xref: /openbmc/linux/drivers/spi/spi-sh-msiof.c (revision 6b5fc336)
1 /*
2  * SuperH MSIOF SPI Master Interface
3  *
4  * Copyright (c) 2009 Magnus Damm
5  * Copyright (C) 2014 Renesas Electronics Corporation
6  * Copyright (C) 2014-2017 Glider bvba
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  */
13 
14 #include <linux/bitmap.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sh_dma.h>
31 
32 #include <linux/spi/sh_msiof.h>
33 #include <linux/spi/spi.h>
34 
35 #include <asm/unaligned.h>
36 
37 struct sh_msiof_chipdata {
38 	u16 tx_fifo_size;
39 	u16 rx_fifo_size;
40 	u16 master_flags;
41 };
42 
43 struct sh_msiof_spi_priv {
44 	struct spi_master *master;
45 	void __iomem *mapbase;
46 	struct clk *clk;
47 	struct platform_device *pdev;
48 	struct sh_msiof_spi_info *info;
49 	struct completion done;
50 	unsigned int tx_fifo_size;
51 	unsigned int rx_fifo_size;
52 	void *tx_dma_page;
53 	void *rx_dma_page;
54 	dma_addr_t tx_dma_addr;
55 	dma_addr_t rx_dma_addr;
56 	bool slave_aborted;
57 };
58 
59 #define TMDR1	0x00	/* Transmit Mode Register 1 */
60 #define TMDR2	0x04	/* Transmit Mode Register 2 */
61 #define TMDR3	0x08	/* Transmit Mode Register 3 */
62 #define RMDR1	0x10	/* Receive Mode Register 1 */
63 #define RMDR2	0x14	/* Receive Mode Register 2 */
64 #define RMDR3	0x18	/* Receive Mode Register 3 */
65 #define TSCR	0x20	/* Transmit Clock Select Register */
66 #define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
67 #define CTR	0x28	/* Control Register */
68 #define FCTR	0x30	/* FIFO Control Register */
69 #define STR	0x40	/* Status Register */
70 #define IER	0x44	/* Interrupt Enable Register */
71 #define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
72 #define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
73 #define TFDR	0x50	/* Transmit FIFO Data Register */
74 #define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
75 #define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
76 #define RFDR	0x60	/* Receive FIFO Data Register */
77 
78 /* TMDR1 and RMDR1 */
79 #define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81 #define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
82 #define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
83 #define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
84 #define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
85 #define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
86 #define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
87 #define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
88 #define MDR1_FLD_SHIFT		  2
89 #define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
90 /* TMDR1 */
91 #define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
92 
93 /* TMDR2 and RMDR2 */
94 #define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
95 #define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
96 #define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
97 
98 /* TSCR and RSCR */
99 #define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
100 #define SCR_BRPS(i)	(((i) - 1) << 8)
101 #define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
102 #define SCR_BRDV_DIV_2	    0x0000
103 #define SCR_BRDV_DIV_4	    0x0001
104 #define SCR_BRDV_DIV_8	    0x0002
105 #define SCR_BRDV_DIV_16	    0x0003
106 #define SCR_BRDV_DIV_32	    0x0004
107 #define SCR_BRDV_DIV_1	    0x0007
108 
109 /* CTR */
110 #define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
111 #define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
112 #define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
113 #define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
114 #define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
115 #define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
116 #define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
117 #define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
118 #define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
119 #define CTR_TXDIZ_LOW	0x00000000 /*   0 */
120 #define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
121 #define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
122 #define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
123 #define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
124 #define CTR_TXE		0x00000200 /* Transmit Enable */
125 #define CTR_RXE		0x00000100 /* Receive Enable */
126 
127 /* FCTR */
128 #define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
129 #define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
130 #define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
131 #define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
132 #define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
133 #define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
134 #define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
135 #define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
136 #define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
137 #define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
138 #define FCTR_TFUA_SHIFT		20
139 #define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
140 #define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
141 #define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
142 #define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
