xref: /openbmc/linux/drivers/spi/spi-sh-msiof.c (revision 62e7ca52)
1 /*
2  * SuperH MSIOF SPI Master Interface
3  *
4  * Copyright (c) 2009 Magnus Damm
5  * Copyright (C) 2014 Glider bvba
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  */
12 
13 #include <linux/bitmap.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/gpio.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
30 
31 #include <linux/spi/sh_msiof.h>
32 #include <linux/spi/spi.h>
33 
34 #include <asm/unaligned.h>
35 
36 
37 struct sh_msiof_chipdata {
38 	u16 tx_fifo_size;
39 	u16 rx_fifo_size;
40 	u16 master_flags;
41 };
42 
43 struct sh_msiof_spi_priv {
44 	struct spi_master *master;
45 	void __iomem *mapbase;
46 	struct clk *clk;
47 	struct platform_device *pdev;
48 	const struct sh_msiof_chipdata *chipdata;
49 	struct sh_msiof_spi_info *info;
50 	struct completion done;
51 	int tx_fifo_size;
52 	int rx_fifo_size;
53 	void *tx_dma_page;
54 	void *rx_dma_page;
55 	dma_addr_t tx_dma_addr;
56 	dma_addr_t rx_dma_addr;
57 };
58 
59 #define TMDR1	0x00	/* Transmit Mode Register 1 */
60 #define TMDR2	0x04	/* Transmit Mode Register 2 */
61 #define TMDR3	0x08	/* Transmit Mode Register 3 */
62 #define RMDR1	0x10	/* Receive Mode Register 1 */
63 #define RMDR2	0x14	/* Receive Mode Register 2 */
64 #define RMDR3	0x18	/* Receive Mode Register 3 */
65 #define TSCR	0x20	/* Transmit Clock Select Register */
66 #define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
67 #define CTR	0x28	/* Control Register */
68 #define FCTR	0x30	/* FIFO Control Register */
69 #define STR	0x40	/* Status Register */
70 #define IER	0x44	/* Interrupt Enable Register */
71 #define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
72 #define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
73 #define TFDR	0x50	/* Transmit FIFO Data Register */
74 #define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
75 #define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
76 #define RFDR	0x60	/* Receive FIFO Data Register */
77 
78 /* TMDR1 and RMDR1 */
79 #define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81 #define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
82 #define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
83 #define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
84 #define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
85 #define MDR1_FLD_MASK	 0x000000c0 /* Frame Sync Signal Interval (0-3) */
86 #define MDR1_FLD_SHIFT		  2
87 #define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
88 /* TMDR1 */
89 #define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
90 
91 /* TMDR2 and RMDR2 */
92 #define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
93 #define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
94 #define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
95 
96 #define MAX_WDLEN	256U
97 
98 /* TSCR and RSCR */
99 #define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
100 #define SCR_BRPS(i)	(((i) - 1) << 8)
101 #define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
102 #define SCR_BRDV_DIV_2	    0x0000
103 #define SCR_BRDV_DIV_4	    0x0001
104 #define SCR_BRDV_DIV_8	    0x0002
105 #define SCR_BRDV_DIV_16	    0x0003
106 #define SCR_BRDV_DIV_32	    0x0004
107 #define SCR_BRDV_DIV_1	    0x0007
108 
109 /* CTR */
110 #define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
111 #define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
112 #define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
113 #define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
114 #define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
115 #define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
116 #define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
117 #define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
118 #define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
119 #define CTR_TXDIZ_LOW	0x00000000 /*   0 */
120 #define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
121 #define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
122 #define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
123 #define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
124 #define CTR_TXE		0x00000200 /* Transmit Enable */
125 #define CTR_RXE		0x00000100 /* Receive Enable */
126 
127 /* FCTR */
128 #define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
129 #define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
130 #define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
131 #define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
132 #define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
133 #define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
134 #define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
135 #define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
136 #define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
137 #define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
