } 546 547 static int sh_msiof_prepare_message(struct spi_master *master, 548 struct spi_message *msg) 549 { 550 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 551 const struct spi_device *spi = msg->spi; 552 553 /* Configure pins before asserting CS */ 554 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL), 555 !!(spi->mode & SPI_CPHA), 556 !!(spi->mode & SPI_3WIRE), 557 !!(spi->mode & SPI_LSB_FIRST), 558 !!(spi->mode & SPI_CS_HIGH)); 559 return 0; 560 } 561 562 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) 563 { 564 int ret; 565 566 /* setup clock and rx/tx signals */ 567 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE); 568 if (rx_buf && !ret) 569 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE); 570 if (!ret) 571 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE); 572 573 /* start by setting frame bit */ 574 if (!ret) 575 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE); 576 577 return ret; 578 } 579 580 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) 581 { 582 int ret; 583 584 /* shut down frame, rx/tx and clock signals */ 585 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0); 586 if (!ret) 587 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0); 588 if (rx_buf && !ret) 589 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0); 590 if (!ret) 591 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0); 592 593 return ret; 594 } 595 596 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, 597 void (*tx_fifo)(struct sh_msiof_spi_priv *, 598 const void *, int, int), 599 void (*rx_fifo)(struct sh_msiof_spi_priv *, 600 void *, int, int), 601 const void *tx_buf, void *rx_buf, 602 int words, int bits) 603 { 604 int fifo_shift; 605 int ret; 606 607 /* limit maximum word transfer to rx/tx fifo size */ 608 if (tx_buf) 609 words = min_t(int, words, p->tx_fifo_size); 610 if (rx_buf) 611 words = min_t(int, words, p->rx_fifo_size); 612 613 /* the fifo contents need shifting */ 614 fifo_shift = 32 - bits; 615 616 /* default FIFO watermarks for PIO */ 617 sh_msiof_write(p, FCTR, 0); 618 619 /* setup msiof transfer mode registers */ 620 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); 621 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE); 622 623 /* write tx fifo */ 624 if (tx_buf) 625 tx_fifo(p, tx_buf, words, fifo_shift); 626 627 reinit_completion(&p->done); 628 629 ret = sh_msiof_spi_start(p, rx_buf); 630 if (ret) { 631 dev_err(&p->pdev->dev, "failed to start hardware\n"); 632 goto stop_ier; 633 } 634 635 /* wait for tx fifo to be emptied / rx fifo to be filled */ 636 if (!wait_for_completion_timeout(&p->done, HZ)) { 637 dev_err(&p->pdev->dev, "PIO timeout\n"); 638 ret = -ETIMEDOUT; 639 goto stop_reset; 640 } 641 642 /* read rx fifo */ 643 if (rx_buf) 644 rx_fifo(p, rx_buf, words, fifo_shift); 645 646 /* clear status bits */ 647 sh_msiof_reset_str(p); 648 649 ret = sh_msiof_spi_stop(p, rx_buf); 650 if (ret) { 651 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 652 return ret; 653 } 654 655 return words; 656 657 stop_reset: 658 sh_msiof_reset_str(p); 659 sh_msiof_spi_stop(p, rx_buf); 660 stop_ier: 661 sh_msiof_write(p, IER, 0); 662 return ret; 663 } 664 665 static void sh_msiof_dma_complete(void *arg) 666 { 667 struct sh_msiof_spi_priv *p = arg; 668 669 sh_msiof_write(p, IER, 0); 670 complete(&p->done); 671 } 672 673 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, 674 void *rx, unsigned int len) 675 { 676 u32 ier_bits = 0; 677 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 678 dma_cookie_t cookie; 679 int ret; 680 681 /* First prepare and submit the DMA request(s), as this may fail */ 682 if (rx) { 683 ier_bits |= IER_RDREQE | IER_RDMAE; 684 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx, 685 p->rx_dma_addr, len, DMA_FROM_DEVICE, 686 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 687 if (!desc_rx) 688 return -EAGAIN; 689 690 desc_rx->callback = sh_msiof_dma_complete; 691 desc_rx->callback_param = p; 692 cookie = dmaengine_submit(desc_rx); 693 if (dma_submit_error(cookie)) 694 return