143 #define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
144 #define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
145 #define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
146 #define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
147 #define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
148 #define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
149 #define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
150 #define FCTR_RFUA_SHIFT		 4
151 #define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
152 
153 /* STR */
154 #define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
155 #define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
156 #define STR_TEOF	0x00800000 /* Frame Transmission End */
157 #define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
158 #define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
159 #define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
160 #define STR_RFFUL	0x00002000 /* Receive FIFO Full */
161 #define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
162 #define STR_REOF	0x00000080 /* Frame Reception End */
163 #define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
164 #define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
165 #define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
166 
167 /* IER */
168 #define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
169 #define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
170 #define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
171 #define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
172 #define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
173 #define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
174 #define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
175 #define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
176 #define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
177 #define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
178 #define IER_REOFE	0x00000080 /* Frame Reception End Enable */
179 #define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
180 #define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
181 #define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
182 
183 
184 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
185 {
186 	switch (reg_offs) {
187 	case TSCR:
188 	case RSCR:
189 		return ioread16(p->mapbase + reg_offs);
190 	default:
191 		return ioread32(p->mapbase + reg_offs);
192 	}
193 }
194 
195 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
196 			   u32 value)
197 {
198 	switch (reg_offs) {
199 	case TSCR:
200 	case RSCR:
201 		iowrite16(value, p->mapbase + reg_offs);
202 		break;
203 	default:
204 		iowrite32(value, p->mapbase + reg_offs);
205 		break;
206 	}
207 }
208 
209 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
210 				    u32 clr, u32 set)
211 {
212 	u32 mask = clr | set;
213 	u32 data;
214 	int k;
215 
216 	data = sh_msiof_read(p, CTR);
217 	data &= ~clr;
218 	data |= set;
219 	sh_msiof_write(p, CTR, data);
220 
221 	for (k = 100; k > 0; k--) {
222 		if ((sh_msiof_read(p, CTR) & mask) == set)
223 			break;
224 
225 		udelay(10);
226 	}
227 
228 	return k > 0 ? 0 : -ETIMEDOUT;
229 }
230 
231 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
232 {
233 	struct sh_msiof_spi_priv *p = data;
234 
235 	/* just disable the interrupt and wake up */
236 	sh_msiof_write(p, IER, 0);
237 	complete(&p->done);
238 
239 	return IRQ_HANDLED;
240 }
241 
242 static struct {
243 	unsigned short div;
244 	unsigned short brdv;
245 } const sh_msiof_spi_div_table[] = {
246 	{ 1,	SCR_BRDV_DIV_1 },
247 	{ 2,	SCR_BRDV_DIV_2 },
248 	{ 4,	SCR_BRDV_DIV_4 },
249 	{ 8,	SCR_BRDV_DIV_8 },
250 	{ 16,	SCR_BRDV_DIV_16 },
251 	{ 32,	SCR_BRDV_DIV_32 },
252 };
253 
254 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
255 				      unsigned long parent_rate, u32 spi_hz)
256 {
257 	unsigned long div = 1024;
258 	u32 brps, scr;
259 	size_t k;
260 
261 	if (!WARN_ON(!spi_hz || !parent_rate))
262 		div = DIV_ROUND_UP(parent_rate, spi_hz);
263 
264 	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
265 		brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
266 		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
267 		if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
268 			continue;
269 		if (brps <= 32) /* max of brdv is 32 */
270 			break;
271 	}
272 
273 	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
274 
275 	scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
276 	sh_msiof_write(p, TSCR, scr);
277 	if (!(p->master->flags & SPI_MASTER_MUST_TX))
278 		sh_msiof_write(p, RSCR, scr);
279 }
280 
281 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
282 {
283 	/*
284 	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
285 	 * b'000		: 0
286 	 * b'001		: 100
287 	 * b'010		: 200
288 	 * b'011 (SYNCDL only)	: 300
289 	 * b'101		: 50
290 	 * b'110		: 150
291 	 */
292 	if (dtdl_or_syncdl % 100)
293 		return dtdl_or_syncdl / 100 + 5;
294 	else
295 		return dtdl_or_syncdl / 100;
296 }
297 
298 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
299 {
300 	u32 val;
301 
302 	if (!p->info)
303 		return 0;
304 
305 	/* check if DTDL and SYNCDL is allowed value */
306 	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
307 		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