138 #define FCTR_TFUA_SHIFT		20
139 #define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
140 #define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
141 #define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
142 #define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
143 #define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
144 #define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
145 #define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
146 #define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
147 #define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
148 #define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
149 #define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
150 #define FCTR_RFUA_SHIFT		 4
151 #define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
152 
153 /* STR */
154 #define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
155 #define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
156 #define STR_TEOF	0x00800000 /* Frame Transmission End */
157 #define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
158 #define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
159 #define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
160 #define STR_RFFUL	0x00002000 /* Receive FIFO Full */
161 #define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
162 #define STR_REOF	0x00000080 /* Frame Reception End */
163 #define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
164 #define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
165 #define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
166 
167 /* IER */
168 #define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
169 #define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
170 #define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
171 #define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
172 #define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
173 #define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
174 #define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
175 #define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
176 #define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
177 #define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
178 #define IER_REOFE	0x00000080 /* Frame Reception End Enable */
179 #define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
180 #define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
181 #define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
182 
183 
184 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
185 {
186 	switch (reg_offs) {
187 	case TSCR:
188 	case RSCR:
189 		return ioread16(p->mapbase + reg_offs);
190 	default:
191 		return ioread32(p->mapbase + reg_offs);
192 	}
193 }
194 
195 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
196 			   u32 value)
197 {
198 	switch (reg_offs) {
199 	case TSCR:
200 	case RSCR:
201 		iowrite16(value, p->mapbase + reg_offs);
202 		break;
203 	default:
204 		iowrite32(value, p->mapbase + reg_offs);
205 		break;
206 	}
207 }
208 
209 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
210 				    u32 clr, u32 set)
211 {
212 	u32 mask = clr | set;
213 	u32 data;
214 	int k;
215 
216 	data = sh_msiof_read(p, CTR);
217 	data &= ~clr;
218 	data |= set;
219 	sh_msiof_write(p, CTR, data);
220 
221 	for (k = 100; k > 0; k--) {
222 		if ((sh_msiof_read(p, CTR) & mask) == set)
223 			break;
224 
225 		udelay(10);
226 	}
227 
228 	return k > 0 ? 0 : -ETIMEDOUT;
229 }
230 
231 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
232 {
233 	struct sh_msiof_spi_priv *p = data;
234 
235 	/* just disable the interrupt and wake up */
236 	sh_msiof_write(p, IER, 0);
237 	complete(&p->done);
238 
239 	return IRQ_HANDLED;
240 }
241 
242 static struct {
243 	unsigned short div;
244 	unsigned short scr;
245 } const sh_msiof_spi_clk_table[] = {
246 	{ 1,	SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
247 	{ 2,	SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
248 	{ 4,	SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
249 	{ 8,	SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
250 	{ 16,	SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
251 	{ 32,	SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
252 	{ 64,	SCR_BRPS(32) | SCR_BRDV_DIV_2 },
253 	{ 128,	SCR_BRPS(32) | SCR_BRDV_DIV_4 },
254 	{ 256,	SCR_BRPS(32) | SCR_BRDV_DIV_8 },
255 	{ 512,	SCR_BRPS(32) | SCR_BRDV_DIV_16 },
256 	{ 1024,	SCR_BRPS(32) | SCR_BRDV_DIV_32 },
257 };
258 
259 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
260 				      unsigned long parent_rate, u32 spi_hz)
261 {
262 	unsigned long div = 1024;
263 	size_t k;
264 
265 	if (!WARN_ON(!spi_hz || !parent_rate))
266 		div = DIV_ROUND_UP(parent_rate, spi_hz);
267 
268 	/* TODO: make more fine grained */
269 
270 	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
271 		if (sh_msiof_spi_clk_table[k].div >= div)