cookie; 695 } 696 697 if (tx) { 698 ier_bits |= IER_TDREQE | IER_TDMAE; 699 dma_sync_single_for_device(p->master->dma_tx->device->dev, 700 p->tx_dma_addr, len, DMA_TO_DEVICE); 701 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx, 702 p->tx_dma_addr, len, DMA_TO_DEVICE, 703 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 704 if (!desc_tx) { 705 ret = -EAGAIN; 706 goto no_dma_tx; 707 } 708 709 if (rx) { 710 /* No callback */ 711 desc_tx->callback = NULL; 712 } else { 713 desc_tx->callback = sh_msiof_dma_complete; 714 desc_tx->callback_param = p; 715 } 716 cookie = dmaengine_submit(desc_tx); 717 if (dma_submit_error(cookie)) { 718 ret = cookie; 719 goto no_dma_tx; 720 } 721 } 722 723 /* 1 stage FIFO watermarks for DMA */ 724 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1); 725 726 /* setup msiof transfer mode registers (32-bit words) */ 727 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); 728 729 sh_msiof_write(p, IER, ier_bits); 730 731 reinit_completion(&p->done); 732 733 /* Now start DMA */ 734 if (rx) 735 dma_async_issue_pending(p->master->dma_rx); 736 if (tx) 737 dma_async_issue_pending(p->master->dma_tx); 738 739 ret = sh_msiof_spi_start(p, rx); 740 if (ret) { 741 dev_err(&p->pdev->dev, "failed to start hardware\n"); 742 goto stop_dma; 743 } 744 745 /* wait for tx fifo to be emptied / rx fifo to be filled */ 746 if (!wait_for_completion_timeout(&p->done, HZ)) { 747 dev_err(&p->pdev->dev, "DMA timeout\n"); 748 ret = -ETIMEDOUT; 749 goto stop_reset; 750 } 751 752 /* clear status bits */ 753 sh_msiof_reset_str(p); 754 755 ret = sh_msiof_spi_stop(p, rx); 756 if (ret) { 757 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 758 return ret; 759 } 760 761 if (rx) 762 dma_sync_single_for_cpu(p->master->dma_rx->device->dev, 763 p->rx_dma_addr, len, 764 DMA_FROM_DEVICE); 765 766 return 0; 767 768 stop_reset: 769 sh_msiof_reset_str(p); 770 sh_msiof_spi_stop(p, rx); 771 stop_dma: 772 if (tx) 773 dmaengine_terminate_all(p->master->dma_tx); 774 no_dma_tx: 775 if (rx) 776 dmaengine_terminate_all(p->master->dma_rx); 777 sh_msiof_write(p, IER, 0); 778 return ret; 779 } 780 781 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) 782 { 783 /* src or dst can be unaligned, but not both */ 784 if ((unsigned long)src & 3) { 785 while (words--) { 786 *dst++ = swab32(get_unaligned(src)); 787 src++; 788 } 789 } else if ((unsigned long)dst & 3) { 790 while (words--) { 791 put_unaligned(swab32(*src++), dst); 792 dst++; 793 } 794 } else { 795 while (words--) 796 *dst++ = swab32(*src++); 797 } 798 } 799 800 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) 801 { 802 /* src or dst can be unaligned, but not both */ 803 if ((unsigned long)src & 3) { 804 while (words--) { 805 *dst++ = swahw32(get_unaligned(src)); 806 src++; 807 } 808 } else if ((unsigned long)dst & 3) { 809 while (words--) { 810 put_unaligned(swahw32(*src++), dst); 811 dst++; 812 } 813 } else { 814 while (words--) 815 *dst++ = swahw32(*src++); 816 } 817 } 818 819 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) 820 { 821 memcpy(dst, src, words * 4); 822 } 823 824 static int sh_msiof_transfer_one(struct spi_master *master, 825 struct spi_device *spi, 826 struct spi_transfer *t) 827 { 828 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 829 void (*copy32)(u32 *, const u32 *, unsigned int); 830 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); 831 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); 832 const void *tx_buf = t->tx_buf; 833 void *rx_buf = t->rx_buf; 834 unsigned int len = t->len; 835 unsigned int bits = t->bits_per_word; 836 unsigned int bytes_per_word; 837 unsigned int words; 838 int n; 839 bool swab; 840 int ret; 841 842 /* setup clocks (clock already enabled in chipselect()) */ 843 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz); 844 845 while (master->dma_tx && len > 15) { 846 /* 847 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit 848 * words, with byte resp. word swapping. 