308 		return 0;
309 	}
310 
311 	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
312 	if ((p->info->dtdl + p->info->syncdl) % 100) {
313 		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
314 		return 0;
315 	}
316 
317 	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
318 	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
319 
320 	return val;
321 }
322 
323 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
324 				      u32 cpol, u32 cpha,
325 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
326 {
327 	u32 tmp;
328 	int edge;
329 
330 	/*
331 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
332 	 *    0    0         10     10    1    1
333 	 *    0    1         10     10    0    0
334 	 *    1    0         11     11    0    0
335 	 *    1    1         11     11    1    1
336 	 */
337 	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
338 	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
339 	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
340 	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
341 	if (spi_controller_is_slave(p->master))
342 		sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
343 	else
344 		sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
345 	if (p->master->flags & SPI_MASTER_MUST_TX) {
346 		/* These bits are reserved if RX needs TX */
347 		tmp &= ~0x0000ffff;
348 	}
349 	sh_msiof_write(p, RMDR1, tmp);
350 
351 	tmp = 0;
352 	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
353 	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
354 
355 	edge = cpol ^ !cpha;
356 
357 	tmp |= edge << CTR_TEDG_SHIFT;
358 	tmp |= edge << CTR_REDG_SHIFT;
359 	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
360 	sh_msiof_write(p, CTR, tmp);
361 }
362 
363 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
364 				       const void *tx_buf, void *rx_buf,
365 				       u32 bits, u32 words)
366 {
367 	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
368 
369 	if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
370 		sh_msiof_write(p, TMDR2, dr2);
371 	else
372 		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
373 
374 	if (rx_buf)
375 		sh_msiof_write(p, RMDR2, dr2);
376 }
377 
378 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
379 {
380 	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
381 }
382 
383 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
384 				      const void *tx_buf, int words, int fs)
385 {
386 	const u8 *buf_8 = tx_buf;
387 	int k;
388 
389 	for (k = 0; k < words; k++)
390 		sh_msiof_write(p, TFDR, buf_8[k] << fs);
391 }
392 
393 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
394 				       const void *tx_buf, int words, int fs)
395 {
396 	const u16 *buf_16 = tx_buf;
397 	int k;
398 
399 	for (k = 0; k < words; k++)
400 		sh_msiof_write(p, TFDR, buf_16[k] << fs);
401 }
402 
403 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
404 					const void *tx_buf, int words, int fs)
405 {
406 	const u16 *buf_16 = tx_buf;
407 	int k;
408 
409 	for (k = 0; k < words; k++)
410 		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
411 }
412 
413 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
414 				       const void *tx_buf, int words, int fs)
415 {
416 	const u32 *buf_32 = tx_buf;
417 	int k;
418 
419 	for (k = 0; k < words; k++)
420 		sh_msiof_write(p, TFDR, buf_32[k] << fs);
421 }
422 
423 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
424 					const void *tx_buf, int words, int fs)
425 {
426 	const u32 *buf_32 = tx_buf;
427 	int k;
428 
429 	for (k = 0; k < words; k++)
430 		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
431 }
432 
433 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
434 					const void *tx_buf, int words, int fs)
435 {
436 	const u32 *buf_32 = tx_buf;
437 	int k;
438 
439 	for (k = 0; k < words; k++)
440 		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
441 }
442 
443 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
444 					 const void *tx_buf, int words, int fs)
445 {
446 	const u32 *buf_32 = tx_buf;
447 	int k;
448 
449 	for (k = 0; k < words; k++)
450 		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
451 }
452 
453 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
454 				     void *rx_buf, int words, int fs)
455 {
456 	u8 *buf_8 = rx_buf;
457 	int k;
458 
459 	for (k = 0; k < words; k++)
460 		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
461 }
462 
463 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
464 				      void *rx_buf, int words, int fs)
465 {
466 	u16 *buf_16 = rx_buf;
467 	int k;
468 
469 	for (k = 0; k < words; k++)
470 		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
471 }
472 
473 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
474 				       void *rx_buf, int words, int fs)
475 {
476 	u16 *buf_16 = rx_buf;
477 	int k;
478 
479 	for (k = 0; k < words; k++)
480 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
481 }
482 
483 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
484 				      void *rx_buf, int words, int fs)
485 {
486 	u32 *buf_32 = rx_buf;
487 	int k;
488 
489 	for (k = 0; k < words; k++)
490 		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
491 }
492 
493 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
494 				       void *rx_buf, int words, int fs)
495 {
496 	u32 *buf_32 = rx_buf;
497 	int k;
498 