272 			break;
273 	}
274 
275 	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
276 
277 	sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
278 	if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
279 		sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
280 }
281 
282 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
283 				      u32 cpol, u32 cpha,
284 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
285 {
286 	u32 tmp;
287 	int edge;
288 
289 	/*
290 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
291 	 *    0    0         10     10    1    1
292 	 *    0    1         10     10    0    0
293 	 *    1    0         11     11    0    0
294 	 *    1    1         11     11    1    1
295 	 */
296 	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
297 	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
298 	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
299 	sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
300 	if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
301 		/* These bits are reserved if RX needs TX */
302 		tmp &= ~0x0000ffff;
303 	}
304 	sh_msiof_write(p, RMDR1, tmp);
305 
306 	tmp = 0;
307 	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
308 	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
309 
310 	edge = cpol ^ !cpha;
311 
312 	tmp |= edge << CTR_TEDG_SHIFT;
313 	tmp |= edge << CTR_REDG_SHIFT;
314 	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
315 	sh_msiof_write(p, CTR, tmp);
316 }
317 
318 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
319 				       const void *tx_buf, void *rx_buf,
320 				       u32 bits, u32 words)
321 {
322 	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
323 
324 	if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
325 		sh_msiof_write(p, TMDR2, dr2);
326 	else
327 		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
328 
329 	if (rx_buf)
330 		sh_msiof_write(p, RMDR2, dr2);
331 }
332 
333 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
334 {
335 	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
336 }
337 
338 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
339 				      const void *tx_buf, int words, int fs)
340 {
341 	const u8 *buf_8 = tx_buf;
342 	int k;
343 
344 	for (k = 0; k < words; k++)
345 		sh_msiof_write(p, TFDR, buf_8[k] << fs);
346 }
347 
348 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
349 				       const void *tx_buf, int words, int fs)
350 {
351 	const u16 *buf_16 = tx_buf;
352 	int k;
353 
354 	for (k = 0; k < words; k++)
355 		sh_msiof_write(p, TFDR, buf_16[k] << fs);
356 }
357 
358 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
359 					const void *tx_buf, int words, int fs)
360 {
361 	const u16 *buf_16 = tx_buf;
362 	int k;
363 
364 	for (k = 0; k < words; k++)
365 		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
366 }
367 
368 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
369 				       const void *tx_buf, int words, int fs)
370 {
371 	const u32 *buf_32 = tx_buf;
372 	int k;
373 
374 	for (k = 0; k < words; k++)
375 		sh_msiof_write(p, TFDR, buf_32[k] << fs);
376 }
377 
378 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
379 					const void *tx_buf, int words, int fs)
380 {
381 	const u32 *buf_32 = tx_buf;
382 	int k;
383 
384 	for (k = 0; k < words; k++)
385 		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
386 }
387 
388 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
389 					const void *tx_buf, int words, int fs)
390 {
391 	const u32 *buf_32 = tx_buf;
392 	int k;
393 
394 	for (k = 0; k < words; k++)
395 		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
396 }
397 
398 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
399 					 const void *tx_buf, int words, int fs)
400 {
401 	const u32 *buf_32 = tx_buf;
402 	int k;
403 
404 	for (k = 0; k < words; k++)
405 		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
406 }
407 
408 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
409 				     void *rx_buf, int words, int fs)
410 {
411 	u8 *buf_8 = rx_buf;
412 	int k;
413 
414 	for (k = 0; k < words; k++)
415 		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
416 }
417 
418 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
419 				      void *rx_buf, int words, int fs)
420 {
421 	u16 *buf_16 = rx_buf;
422 	int k;
423 
424 	for (k = 0; k < words; k++)
425 		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
426 }
427 
428 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
429 				       void *rx_buf, int words, int fs)
430 {
431 	u16 *buf_16 = rx_buf;
432 	int k;
433 
434 	for (k = 0; k < words; k++)
435 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
436 }
437 
438 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
439 				      void *rx_buf, int words, int fs)
440 {
441 	u32 *buf_32 = rx_buf;
442 	int k;
443 
444 	for (k = 0; k < words; k++)
445 		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
446 }
447 