849 */ 850 unsigned int l = 0; 851 852 if (tx_buf) 853 l = min(len, p->tx_fifo_size * 4); 854 if (rx_buf) 855 l = min(len, p->rx_fifo_size * 4); 856 857 if (bits <= 8) { 858 if (l & 3) 859 break; 860 copy32 = copy_bswap32; 861 } else if (bits <= 16) { 862 if (l & 1) 863 break; 864 copy32 = copy_wswap32; 865 } else { 866 copy32 = copy_plain32; 867 } 868 869 if (tx_buf) 870 copy32(p->tx_dma_page, tx_buf, l / 4); 871 872 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); 873 if (ret == -EAGAIN) { 874 pr_warn_once("%s %s: DMA not available, falling back to PIO\n", 875 dev_driver_string(&p->pdev->dev), 876 dev_name(&p->pdev->dev)); 877 break; 878 } 879 if (ret) 880 return ret; 881 882 if (rx_buf) { 883 copy32(rx_buf, p->rx_dma_page, l / 4); 884 rx_buf += l; 885 } 886 if (tx_buf) 887 tx_buf += l; 888 889 len -= l; 890 if (!len) 891 return 0; 892 } 893 894 if (bits <= 8 && len > 15 && !(len & 3)) { 895 bits = 32; 896 swab = true; 897 } else { 898 swab = false; 899 } 900 901 /* setup bytes per word and fifo read/write functions */ 902 if (bits <= 8) { 903 bytes_per_word = 1; 904 tx_fifo = sh_msiof_spi_write_fifo_8; 905 rx_fifo = sh_msiof_spi_read_fifo_8; 906 } else if (bits <= 16) { 907 bytes_per_word = 2; 908 if ((unsigned long)tx_buf & 0x01) 909 tx_fifo = sh_msiof_spi_write_fifo_16u; 910 else 911 tx_fifo = sh_msiof_spi_write_fifo_16; 912 913 if ((unsigned long)rx_buf & 0x01) 914 rx_fifo = sh_msiof_spi_read_fifo_16u; 915 else 916 rx_fifo = sh_msiof_spi_read_fifo_16; 917 } else if (swab) { 918 bytes_per_word = 4; 919 if ((unsigned long)tx_buf & 0x03) 920 tx_fifo = sh_msiof_spi_write_fifo_s32u; 921 else 922 tx_fifo = sh_msiof_spi_write_fifo_s32; 923 924 if ((unsigned long)rx_buf & 0x03) 925 rx_fifo = sh_msiof_spi_read_fifo_s32u; 926 else 927 rx_fifo = sh_msiof_spi_read_fifo_s32; 928 } else { 929 bytes_per_word = 4; 930 if ((unsigned long)tx_buf & 0x03) 931 tx_fifo = sh_msiof_spi_write_fifo_32u; 932 else 933 tx_fifo = sh_msiof_spi_write_fifo_32; 934 935 if ((unsigned long)rx_buf & 0x03) 936 rx_fifo = sh_msiof_spi_read_fifo_32u; 937 else 938 rx_fifo = sh_msiof_spi_read_fifo_32; 939 } 940 941 /* transfer in fifo sized chunks */ 942 words = len / bytes_per_word; 943 944 while (words > 0) { 945 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, 946 words, bits); 947 if (n < 0) 948 return n; 949 950 if (tx_buf) 951 tx_buf += n * bytes_per_word; 952 if (rx_buf) 953 rx_buf += n * bytes_per_word; 954 words -= n; 955 } 956 957 return 0; 958 } 959 960 static const struct sh_msiof_chipdata sh_data = { 961 .tx_fifo_size = 64, 962 .rx_fifo_size = 64, 963 .master_flags = 0, 964 }; 965 966 static const struct sh_msiof_chipdata r8a779x_data = { 967 .tx_fifo_size = 64, 968 .rx_fifo_size = 64, 969 .master_flags = SPI_MASTER_MUST_TX, 970 }; 971 972 static const struct of_device_id sh_msiof_match[] = { 973 { .compatible = "renesas,sh-msiof", .data = &sh_data }, 974 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, 975 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data }, 976 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data }, 977 { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data }, 978 { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data }, 979 { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data }, 980 {}, 981 }; 982 MODULE_DEVICE_TABLE(of, sh_msiof_match); 983 984 #ifdef CONFIG_OF 985 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 986 { 987 struct sh_msiof_spi_info *info; 988 struct device_node *np = dev->of_node; 989 u32 num_cs = 1; 990 991 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); 992 if (!info) 993 return NULL; 994 995 /* Parse the MSIOF properties */ 996 of_property_read_u32(np, "num-cs", &num_cs); 997 of_property_read_u32(np, "renesas,tx-fifo-size", 998 &info->tx_fifo_override); 999 of_property_read_u32(np, "renesas,rx-fifo-size", 1000 &info->rx_fifo_override); 1001 of_property_read_u32(np, "renesas,dtdl", &info->dtdl); 1002 of_property_read_u32(np, "renesas,syncdl", &info->syncdl); 1003 1004 info->num_chipselect = num_cs; 1005 1006 return info; 1007 } 1008 #else 1009 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 1010 { 1011 