499 	for (k = 0; k < words; k++)
500 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
501 }
502 
503 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
504 				       void *rx_buf, int words, int fs)
505 {
506 	u32 *buf_32 = rx_buf;
507 	int k;
508 
509 	for (k = 0; k < words; k++)
510 		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
511 }
512 
513 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
514 				       void *rx_buf, int words, int fs)
515 {
516 	u32 *buf_32 = rx_buf;
517 	int k;
518 
519 	for (k = 0; k < words; k++)
520 		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
521 }
522 
523 static int sh_msiof_spi_setup(struct spi_device *spi)
524 {
525 	struct device_node	*np = spi->master->dev.of_node;
526 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
527 
528 	pm_runtime_get_sync(&p->pdev->dev);
529 
530 	if (!np) {
531 		/*
532 		 * Use spi->controller_data for CS (same strategy as spi_gpio),
533 		 * if any. otherwise let HW control CS
534 		 */
535 		spi->cs_gpio = (uintptr_t)spi->controller_data;
536 	}
537 
538 	/* Configure pins before deasserting CS */
539 	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
540 				  !!(spi->mode & SPI_CPHA),
541 				  !!(spi->mode & SPI_3WIRE),
542 				  !!(spi->mode & SPI_LSB_FIRST),
543 				  !!(spi->mode & SPI_CS_HIGH));
544 
545 	if (spi->cs_gpio >= 0)
546 		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
547 
548 
549 	pm_runtime_put(&p->pdev->dev);
550 
551 	return 0;
552 }
553 
554 static int sh_msiof_prepare_message(struct spi_master *master,
555 				    struct spi_message *msg)
556 {
557 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
558 	const struct spi_device *spi = msg->spi;
559 
560 	/* Configure pins before asserting CS */
561 	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
562 				  !!(spi->mode & SPI_CPHA),
563 				  !!(spi->mode & SPI_3WIRE),
564 				  !!(spi->mode & SPI_LSB_FIRST),
565 				  !!(spi->mode & SPI_CS_HIGH));
566 	return 0;
567 }
568 
569 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
570 {
571 	bool slave = spi_controller_is_slave(p->master);
572 	int ret = 0;
573 
574 	/* setup clock and rx/tx signals */
575 	if (!slave)
576 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
577 	if (rx_buf && !ret)
578 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
579 	if (!ret)
580 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
581 
582 	/* start by setting frame bit */
583 	if (!ret && !slave)
584 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
585 
586 	return ret;
587 }
588 
589 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
590 {
591 	bool slave = spi_controller_is_slave(p->master);
592 	int ret = 0;
593 
594 	/* shut down frame, rx/tx and clock signals */
595 	if (!slave)
596 		ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
597 	if (!ret)
598 		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
599 	if (rx_buf && !ret)
600 		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
601 	if (!ret && !slave)
602 		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
603 
604 	return ret;
605 }
606 
607 static int sh_msiof_slave_abort(struct spi_master *master)
608 {
609 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
610 
611 	p->slave_aborted = true;
612 	complete(&p->done);
613 	return 0;
614 }
615 
616 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
617 {
618 	if (spi_controller_is_slave(p->master)) {
619 		if (wait_for_completion_interruptible(&p->done) ||
620 		    p->slave_aborted) {
621 			dev_dbg(&p->pdev->dev, "interrupted\n");
622 			return -EINTR;
623 		}
624 	} else {
625 		if (!wait_for_completion_timeout(&p->done, HZ)) {
626 			dev_err(&p->pdev->dev, "timeout\n");
627 			return -ETIMEDOUT;
628 		}
629 	}
630 
631 	return 0;
632 }
633 
634 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
635 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
636 						  const void *, int, int),
637 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
638 						  void *, int, int),
639 				  const void *tx_buf, void *rx_buf,
640 				  int words, int bits)
641 {
642 	int fifo_shift;
643 	int ret;
644 
645 	/* limit maximum word transfer to rx/tx fifo size */
646 	if (tx_buf)
647 		words = min_t(int, words, p->tx_fifo_size);
648 	if (rx_buf)
649 		words = min_t(int, words, p->rx_fifo_size);
650 
651 	/* the fifo contents need shifting */
652 	fifo_shift = 32 - bits;
653 
654 	/* default FIFO watermarks for PIO */
655 	sh_msiof_write(p, FCTR, 0);
656 
657 	/* setup msiof transfer mode registers */
658 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
659 	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
660 
661 	/* write tx fifo */
662 	if (tx_buf)
663 		tx_fifo(p, tx_buf, words, fifo_shift);
664 
665 	reinit_completion(&p->done);
666 	p->slave_aborted = false;
667 
668 	ret = sh_msiof_spi_start(p, rx_buf);
669 	if (ret) {
670 		dev_err(&p->pdev->dev, "failed to start hardware\n");
671 		goto stop_ier;
672 	}
673 
674 	/* wait for tx fifo to be emptied / rx fifo to be filled */
675 	ret = sh_msiof_wait_for_completion(p);
676 	if (ret)
677 		goto stop_reset;
678 
679 	/* read rx fifo */
680 	if (rx_buf)
681 		rx_fifo(p, rx_buf, words, fifo_shift);
682 
683 	/* clear status bits */
684 	sh_msiof_reset_str(p);
685 
686 	ret = sh_msiof_spi_stop(p, rx_buf);
687 	if (ret) {