448 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
449 				       void *rx_buf, int words, int fs)
450 {
451 	u32 *buf_32 = rx_buf;
452 	int k;
453 
454 	for (k = 0; k < words; k++)
455 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
456 }
457 
458 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
459 				       void *rx_buf, int words, int fs)
460 {
461 	u32 *buf_32 = rx_buf;
462 	int k;
463 
464 	for (k = 0; k < words; k++)
465 		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
466 }
467 
468 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
469 				       void *rx_buf, int words, int fs)
470 {
471 	u32 *buf_32 = rx_buf;
472 	int k;
473 
474 	for (k = 0; k < words; k++)
475 		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
476 }
477 
478 static int sh_msiof_spi_setup(struct spi_device *spi)
479 {
480 	struct device_node	*np = spi->master->dev.of_node;
481 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
482 
483 	if (!np) {
484 		/*
485 		 * Use spi->controller_data for CS (same strategy as spi_gpio),
486 		 * if any. otherwise let HW control CS
487 		 */
488 		spi->cs_gpio = (uintptr_t)spi->controller_data;
489 	}
490 
491 	/* Configure pins before deasserting CS */
492 	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
493 				  !!(spi->mode & SPI_CPHA),
494 				  !!(spi->mode & SPI_3WIRE),
495 				  !!(spi->mode & SPI_LSB_FIRST),
496 				  !!(spi->mode & SPI_CS_HIGH));
497 
498 	if (spi->cs_gpio >= 0)
499 		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
500 
501 	return 0;
502 }
503 
504 static int sh_msiof_prepare_message(struct spi_master *master,
505 				    struct spi_message *msg)
506 {
507 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
508 	const struct spi_device *spi = msg->spi;
509 
510 	/* Configure pins before asserting CS */
511 	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
512 				  !!(spi->mode & SPI_CPHA),
513 				  !!(spi->mode & SPI_3WIRE),
514 				  !!(spi->mode & SPI_LSB_FIRST),
515 				  !!(spi->mode & SPI_CS_HIGH));
516 	return 0;
517 }
518 
519 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
520 {
521 	int ret;
522 
523 	/* setup clock and rx/tx signals */
524 	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
525 	if (rx_buf && !ret)
526 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
527 	if (!ret)
528 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
529 
530 	/* start by setting frame bit */
531 	if (!ret)
532 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
533 
534 	return ret;
535 }
536 
537 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
538 {
539 	int ret;
540 
541 	/* shut down frame, rx/tx and clock signals */
542 	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
543 	if (!ret)
544 		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
545 	if (rx_buf && !ret)
546 		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
547 	if (!ret)
548 		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
549 
550 	return ret;
551 }
552 
553 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
554 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
555 						  const void *, int, int),
556 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
557 						  void *, int, int),
558 				  const void *tx_buf, void *rx_buf,
559 				  int words, int bits)
560 {
561 	int fifo_shift;
562 	int ret;
563 
564 	/* limit maximum word transfer to rx/tx fifo size */
565 	if (tx_buf)
566 		words = min_t(int, words, p->tx_fifo_size);
567 	if (rx_buf)
568 		words = min_t(int, words, p->rx_fifo_size);
569 
570 	/* the fifo contents need shifting */
571 	fifo_shift = 32 - bits;
572 
573 	/* default FIFO watermarks for PIO */
574 	sh_msiof_write(p, FCTR, 0);
575 
576 	/* setup msiof transfer mode registers */
577 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
578 	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
579 
580 	/* write tx fifo */
581 	if (tx_buf)
582 		tx_fifo(p, tx_buf, words, fifo_shift);
583 
584 	reinit_completion(&p->done);
585 
586 	ret = sh_msiof_spi_start(p, rx_buf);
587 	if (ret) {
588 		dev_err(&p->pdev->dev, "failed to start hardware\n");
589 		goto stop_ier;
590 	}
591 
592 	/* wait for tx fifo to be emptied / rx fifo to be filled */
593 	ret = wait_for_completion_timeout(&p->done, HZ);
594 	if (!ret) {
595 		dev_err(&p->pdev->dev, "PIO timeout\n");
596 		ret = -ETIMEDOUT;
597 		goto stop_reset;
598 	}
599 
600 	/* read rx fifo */
601 	if (rx_buf)
602 		rx_fifo(p, rx_buf, words, fifo_shift);
603 
604 	/* clear status bits */
605 	sh_msiof_reset_str(p);
606 
607 	ret = sh_msiof_spi_stop(p, rx_buf);
608 	if (ret) {
609 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
610 		return ret;
611 	}
612 
613 	return words;
614 
615 stop_reset:
616 	sh_msiof_reset_str(p);
617 	sh_msiof_spi_stop(p, rx_buf);
618 stop_ier:
619 	sh_msiof_write(p, IER, 0);
620 	return ret;
621 }
622 
623 static void sh_msiof_dma_complete(void *arg)
624 {
625 	struct sh_msiof_spi_priv *p = arg;