return NULL; 1012 } 1013 #endif 1014 1015 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, 1016 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) 1017 { 1018 dma_cap_mask_t mask; 1019 struct dma_chan *chan; 1020 struct dma_slave_config cfg; 1021 int ret; 1022 1023 dma_cap_zero(mask); 1024 dma_cap_set(DMA_SLAVE, mask); 1025 1026 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1027 (void *)(unsigned long)id, dev, 1028 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1029 if (!chan) { 1030 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1031 return NULL; 1032 } 1033 1034 memset(&cfg, 0, sizeof(cfg)); 1035 cfg.direction = dir; 1036 if (dir == DMA_MEM_TO_DEV) { 1037 cfg.dst_addr = port_addr; 1038 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1039 } else { 1040 cfg.src_addr = port_addr; 1041 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1042 } 1043 1044 ret = dmaengine_slave_config(chan, &cfg); 1045 if (ret) { 1046 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1047 dma_release_channel(chan); 1048 return NULL; 1049 } 1050 1051 return chan; 1052 } 1053 1054 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) 1055 { 1056 struct platform_device *pdev = p->pdev; 1057 struct device *dev = &pdev->dev; 1058 const struct sh_msiof_spi_info *info = dev_get_platdata(dev); 1059 unsigned int dma_tx_id, dma_rx_id; 1060 const struct resource *res; 1061 struct spi_master *master; 1062 struct device *tx_dev, *rx_dev; 1063 1064 if (dev->of_node) { 1065 /* In the OF case we will get the slave IDs from the DT */ 1066 dma_tx_id = 0; 1067 dma_rx_id = 0; 1068 } else if (info && info->dma_tx_id && info->dma_rx_id) { 1069 dma_tx_id = info->dma_tx_id; 1070 dma_rx_id = info->dma_rx_id; 1071 } else { 1072 /* The driver assumes no error */ 1073 return 0; 1074 } 1075 1076 /* The DMA engine uses the second register set, if present */ 1077 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1078 if (!res) 1079 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1080 1081 master = p->master; 1082 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, 1083 dma_tx_id, 1084 res->start + TFDR); 1085 if (!master->dma_tx) 1086 return -ENODEV; 1087 1088 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, 1089 dma_rx_id, 1090 res->start + RFDR); 1091 if (!master->dma_rx) 1092 goto free_tx_chan; 1093 1094 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1095 if (!p->tx_dma_page) 1096 goto free_rx_chan; 1097 1098 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1099 if (!p->rx_dma_page) 1100 goto free_tx_page; 1101 1102 tx_dev = master->dma_tx->device->dev; 1103 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, 1104 DMA_TO_DEVICE); 1105 if (dma_mapping_error(tx_dev, p->tx_dma_addr)) 1106 goto free_rx_page; 1107 1108 rx_dev = master->dma_rx->device->dev; 1109 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, 1110 DMA_FROM_DEVICE); 1111 if (dma_mapping_error(rx_dev, p->rx_dma_addr)) 1112 goto unmap_tx_page; 1113 1114 dev_info(dev, "DMA available"); 1115 return 0; 1116 1117 unmap_tx_page: 1118 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); 1119 free_rx_page: 1120 free_page((unsigned long)p->rx_dma_page); 1121 free_tx_page: 1122 free_page((unsigned long)p->tx_dma_page); 1123 free_rx_chan: 1124 dma_release_channel(master->dma_rx); 1125 free_tx_chan: 1126 dma_release_channel(master->dma_tx); 1127 master->dma_tx = NULL; 1128 return -ENODEV; 1129 } 1130 1131 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) 1132 { 1133 struct spi_master *master = p->master; 1134 struct device *dev; 1135 1136 if (!master->dma_tx) 1137 return; 1138 1139 dev = &p->pdev->dev; 1140 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr, 1141 PAGE_SIZE, DMA_FROM_DEVICE); 1142 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr, 1143 PAGE_SIZE, DMA_TO_DEVICE); 1144 free_page((unsigned long)p->rx_dma_page); 1145 free_page((unsigned long)p->tx_dma_page); 1146 dma_release_channel(master->dma_rx); 1147 dma_release_channel(master->dma_tx); 1148 } 1149 1150 static int sh_msiof_spi_probe(struct