688 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
689 		return ret;
690 	}
691 
692 	return words;
693 
694 stop_reset:
695 	sh_msiof_reset_str(p);
696 	sh_msiof_spi_stop(p, rx_buf);
697 stop_ier:
698 	sh_msiof_write(p, IER, 0);
699 	return ret;
700 }
701 
702 static void sh_msiof_dma_complete(void *arg)
703 {
704 	struct sh_msiof_spi_priv *p = arg;
705 
706 	sh_msiof_write(p, IER, 0);
707 	complete(&p->done);
708 }
709 
710 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
711 			     void *rx, unsigned int len)
712 {
713 	u32 ier_bits = 0;
714 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
715 	dma_cookie_t cookie;
716 	int ret;
717 
718 	/* First prepare and submit the DMA request(s), as this may fail */
719 	if (rx) {
720 		ier_bits |= IER_RDREQE | IER_RDMAE;
721 		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
722 					p->rx_dma_addr, len, DMA_FROM_DEVICE,
723 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
724 		if (!desc_rx)
725 			return -EAGAIN;
726 
727 		desc_rx->callback = sh_msiof_dma_complete;
728 		desc_rx->callback_param = p;
729 		cookie = dmaengine_submit(desc_rx);
730 		if (dma_submit_error(cookie))
731 			return cookie;
732 	}
733 
734 	if (tx) {
735 		ier_bits |= IER_TDREQE | IER_TDMAE;
736 		dma_sync_single_for_device(p->master->dma_tx->device->dev,
737 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
738 		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
739 					p->tx_dma_addr, len, DMA_TO_DEVICE,
740 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
741 		if (!desc_tx) {
742 			ret = -EAGAIN;
743 			goto no_dma_tx;
744 		}
745 
746 		if (rx) {
747 			/* No callback */
748 			desc_tx->callback = NULL;
749 		} else {
750 			desc_tx->callback = sh_msiof_dma_complete;
751 			desc_tx->callback_param = p;
752 		}
753 		cookie = dmaengine_submit(desc_tx);
754 		if (dma_submit_error(cookie)) {
755 			ret = cookie;
756 			goto no_dma_tx;
757 		}
758 	}
759 
760 	/* 1 stage FIFO watermarks for DMA */
761 	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
762 
763 	/* setup msiof transfer mode registers (32-bit words) */
764 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
765 
766 	sh_msiof_write(p, IER, ier_bits);
767 
768 	reinit_completion(&p->done);
769 	p->slave_aborted = false;
770 
771 	/* Now start DMA */
772 	if (rx)
773 		dma_async_issue_pending(p->master->dma_rx);
774 	if (tx)
775 		dma_async_issue_pending(p->master->dma_tx);
776 
777 	ret = sh_msiof_spi_start(p, rx);
778 	if (ret) {
779 		dev_err(&p->pdev->dev, "failed to start hardware\n");
780 		goto stop_dma;
781 	}
782 
783 	/* wait for tx fifo to be emptied / rx fifo to be filled */
784 	ret = sh_msiof_wait_for_completion(p);
785 	if (ret)
786 		goto stop_reset;
787 
788 	/* clear status bits */
789 	sh_msiof_reset_str(p);
790 
791 	ret = sh_msiof_spi_stop(p, rx);
792 	if (ret) {
793 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
794 		return ret;
795 	}
796 
797 	if (rx)
798 		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
799 					p->rx_dma_addr, len,
800 					DMA_FROM_DEVICE);
801 
802 	return 0;
803 
804 stop_reset:
805 	sh_msiof_reset_str(p);
806 	sh_msiof_spi_stop(p, rx);
807 stop_dma:
808 	if (tx)
809 		dmaengine_terminate_all(p->master->dma_tx);
810 no_dma_tx:
811 	if (rx)
812 		dmaengine_terminate_all(p->master->dma_rx);
813 	sh_msiof_write(p, IER, 0);
814 	return ret;
815 }
816 
817 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
818 {
819 	/* src or dst can be unaligned, but not both */
820 	if ((unsigned long)src & 3) {
821 		while (words--) {
822 			*dst++ = swab32(get_unaligned(src));
823 			src++;
824 		}
825 	} else if ((unsigned long)dst & 3) {
826 		while (words--) {
827 			put_unaligned(swab32(*src++), dst);
828 			dst++;
829 		}
830 	} else {
831 		while (words--)
832 			*dst++ = swab32(*src++);
833 	}
834 }
835 
836 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
837 {
838 	/* src or dst can be unaligned, but not both */
839 	if ((unsigned long)src & 3) {
840 		while (words--) {
841 			*dst++ = swahw32(get_unaligned(src));
842 			src++;
843 		}
844 	} else if ((unsigned long)dst & 3) {
845 		while (words--) {
846 			put_unaligned(swahw32(*src++), dst);
847 			dst++;
848 		}
849 	} else {
850 		while (words--)
851 			*dst++ = swahw32(*src++);
852 	}
853 }
854 
855 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
856 {
857 	memcpy(dst, src, words * 4);
858 }
859 
860 static int sh_msiof_transfer_one(struct spi_master *master,
861 				 struct spi_device *spi,
862 				 struct spi_transfer *t)
863 {
864 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
865 	void (*copy32)(u32 *, const u32 *, unsigned int);
866 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
867 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
868 	const void *tx_buf = t->tx_buf;
869 	void *rx_buf = t->rx_buf;
870 	unsigned int len = t->len;
871 	unsigned int bits = t->bits_per_word;
872 	unsigned int bytes_per_word;
873 	unsigned int words;
874 	int n;
875 	bool swab;
876 	int ret;
877 
878 	/* setup clocks (clock already enabled in chipselect()) */
879 	if (!spi_controller_is_slave(p->master))
880 		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
881 
882 	while (master->dma_tx && len > 15) {
883 		/*
884 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
885 		 *  words, with byte resp. word swapping.