626 
627 	sh_msiof_write(p, IER, 0);
628 	complete(&p->done);
629 }
630 
631 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
632 			     void *rx, unsigned int len)
633 {
634 	u32 ier_bits = 0;
635 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
636 	dma_cookie_t cookie;
637 	int ret;
638 
639 	if (tx) {
640 		ier_bits |= IER_TDREQE | IER_TDMAE;
641 		dma_sync_single_for_device(p->master->dma_tx->device->dev,
642 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
643 		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
644 					p->tx_dma_addr, len, DMA_TO_DEVICE,
645 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
646 		if (!desc_tx)
647 			return -EAGAIN;
648 	}
649 
650 	if (rx) {
651 		ier_bits |= IER_RDREQE | IER_RDMAE;
652 		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
653 					p->rx_dma_addr, len, DMA_FROM_DEVICE,
654 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
655 		if (!desc_rx)
656 			return -EAGAIN;
657 	}
658 
659 	/* 1 stage FIFO watermarks for DMA */
660 	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
661 
662 	/* setup msiof transfer mode registers (32-bit words) */
663 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
664 
665 	sh_msiof_write(p, IER, ier_bits);
666 
667 	reinit_completion(&p->done);
668 
669 	if (rx) {
670 		desc_rx->callback = sh_msiof_dma_complete;
671 		desc_rx->callback_param = p;
672 		cookie = dmaengine_submit(desc_rx);
673 		if (dma_submit_error(cookie)) {
674 			ret = cookie;
675 			goto stop_ier;
676 		}
677 		dma_async_issue_pending(p->master->dma_rx);
678 	}
679 
680 	if (tx) {
681 		if (rx) {
682 			/* No callback */
683 			desc_tx->callback = NULL;
684 		} else {
685 			desc_tx->callback = sh_msiof_dma_complete;
686 			desc_tx->callback_param = p;
687 		}
688 		cookie = dmaengine_submit(desc_tx);
689 		if (dma_submit_error(cookie)) {
690 			ret = cookie;
691 			goto stop_rx;
692 		}
693 		dma_async_issue_pending(p->master->dma_tx);
694 	}
695 
696 	ret = sh_msiof_spi_start(p, rx);
697 	if (ret) {
698 		dev_err(&p->pdev->dev, "failed to start hardware\n");
699 		goto stop_tx;
700 	}
701 
702 	/* wait for tx fifo to be emptied / rx fifo to be filled */
703 	ret = wait_for_completion_timeout(&p->done, HZ);
704 	if (!ret) {
705 		dev_err(&p->pdev->dev, "DMA timeout\n");
706 		ret = -ETIMEDOUT;
707 		goto stop_reset;
708 	}
709 
710 	/* clear status bits */
711 	sh_msiof_reset_str(p);
712 
713 	ret = sh_msiof_spi_stop(p, rx);
714 	if (ret) {
715 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
716 		return ret;
717 	}
718 
719 	if (rx)
720 		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
721 					p->rx_dma_addr, len,
722 					DMA_FROM_DEVICE);
723 
724 	return 0;
725 
726 stop_reset:
727 	sh_msiof_reset_str(p);
728 	sh_msiof_spi_stop(p, rx);
729 stop_tx:
730 	if (tx)
731 		dmaengine_terminate_all(p->master->dma_tx);
732 stop_rx:
733 	if (rx)
734 		dmaengine_terminate_all(p->master->dma_rx);
735 stop_ier:
736 	sh_msiof_write(p, IER, 0);
737 	return ret;
738 }
739 
740 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
741 {
742 	/* src or dst can be unaligned, but not both */
743 	if ((unsigned long)src & 3) {
744 		while (words--) {
745 			*dst++ = swab32(get_unaligned(src));
746 			src++;
747 		}
748 	} else if ((unsigned long)dst & 3) {
749 		while (words--) {
750 			put_unaligned(swab32(*src++), dst);
751 			dst++;
752 		}
753 	} else {
754 		while (words--)
755 			*dst++ = swab32(*src++);
756 	}
757 }
758 
759 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
760 {
761 	/* src or dst can be unaligned, but not both */
762 	if ((unsigned long)src & 3) {
763 		while (words--) {
764 			*dst++ = swahw32(get_unaligned(src));
765 			src++;
766 		}
767 	} else if ((unsigned long)dst & 3) {
768 		while (words--) {
769 			put_unaligned(swahw32(*src++), dst);
770 			dst++;
771 		}
772 	} else {
773 		while (words--)
774 			*dst++ = swahw32(*src++);
775 	}
776 }
777 
778 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
779 {
780 	memcpy(dst, src, words * 4);
781 }
782 
783 static int sh_msiof_transfer_one(struct spi_master *master,
784 				 struct spi_device *spi,
785 				 struct spi_transfer *t)
786 {
787 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
788 	void (*copy32)(u32 *, const u32 *, unsigned int);
789 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
790 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
791 	const void *tx_buf = t->tx_buf;
792 	void *rx_buf = t->rx_buf;
793 	unsigned int len = t->len;
794 	unsigned int bits = t->bits_per_word;
795 	unsigned int bytes_per_word;
796 	unsigned int words;
797 	int n;
798 	bool swab;
799 	int ret;
800 
801 	/* setup clocks (clock already enabled in chipselect()) */
802 	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
803 
804 	while (master->dma_tx && len > 15) {
805 		/*
806 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
807 		 *  words, with byte resp. word swapping.