platform_device *pdev) 1151 { 1152 struct resource *r; 1153 struct spi_master *master; 1154 const struct sh_msiof_chipdata *chipdata; 1155 const struct of_device_id *of_id; 1156 struct sh_msiof_spi_priv *p; 1157 int i; 1158 int ret; 1159 1160 master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv)); 1161 if (master == NULL) { 1162 dev_err(&pdev->dev, "failed to allocate spi master\n"); 1163 return -ENOMEM; 1164 } 1165 1166 p = spi_master_get_devdata(master); 1167 1168 platform_set_drvdata(pdev, p); 1169 p->master = master; 1170 1171 of_id = of_match_device(sh_msiof_match, &pdev->dev); 1172 if (of_id) { 1173 chipdata = of_id->data; 1174 p->info = sh_msiof_spi_parse_dt(&pdev->dev); 1175 } else { 1176 chipdata = (const void *)pdev->id_entry->driver_data; 1177 p->info = dev_get_platdata(&pdev->dev); 1178 } 1179 1180 if (!p->info) { 1181 dev_err(&pdev->dev, "failed to obtain device info\n"); 1182 ret = -ENXIO; 1183 goto err1; 1184 } 1185 1186 init_completion(&p->done); 1187 1188 p->clk = devm_clk_get(&pdev->dev, NULL); 1189 if (IS_ERR(p->clk)) { 1190 dev_err(&pdev->dev, "cannot get clock\n"); 1191 ret = PTR_ERR(p->clk); 1192 goto err1; 1193 } 1194 1195 i = platform_get_irq(pdev, 0); 1196 if (i < 0) { 1197 dev_err(&pdev->dev, "cannot get platform IRQ\n"); 1198 ret = -ENOENT; 1199 goto err1; 1200 } 1201 1202 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1203 p->mapbase = devm_ioremap_resource(&pdev->dev, r); 1204 if (IS_ERR(p->mapbase)) { 1205 ret = PTR_ERR(p->mapbase); 1206 goto err1; 1207 } 1208 1209 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, 1210 dev_name(&pdev->dev), p); 1211 if (ret) { 1212 dev_err(&pdev->dev, "unable to request irq\n"); 1213 goto err1; 1214 } 1215 1216 p->pdev = pdev; 1217 pm_runtime_enable(&pdev->dev); 1218 1219 /* Platform data may override FIFO sizes */ 1220 p->tx_fifo_size = chipdata->tx_fifo_size; 1221 p->rx_fifo_size = chipdata->rx_fifo_size; 1222 if (p->info->tx_fifo_override) 1223 p->tx_fifo_size = p->info->tx_fifo_override; 1224 if (p->info->rx_fifo_override) 1225 p->rx_fifo_size = p->info->rx_fifo_override; 1226 1227 /* init master code */ 1228 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1229 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; 1230 master->flags = chipdata->master_flags; 1231 master->bus_num = pdev->id; 1232 master->dev.of_node = pdev->dev.of_node; 1233 master->num_chipselect = p->info->num_chipselect; 1234 master->setup = sh_msiof_spi_setup; 1235 master->prepare_message = sh_msiof_prepare_message; 1236 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32); 1237 master->auto_runtime_pm = true; 1238 master->transfer_one = sh_msiof_transfer_one; 1239 1240 ret = sh_msiof_request_dma(p); 1241 if (ret < 0) 1242 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1243 1244 ret = devm_spi_register_master(&pdev->dev, master); 1245 if (ret < 0) { 1246 dev_err(&pdev->dev, "spi_register_master error.\n"); 1247 goto err2; 1248 } 1249 1250 return 0; 1251 1252 err2: 1253 sh_msiof_release_dma(p); 1254 pm_runtime_disable(&pdev->dev); 1255 err1: 1256 spi_master_put(master); 1257 return ret; 1258 } 1259 1260 static int sh_msiof_spi_remove(struct platform_device *pdev) 1261 { 1262 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); 1263 1264 sh_msiof_release_dma(p); 1265 pm_runtime_disable(&pdev->dev); 1266 return 0; 1267 } 1268 1269 static const struct platform_device_id spi_driver_ids[] = { 1270 { "spi_sh_msiof", (kernel_ulong_t)&sh_data }, 1271 {}, 1272 }; 1273 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1274 1275 static struct platform_driver sh_msiof_spi_drv = { 1276 .probe = sh_msiof_spi_probe, 1277 .remove = sh_msiof_spi_remove, 1278 .id_table = spi_driver_ids, 1279 .driver = { 1280 .name = "spi_sh_msiof", 1281 .of_match_table = of_match_ptr(sh_msiof_match), 1282 }, 1283 }; 1284 module_platform_driver(sh_msiof_spi_drv); 1285 1286 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver"); 1287 MODULE_AUTHOR("Magnus Damm"); 1288 MODULE_LICENSE("GPL v2"); 1289 MODULE_ALIAS("platform:spi_sh_msiof"); 1290