886 		 */
887 		unsigned int l = 0;
888 
889 		if (tx_buf)
890 			l = min(len, p->tx_fifo_size * 4);
891 		if (rx_buf)
892 			l = min(len, p->rx_fifo_size * 4);
893 
894 		if (bits <= 8) {
895 			if (l & 3)
896 				break;
897 			copy32 = copy_bswap32;
898 		} else if (bits <= 16) {
899 			if (l & 1)
900 				break;
901 			copy32 = copy_wswap32;
902 		} else {
903 			copy32 = copy_plain32;
904 		}
905 
906 		if (tx_buf)
907 			copy32(p->tx_dma_page, tx_buf, l / 4);
908 
909 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
910 		if (ret == -EAGAIN) {
911 			pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
912 				     dev_driver_string(&p->pdev->dev),
913 				     dev_name(&p->pdev->dev));
914 			break;
915 		}
916 		if (ret)
917 			return ret;
918 
919 		if (rx_buf) {
920 			copy32(rx_buf, p->rx_dma_page, l / 4);
921 			rx_buf += l;
922 		}
923 		if (tx_buf)
924 			tx_buf += l;
925 
926 		len -= l;
927 		if (!len)
928 			return 0;
929 	}
930 
931 	if (bits <= 8 && len > 15 && !(len & 3)) {
932 		bits = 32;
933 		swab = true;
934 	} else {
935 		swab = false;
936 	}
937 
938 	/* setup bytes per word and fifo read/write functions */
939 	if (bits <= 8) {
940 		bytes_per_word = 1;
941 		tx_fifo = sh_msiof_spi_write_fifo_8;
942 		rx_fifo = sh_msiof_spi_read_fifo_8;
943 	} else if (bits <= 16) {
944 		bytes_per_word = 2;
945 		if ((unsigned long)tx_buf & 0x01)
946 			tx_fifo = sh_msiof_spi_write_fifo_16u;
947 		else
948 			tx_fifo = sh_msiof_spi_write_fifo_16;
949 
950 		if ((unsigned long)rx_buf & 0x01)
951 			rx_fifo = sh_msiof_spi_read_fifo_16u;
952 		else
953 			rx_fifo = sh_msiof_spi_read_fifo_16;
954 	} else if (swab) {
955 		bytes_per_word = 4;
956 		if ((unsigned long)tx_buf & 0x03)
957 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
958 		else
959 			tx_fifo = sh_msiof_spi_write_fifo_s32;
960 
961 		if ((unsigned long)rx_buf & 0x03)
962 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
963 		else
964 			rx_fifo = sh_msiof_spi_read_fifo_s32;
965 	} else {
966 		bytes_per_word = 4;
967 		if ((unsigned long)tx_buf & 0x03)
968 			tx_fifo = sh_msiof_spi_write_fifo_32u;
969 		else
970 			tx_fifo = sh_msiof_spi_write_fifo_32;
971 
972 		if ((unsigned long)rx_buf & 0x03)
973 			rx_fifo = sh_msiof_spi_read_fifo_32u;
974 		else
975 			rx_fifo = sh_msiof_spi_read_fifo_32;
976 	}
977 
978 	/* transfer in fifo sized chunks */
979 	words = len / bytes_per_word;
980 
981 	while (words > 0) {
982 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
983 					   words, bits);
984 		if (n < 0)
985 			return n;
986 
987 		if (tx_buf)
988 			tx_buf += n * bytes_per_word;
989 		if (rx_buf)
990 			rx_buf += n * bytes_per_word;
991 		words -= n;
992 	}
993 
994 	return 0;
995 }
996 
997 static const struct sh_msiof_chipdata sh_data = {
998 	.tx_fifo_size = 64,
999 	.rx_fifo_size = 64,
1000 	.master_flags = 0,
1001 };
1002 
1003 static const struct sh_msiof_chipdata r8a779x_data = {
1004 	.tx_fifo_size = 64,
1005 	.rx_fifo_size = 64,
1006 	.master_flags = SPI_MASTER_MUST_TX,
1007 };
1008 
1009 static const struct of_device_id sh_msiof_match[] = {
1010 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1011 	{ .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
1012 	{ .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
1013 	{ .compatible = "renesas,msiof-r8a7792",   .data = &r8a779x_data },
1014 	{ .compatible = "renesas,msiof-r8a7793",   .data = &r8a779x_data },
1015 	{ .compatible = "renesas,msiof-r8a7794",   .data = &r8a779x_data },
1016 	{ .compatible = "renesas,rcar-gen2-msiof", .data = &r8a779x_data },
1017 	{ .compatible = "renesas,msiof-r8a7796",   .data = &r8a779x_data },
1018 	{ .compatible = "renesas,rcar-gen3-msiof", .data = &r8a779x_data },
1019 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1020 	{},
1021 };
1022 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1023 
1024 #ifdef CONFIG_OF
1025 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1026 {
1027 	struct sh_msiof_spi_info *info;
1028 	struct device_node *np = dev->of_node;
1029 	u32 num_cs = 1;
1030 
1031 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1032 	if (!info)
1033 		return NULL;
1034 
1035 	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1036 							    : MSIOF_SPI_MASTER;
1037 
1038 	/* Parse the MSIOF properties */
1039 	if (info->mode == MSIOF_SPI_MASTER)
1040 		of_property_read_u32(np, "num-cs", &num_cs);
1041 	of_property_read_u32(np, "renesas,tx-fifo-size",
1042 					&info->tx_fifo_override);