808 		 */
809 		unsigned int l = min(len, MAX_WDLEN * 4);
810 
811 		if (bits <= 8) {
812 			if (l & 3)
813 				break;
814 			copy32 = copy_bswap32;
815 		} else if (bits <= 16) {
816 			if (l & 1)
817 				break;
818 			copy32 = copy_wswap32;
819 		} else {
820 			copy32 = copy_plain32;
821 		}
822 
823 		if (tx_buf)
824 			copy32(p->tx_dma_page, tx_buf, l / 4);
825 
826 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
827 		if (ret == -EAGAIN) {
828 			pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
829 				     dev_driver_string(&p->pdev->dev),
830 				     dev_name(&p->pdev->dev));
831 			break;
832 		}
833 		if (ret)
834 			return ret;
835 
836 		if (rx_buf) {
837 			copy32(rx_buf, p->rx_dma_page, l / 4);
838 			rx_buf += l;
839 		}
840 		if (tx_buf)
841 			tx_buf += l;
842 
843 		len -= l;
844 		if (!len)
845 			return 0;
846 	}
847 
848 	if (bits <= 8 && len > 15 && !(len & 3)) {
849 		bits = 32;
850 		swab = true;
851 	} else {
852 		swab = false;
853 	}
854 
855 	/* setup bytes per word and fifo read/write functions */
856 	if (bits <= 8) {
857 		bytes_per_word = 1;
858 		tx_fifo = sh_msiof_spi_write_fifo_8;
859 		rx_fifo = sh_msiof_spi_read_fifo_8;
860 	} else if (bits <= 16) {
861 		bytes_per_word = 2;
862 		if ((unsigned long)tx_buf & 0x01)
863 			tx_fifo = sh_msiof_spi_write_fifo_16u;
864 		else
865 			tx_fifo = sh_msiof_spi_write_fifo_16;
866 
867 		if ((unsigned long)rx_buf & 0x01)
868 			rx_fifo = sh_msiof_spi_read_fifo_16u;
869 		else
870 			rx_fifo = sh_msiof_spi_read_fifo_16;
871 	} else if (swab) {
872 		bytes_per_word = 4;
873 		if ((unsigned long)tx_buf & 0x03)
874 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
875 		else
876 			tx_fifo = sh_msiof_spi_write_fifo_s32;
877 
878 		if ((unsigned long)rx_buf & 0x03)
879 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
880 		else
881 			rx_fifo = sh_msiof_spi_read_fifo_s32;
882 	} else {
883 		bytes_per_word = 4;
884 		if ((unsigned long)tx_buf & 0x03)
885 			tx_fifo = sh_msiof_spi_write_fifo_32u;
886 		else
887 			tx_fifo = sh_msiof_spi_write_fifo_32;
888 
889 		if ((unsigned long)rx_buf & 0x03)
890 			rx_fifo = sh_msiof_spi_read_fifo_32u;
891 		else
892 			rx_fifo = sh_msiof_spi_read_fifo_32;
893 	}
894 
895 	/* transfer in fifo sized chunks */
896 	words = len / bytes_per_word;
897 
898 	while (words > 0) {
899 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
900 					   words, bits);
901 		if (n < 0)
902 			return n;
903 
904 		if (tx_buf)
905 			tx_buf += n * bytes_per_word;
906 		if (rx_buf)
907 			rx_buf += n * bytes_per_word;
908 		words -= n;
909 	}
910 
911 	return 0;
912 }
913 
914 static const struct sh_msiof_chipdata sh_data = {
915 	.tx_fifo_size = 64,
916 	.rx_fifo_size = 64,
917 	.master_flags = 0,
918 };
919 
920 static const struct sh_msiof_chipdata r8a779x_data = {
921 	.tx_fifo_size = 64,
922 	.rx_fifo_size = 256,
923 	.master_flags = SPI_MASTER_MUST_TX,
924 };
925 
926 static const struct of_device_id sh_msiof_match[] = {
927 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data },
928 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
929 	{ .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
930 	{ .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
931 	{},
932 };
933 MODULE_DEVICE_TABLE(of, sh_msiof_match);
934 
935 #ifdef CONFIG_OF
936 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
937 {
938 	struct sh_msiof_spi_info *info;
939 	struct device_node *np = dev->of_node;
940 	u32 num_cs = 1;
941 
942 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
943 	if (!info)
944 		return NULL;
945 
946 	/* Parse the MSIOF properties */
947 	of_property_read_u32(np, "num-cs", &num_cs);
948 	of_property_read_u32(np, "renesas,tx-fifo-size",
949 					&info->tx_fifo_override);
950 	of_property_read_u32(np, "renesas,rx-fifo-size",
951 					&info->rx_fifo_override);
952 
953 	info->num_chipselect = num_cs;
954 
955 	return info;
956 }
957 #else
958 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
959 {
960 	return NULL;