1043 	of_property_read_u32(np, "renesas,rx-fifo-size",
1044 					&info->rx_fifo_override);
1045 	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1046 	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1047 
1048 	info->num_chipselect = num_cs;
1049 
1050 	return info;
1051 }
1052 #else
1053 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1054 {
1055 	return NULL;
1056 }
1057 #endif
1058 
1059 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1060 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1061 {
1062 	dma_cap_mask_t mask;
1063 	struct dma_chan *chan;
1064 	struct dma_slave_config cfg;
1065 	int ret;
1066 
1067 	dma_cap_zero(mask);
1068 	dma_cap_set(DMA_SLAVE, mask);
1069 
1070 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1071 				(void *)(unsigned long)id, dev,
1072 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1073 	if (!chan) {
1074 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1075 		return NULL;
1076 	}
1077 
1078 	memset(&cfg, 0, sizeof(cfg));
1079 	cfg.direction = dir;
1080 	if (dir == DMA_MEM_TO_DEV) {
1081 		cfg.dst_addr = port_addr;
1082 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1083 	} else {
1084 		cfg.src_addr = port_addr;
1085 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1086 	}
1087 
1088 	ret = dmaengine_slave_config(chan, &cfg);
1089 	if (ret) {
1090 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1091 		dma_release_channel(chan);
1092 		return NULL;
1093 	}
1094 
1095 	return chan;
1096 }
1097 
1098 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1099 {
1100 	struct platform_device *pdev = p->pdev;
1101 	struct device *dev = &pdev->dev;
1102 	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1103 	unsigned int dma_tx_id, dma_rx_id;
1104 	const struct resource *res;
1105 	struct spi_master *master;
1106 	struct device *tx_dev, *rx_dev;
1107 
1108 	if (dev->of_node) {
1109 		/* In the OF case we will get the slave IDs from the DT */
1110 		dma_tx_id = 0;
1111 		dma_rx_id = 0;
1112 	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1113 		dma_tx_id = info->dma_tx_id;
1114 		dma_rx_id = info->dma_rx_id;
1115 	} else {
1116 		/* The driver assumes no error */
1117 		return 0;
1118 	}
1119 
1120 	/* The DMA engine uses the second register set, if present */
1121 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1122 	if (!res)
1123 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1124 
1125 	master = p->master;
1126 	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1127 						   dma_tx_id,
1128 						   res->start + TFDR);
1129 	if (!master->dma_tx)
1130 		return -ENODEV;
1131 
1132 	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1133 						   dma_rx_id,
1134 						   res->start + RFDR);
1135 	if (!master->dma_rx)
1136 		goto free_tx_chan;
1137 
1138 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1139 	if (!p->tx_dma_page)
1140 		goto free_rx_chan;
1141 
1142 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1143 	if (!p->rx_dma_page)
1144 		goto free_tx_page;
1145 
1146 	tx_dev = master->dma_tx->device->dev;
1147 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1148 					DMA_TO_DEVICE);
1149 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1150 		goto free_rx_page;
1151 
1152 	rx_dev = master->dma_rx->device->dev;
1153 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1154 					DMA_FROM_DEVICE);
1155 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1156 		goto unmap_tx_page;
1157 
1158 	dev_info(dev, "DMA available");
1159 	return 0;
1160 
1161 unmap_tx_page:
1162 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1163 free_rx_page:
1164 	free_page((unsigned long)p->rx_dma_page);
1165 free_tx_page:
1166 	free_page((unsigned long)p->tx_dma_page);
1167 free_rx_chan:
1168 	dma_release_channel(master->dma_rx);
1169 free_tx_chan:
1170 	dma_release_channel(master->dma_tx);
1171 	master->dma_tx = NULL;
1172 	return -ENODEV;
1173 }
1174 
1175 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1176 {
1177 	struct spi_master *master = p->master;
1178 	struct device *dev;
1179 
1180 	if (!master->dma_tx)
1181 		return;
1182 
1183 	dev = &p->pdev->dev;
1184 	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1185 			 PAGE_SIZE, DMA_FROM_DEVICE);
1186 	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1187 			 PAGE_SIZE, DMA_TO_DEVICE);
1188 	free_page((unsigned long)p->rx_dma_page);
1189 	free_page((unsigned long)p->tx_dma_page);
1190 	dma_release_channel(master->dma_rx);
1191 	dma_release_channel(master->dma_tx);
1192 }
1193 
1194 static int sh_msiof_spi_probe(struct platform_device *pdev)
1195 {
1196 	struct resource	*r;
1197 	struct spi_master *master;
1198 	const struct sh_msiof_chipdata *chipdata;
1199 	const struct of_device_id *of_id;
1200 	struct sh_msiof_spi_info *info;
1201 	struct sh_msiof_spi_priv *p;
1202 	int i;
1203 	int ret;
1204 
1205 	of_id = of_match_device(sh_msiof_match, &pdev->dev);
1206 	if (of_id) {
1207 		chipdata = of_id->data;
1208 		info = sh_msiof_spi_parse_dt(&pdev->dev);
1209 	} else {
1210 		chipdata = (const void *)pdev->id_entry->driver_data;
1211 		info = dev_get_platdata(&pdev->dev);
1212 	}
1213 
1214 	if (!info) {
1215 		dev_err(&pdev->dev, "failed to obtain device info\n");
1216 		return -ENXIO;
1217 	}
1218 
1219 	if (info->mode == MSIOF_SPI_SLAVE)
1220 		master = spi_alloc_slave(&pdev->dev,
1221 					 sizeof(struct sh_msiof_spi_priv));
1222 	else
1223 		master = spi_alloc_master(&pdev->dev,
1224 					  sizeof(struct sh_msiof_spi_priv));
1225 	if (master == NULL)
1226 		return -ENOMEM;
1227 
1228 	p = spi_master_get_devdata(master);
1229 
1230 	platform_set_drvdata(pdev, p);
1231 	p->master = master;
1232 	p->info = info;
1233 
1234 	init_completion(&p->done);
1235 
1236 	p->clk = devm_clk_get(&pdev->dev, NULL);
1237 	if (IS_ERR(p->clk)) {
1238 		dev_err(&pdev->dev, "cannot get clock\n");
1239 		ret = PTR_ERR(p->clk);
1240 		goto err1;
1241 	}
1242 
1243 	i = platform_get_irq(pdev, 0);
1244 	if (i < 0) {
1245 		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1246 		ret = -ENOENT;
1247 		goto err1;
1248 	}
1249 
1250 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1251 	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1252 	if (IS_ERR(p->mapbase)) {
1253 		ret = PTR_ERR(p->mapbase);
1254 		goto err1;
1255 	}
1256 
1257 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1258 			       dev_name(&pdev->dev), p);
1259 	if (ret) {
1260 		dev_err(&pdev->dev, "unable to request irq\n");
1261 		goto err1;
1262 	}
1263 
1264 	p->pdev = pdev;
1265 	pm_runtime_enable(&pdev->dev);
1266 
1267 	/* Platform data may override FIFO sizes */
1268 	p->tx_fifo_size = chipdata->tx_fifo_size;
1269 	p->rx_fifo_size = chipdata->rx_fifo_size;
1270 	if (p->info->tx_fifo_override)
1271 		p->tx_fifo_size = p->info->tx_fifo_override;
1272 	if (p->info->rx_fifo_override)
1273 		p->rx_fifo_size = p->info->rx_fifo_override;
1274 
1275 	/* init master code */
1276 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1277 	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1278 	master->flags = chipdata->master_flags;
1279 	master->bus_num = pdev->id;
1280 	master->dev.of_node = pdev->dev.of_node;
1281 	master->num_chipselect = p->info->num_chipselect;
1282 	master->setup = sh_msiof_spi_setup;
1283 	master->prepare_message = sh_msiof_prepare_message;
1284 	master->slave_abort = sh_msiof_slave_abort;
1285 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1286 	master->auto_runtime_pm = true;
1287 	master->transfer_one = sh_msiof_transfer_one;
1288 
1289 	ret = sh_msiof_request_dma(p);
1290 	if (ret < 0)
1291 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1292 
1293 	ret = devm_spi_register_master(&pdev->dev, master);
1294 	if (ret < 0) {
1295 		dev_err(&pdev->dev, "spi_register_master error.\n");
1296 		goto err2;
1297 	}
1298 
1299 	return 0;
1300 
1301  err2:
1302 	sh_msiof_release_dma(p);
1303 	pm_runtime_disable(&pdev->dev);
1304  err1:
1305 	spi_master_put(master);
1306 	return ret;
1307 }
1308 
1309 static int sh_msiof_spi_remove(struct platform_device *pdev)
1310 {
1311 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1312 
1313 	sh_msiof_release_dma(p);
1314 	pm_runtime_disable(&pdev->dev);
1315 	return 0;
1316 }
1317 
1318 static const struct platform_device_id spi_driver_ids[] = {
1319 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1320 	{},
1321 };
1322 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1323 
1324 static struct platform_driver sh_msiof_spi_drv = {
1325 	.probe		= sh_msiof_spi_probe,
1326 	.remove		= sh_msiof_spi_remove,
1327 	.id_table	= spi_driver_ids,
1328 	.driver		= {
1329 		.name		= "spi_sh_msiof",
1330 		.of_match_table = of_match_ptr(sh_msiof_match),
1331 	},
1332 };
1333 module_platform_driver(sh_msiof_spi_drv);
1334 
1335 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1336 MODULE_AUTHOR("Magnus Damm");
1337 MODULE_LICENSE("GPL v2");
1338 MODULE_ALIAS("platform:spi_sh_msiof");
1339