961 }
962 #endif
963 
964 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
965 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
966 {
967 	dma_cap_mask_t mask;
968 	struct dma_chan *chan;
969 	struct dma_slave_config cfg;
970 	int ret;
971 
972 	dma_cap_zero(mask);
973 	dma_cap_set(DMA_SLAVE, mask);
974 
975 	chan = dma_request_channel(mask, shdma_chan_filter,
976 				  (void *)(unsigned long)id);
977 	if (!chan) {
978 		dev_warn(dev, "dma_request_channel failed\n");
979 		return NULL;
980 	}
981 
982 	memset(&cfg, 0, sizeof(cfg));
983 	cfg.slave_id = id;
984 	cfg.direction = dir;
985 	if (dir == DMA_MEM_TO_DEV)
986 		cfg.dst_addr = port_addr;
987 	else
988 		cfg.src_addr = port_addr;
989 
990 	ret = dmaengine_slave_config(chan, &cfg);
991 	if (ret) {
992 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
993 		dma_release_channel(chan);
994 		return NULL;
995 	}
996 
997 	return chan;
998 }
999 
1000 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1001 {
1002 	struct platform_device *pdev = p->pdev;
1003 	struct device *dev = &pdev->dev;
1004 	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1005 	const struct resource *res;
1006 	struct spi_master *master;
1007 	struct device *tx_dev, *rx_dev;
1008 
1009 	if (!info || !info->dma_tx_id || !info->dma_rx_id)
1010 		return 0;	/* The driver assumes no error */
1011 
1012 	/* The DMA engine uses the second register set, if present */
1013 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1014 	if (!res)
1015 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1016 
1017 	master = p->master;
1018 	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1019 						   info->dma_tx_id,
1020 						   res->start + TFDR);
1021 	if (!master->dma_tx)
1022 		return -ENODEV;
1023 
1024 	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1025 						   info->dma_rx_id,
1026 						   res->start + RFDR);
1027 	if (!master->dma_rx)
1028 		goto free_tx_chan;
1029 
1030 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1031 	if (!p->tx_dma_page)
1032 		goto free_rx_chan;
1033 
1034 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1035 	if (!p->rx_dma_page)
1036 		goto free_tx_page;
1037 
1038 	tx_dev = master->dma_tx->device->dev;
1039 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1040 					DMA_TO_DEVICE);
1041 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1042 		goto free_rx_page;
1043 
1044 	rx_dev = master->dma_rx->device->dev;
1045 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1046 					DMA_FROM_DEVICE);
1047 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1048 		goto unmap_tx_page;
1049 
1050 	dev_info(dev, "DMA available");
1051 	return 0;
1052 
1053 unmap_tx_page:
1054 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1055 free_rx_page:
1056 	free_page((unsigned long)p->rx_dma_page);
1057 free_tx_page:
1058 	free_page((unsigned long)p->tx_dma_page);
1059 free_rx_chan:
1060 	dma_release_channel(master->dma_rx);
1061 free_tx_chan:
1062 	dma_release_channel(master->dma_tx);
1063 	master->dma_tx = NULL;
1064 	return -ENODEV;
1065 }
1066 
1067 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1068 {
1069 	struct spi_master *master = p->master;
1070 	struct device *dev;
1071 
1072 	if (!master->dma_tx)
1073 		return;
1074 
1075 	dev = &p->pdev->dev;
1076 	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1077 			 PAGE_SIZE, DMA_FROM_DEVICE);
1078 	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1079 			 PAGE_SIZE, DMA_TO_DEVICE);
1080 	free_page((unsigned long)p->rx_dma_page);
1081 	free_page((unsigned long)p->tx_dma_page);
1082 	dma_release_channel(master->dma_rx);
1083 	dma_release_channel(master->dma_tx);
1084 }
1085 
1086 static int sh_msiof_spi_probe(struct platform_device *pdev)
1087 {
1088 	struct resource	*r;
1089 	struct spi_master *master;
1090 	const struct of_device_id *of_id;
1091 	struct sh_msiof_spi_priv *p;
1092 	int i;
1093 	int ret;
1094 
1095 	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1096 	if (master == NULL) {
1097 		dev_err(&pdev->dev, "failed to allocate spi master\n");
1098 		return -ENOMEM;
1099 	}
1100 
1101 	p = spi_master_get_devdata(master);
1102 
1103 	platform_set_drvdata(pdev, p);
1104 	p->master = master;
1105 
1106 	of_id = of_match_device(sh_msiof_match, &pdev->dev);
1107 	if (of_id) {
1108 		p->chipdata = of_id->data;
1109 		p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1110 	} else {
1111 		p->chipdata = (const void *)pdev->id_entry->driver_data;
1112 		p->info = dev_get_platdata(&pdev->dev);
1113 	}
1114 
1115 	if (!p->info) {
1116 		dev_err(&pdev->dev, "failed to obtain device info\n");
1117 		ret = -ENXIO;
1118 		goto err1;
1119 	}
1120 
1121 	init_completion(&p->done);
1122 
1123 	p->clk = devm_clk_get(&pdev->dev, NULL);
1124 	if (IS_ERR(p->clk)) {
1125 		dev_err(&pdev->dev, "cannot get clock\n");
1126 		ret = PTR_ERR(p->clk);
1127 		goto err1;
1128 	}
1129 
1130 	i = platform_get_irq(pdev, 0);
1131 	if (i < 0) {
1132 		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1133 		ret = -ENOENT;
1134 		goto err1;
1135 	}
1136 
1137 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1138 	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1139 	if (IS_ERR(p->mapbase)) {
1140 		ret = PTR_ERR(p->mapbase);
1141 		goto err1;
1142 	}
1143 
1144 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1145 			       dev_name(&pdev->dev), p);
1146 	if (ret) {
1147 		dev_err(&pdev->dev, "unable to request irq\n");
1148 		goto err1;
1149 	}
1150 
1151 	p->pdev = pdev;
1152 	pm_runtime_enable(&pdev->dev);
1153 
1154 	/* Platform data may override FIFO sizes */
1155 	p->tx_fifo_size = p->chipdata->tx_fifo_size;
1156 	p->rx_fifo_size = p->chipdata->rx_fifo_size;
1157 	if (p->info->tx_fifo_override)
1158 		p->tx_fifo_size = p->info->tx_fifo_override;
1159 	if (p->info->rx_fifo_override)
1160 		p->rx_fifo_size = p->info->rx_fifo_override;
1161 
1162 	/* init master code */
1163 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1164 	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1165 	master->flags = p->chipdata->master_flags;
1166 	master->bus_num = pdev->id;
1167 	master->dev.of_node = pdev->dev.of_node;
1168 	master->num_chipselect = p->info->num_chipselect;
1169 	master->setup = sh_msiof_spi_setup;
1170 	master->prepare_message = sh_msiof_prepare_message;
1171 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1172 	master->auto_runtime_pm = true;
1173 	master->transfer_one = sh_msiof_transfer_one;
1174 
1175 	ret = sh_msiof_request_dma(p);
1176 	if (ret < 0)
1177 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1178 
1179 	ret = devm_spi_register_master(&pdev->dev, master);
1180 	if (ret < 0) {
1181 		dev_err(&pdev->dev, "spi_register_master error.\n");
1182 		goto err2;
1183 	}
1184 
1185 	return 0;
1186 
1187  err2:
1188 	sh_msiof_release_dma(p);
1189 	pm_runtime_disable(&pdev->dev);
1190  err1:
1191 	spi_master_put(master);
1192 	return ret;
1193 }
1194 
1195 static int sh_msiof_spi_remove(struct platform_device *pdev)
1196 {
1197 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1198 
1199 	sh_msiof_release_dma(p);
1200 	pm_runtime_disable(&pdev->dev);
1201 	return 0;
1202 }
1203 
1204 static struct platform_device_id spi_driver_ids[] = {
1205 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1206 	{ "spi_r8a7790_msiof",	(kernel_ulong_t)&r8a779x_data },
1207 	{ "spi_r8a7791_msiof",	(kernel_ulong_t)&r8a779x_data },
1208 	{},
1209 };
1210 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1211 
1212 static struct platform_driver sh_msiof_spi_drv = {
1213 	.probe		= sh_msiof_spi_probe,
1214 	.remove		= sh_msiof_spi_remove,
1215 	.id_table	= spi_driver_ids,
1216 	.driver		= {
1217 		.name		= "spi_sh_msiof",
1218 		.owner		= THIS_MODULE,
1219 		.of_match_table = of_match_ptr(sh_msiof_match),
1220 	},
1221 };
1222 module_platform_driver(sh_msiof_spi_drv);
1223 
1224 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1225 MODULE_AUTHOR("Magnus Damm");
1226 MODULE_LICENSE("GPL v2");
1227 MODULE_ALIAS("platform:spi_sh_msiof");
1228