1 /* 2 * SuperH MSIOF SPI Master Interface 3 * 4 * Copyright (c) 2009 Magnus Damm 5 * Copyright (C) 2014 Renesas Electronics Corporation 6 * Copyright (C) 2014-2017 Glider bvba 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 */ 13 14 #include <linux/bitmap.h> 15 #include <linux/clk.h> 16 #include <linux/completion.h> 17 #include <linux/delay.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/dmaengine.h> 20 #include <linux/err.h> 21 #include <linux/gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/interrupt.h> 24 #include <linux/io.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/platform_device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/sh_dma.h> 32 33 #include <linux/spi/sh_msiof.h> 34 #include <linux/spi/spi.h> 35 36 #include <asm/unaligned.h> 37 38 struct sh_msiof_chipdata { 39 u16 tx_fifo_size; 40 u16 rx_fifo_size; 41 u16 master_flags; 42 u16 min_div_pow; 43 }; 44 45 struct sh_msiof_spi_priv { 46 struct spi_master *master; 47 void __iomem *mapbase; 48 struct clk *clk; 49 struct platform_device *pdev; 50 struct sh_msiof_spi_info *info; 51 struct completion done; 52 unsigned int tx_fifo_size; 53 unsigned int rx_fifo_size; 54 unsigned int min_div_pow; 55 void *tx_dma_page; 56 void *rx_dma_page; 57 dma_addr_t tx_dma_addr; 58 dma_addr_t rx_dma_addr; 59 unsigned short unused_ss; 60 bool native_cs_inited; 61 bool native_cs_high; 62 bool slave_aborted; 63 }; 64 65 #define MAX_SS 3 /* Maximum number of native chip selects */ 66 67 #define TMDR1 0x00 /* Transmit Mode Register 1 */ 68 #define TMDR2 0x04 /* Transmit Mode Register 2 */ 69 #define TMDR3 0x08 /* Transmit Mode Register 3 */ 70 #define RMDR1 0x10 /* Receive Mode Register 1 */ 71 #define RMDR2 0x14 /* Receive Mode Register 2 */ 72 #define RMDR3 0x18 /* Receive Mode Register 3 */ 73 #define TSCR 0x20 /* Transmit Clock Select Register */ 74 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */ 75 #define CTR 0x28 /* Control Register */ 76 #define FCTR 0x30 /* FIFO Control Register */ 77 #define STR 0x40 /* Status Register */ 78 #define IER 0x44 /* Interrupt Enable Register */ 79 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */ 80 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */ 81 #define TFDR 0x50 /* Transmit FIFO Data Register */ 82 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */ 83 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */ 84 #define RFDR 0x60 /* Receive FIFO Data Register */ 85 86 /* TMDR1 and RMDR1 */ 87 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */ 88 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */ 89 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */ 90 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */ 91 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */ 92 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */ 93 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */ 94 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */ 95 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */ 96 #define MDR1_FLD_SHIFT 2 97 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */ 98 /* TMDR1 */ 99 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */ 100 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */ 101 #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */ 102 103 /* TMDR2 and RMDR2 */ 104 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */ 105 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ 106 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */ 107 108 /* TSCR and RSCR */ 109 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */ 110 #define SCR_BRPS(i) (((i) - 1) << 8) 111 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */ 112 #define SCR_BRDV_DIV_2 0x0000 113 #define SCR_BRDV_DIV_4 0x0001 114 #define SCR_BRDV_DIV_8 0x0002 115 #define SCR_BRDV_DIV_16 0x0003 116 #define SCR_BRDV_DIV_32 0x0004 117 #define SCR_BRDV_DIV_1 0x0007 118 119 /* CTR */ 120 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */ 121 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */ 122 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */ 123 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */ 124 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */ 125 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */ 126 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */ 127 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */ 128 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */ 129 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */ 130 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */ 131 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */ 132 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */ 133 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */ 134 #define CTR_TXE 0x00000200 /* Transmit Enable */ 135 #define CTR_RXE 0x00000100 /* Receive Enable */ 136 137 /* FCTR */ 138 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */ 139 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */ 140 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */ 141 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */ 142 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */ 143 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */ 144 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */ 145 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */ 146 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */ 147 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */ 148 #define FCTR_TFUA_SHIFT 20 149 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT) 150 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */ 151 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */ 152 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */ 153 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */ 154 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */ 155 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */ 156 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */ 157 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */ 158 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */ 159 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */ 160 #define FCTR_RFUA_SHIFT 4 161 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT) 162 163 /* STR */ 164 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */ 165 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */ 166 #define STR_TEOF 0x00800000 /* Frame Transmission End */ 167 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */ 168 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */ 169 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */ 170 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */ 171 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */ 172 #define STR_REOF 0x00000080 /* Frame Reception End */ 173 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */ 174 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */ 175 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */ 176 177 /* IER */ 178 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */ 179 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */ 180 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */ 181 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */ 182 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */ 183 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */ 184 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */ 185 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */ 186 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */ 187 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */ 188 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */ 189 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */ 190 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */ 191 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */ 192 193 194 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) 195 { 196 switch (reg_offs) { 197 case TSCR: 198 case RSCR: 199 return ioread16(p->mapbase + reg_offs); 200 default: 201 return ioread32(p->mapbase + reg_offs); 202 } 203 } 204 205 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, 206 u32 value) 207 { 208 switch (reg_offs) { 209 case TSCR: 210 case RSCR: 211 iowrite16(value, p->mapbase + reg_offs); 212 break; 213 default: 214 iowrite32(value, p->mapbase + reg_offs); 215 break; 216 } 217 } 218 219 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, 220 u32 clr, u32 set) 221 { 222 u32 mask = clr | set; 223 u32 data; 224 int k; 225 226 data = sh_msiof_read(p, CTR); 227 data &= ~clr; 228 data |= set; 229 sh_msiof_write(p, CTR, data); 230 231 for (k = 100; k > 0; k--) { 232 if ((sh_msiof_read(p, CTR) & mask) == set) 233 break; 234 235 udelay(10); 236 } 237 238 return k > 0 ? 0 : -ETIMEDOUT; 239 } 240 241 static irqreturn_t sh_msiof_spi_irq(int irq, void *data) 242 { 243 struct sh_msiof_spi_priv *p = data; 244 245 /* just disable the interrupt and wake up */ 246 sh_msiof_write(p, IER, 0); 247 complete(&p->done); 248 249 return IRQ_HANDLED; 250 } 251 252 static const u32 sh_msiof_spi_div_array[] = { 253 SCR_BRDV_DIV_1, SCR_BRDV_DIV_2, SCR_BRDV_DIV_4, 254 SCR_BRDV_DIV_8, SCR_BRDV_DIV_16, SCR_BRDV_DIV_32, 255 }; 256 257 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, 258 unsigned long parent_rate, u32 spi_hz) 259 { 260 unsigned long div; 261 u32 brps, scr; 262 unsigned int div_pow = p->min_div_pow; 263 264 if (!spi_hz || !parent_rate) { 265 WARN(1, "Invalid clock rate parameters %lu and %u\n", 266 parent_rate, spi_hz); 267 return; 268 } 269 270 div = DIV_ROUND_UP(parent_rate, spi_hz); 271 if (div <= 1024) { 272 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */ 273 if (!div_pow && div <= 32 && div > 2) 274 div_pow = 1; 275 276 if (div_pow) 277 brps = (div + 1) >> div_pow; 278 else 279 brps = div; 280 281 for (; brps > 32; div_pow++) 282 brps = (brps + 1) >> 1; 283 } else { 284 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */ 285 dev_err(&p->pdev->dev, 286 "Requested SPI transfer rate %d is too low\n", spi_hz); 287 div_pow = 5; 288 brps = 32; 289 } 290 291 scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps); 292 sh_msiof_write(p, TSCR, scr); 293 if (!(p->master->flags & SPI_MASTER_MUST_TX)) 294 sh_msiof_write(p, RSCR, scr); 295 } 296 297 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) 298 { 299 /* 300 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl 301 * b'000 : 0 302 * b'001 : 100 303 * b'010 : 200 304 * b'011 (SYNCDL only) : 300 305 * b'101 : 50 306 * b'110 : 150 307 */ 308 if (dtdl_or_syncdl % 100) 309 return dtdl_or_syncdl / 100 + 5; 310 else 311 return dtdl_or_syncdl / 100; 312 } 313 314 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) 315 { 316 u32 val; 317 318 if (!p->info) 319 return 0; 320 321 /* check if DTDL and SYNCDL is allowed value */ 322 if (p->info->dtdl > 200 || p->info->syncdl > 300) { 323 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); 324 return 0; 325 } 326 327 /* check if the sum of DTDL and SYNCDL becomes an integer value */ 328 if ((p->info->dtdl + p->info->syncdl) % 100) { 329 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); 330 return 0; 331 } 332 333 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT; 334 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT; 335 336 return val; 337 } 338 339 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss, 340 u32 cpol, u32 cpha, 341 u32 tx_hi_z, u32 lsb_first, u32 cs_high) 342 { 343 u32 tmp; 344 int edge; 345 346 /* 347 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG 348 * 0 0 10 10 1 1 349 * 0 1 10 10 0 0 350 * 1 0 11 11 0 0 351 * 1 1 11 11 1 1 352 */ 353 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP; 354 tmp |= !cs_high << MDR1_SYNCAC_SHIFT; 355 tmp |= lsb_first << MDR1_BITLSB_SHIFT; 356 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); 357 if (spi_controller_is_slave(p->master)) { 358 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON); 359 } else { 360 sh_msiof_write(p, TMDR1, 361 tmp | MDR1_TRMD | TMDR1_PCON | 362 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT); 363 } 364 if (p->master->flags & SPI_MASTER_MUST_TX) { 365 /* These bits are reserved if RX needs TX */ 366 tmp &= ~0x0000ffff; 367 } 368 sh_msiof_write(p, RMDR1, tmp); 369 370 tmp = 0; 371 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT; 372 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT; 373 374 edge = cpol ^ !cpha; 375 376 tmp |= edge << CTR_TEDG_SHIFT; 377 tmp |= edge << CTR_REDG_SHIFT; 378 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW; 379 sh_msiof_write(p, CTR, tmp); 380 } 381 382 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, 383 const void *tx_buf, void *rx_buf, 384 u32 bits, u32 words) 385 { 386 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words); 387 388 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX)) 389 sh_msiof_write(p, TMDR2, dr2); 390 else 391 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1); 392 393 if (rx_buf) 394 sh_msiof_write(p, RMDR2, dr2); 395 } 396 397 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) 398 { 399 sh_msiof_write(p, STR, sh_msiof_read(p, STR)); 400 } 401 402 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, 403 const void *tx_buf, int words, int fs) 404 { 405 const u8 *buf_8 = tx_buf; 406 int k; 407 408 for (k = 0; k < words; k++) 409 sh_msiof_write(p, TFDR, buf_8[k] << fs); 410 } 411 412 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, 413 const void *tx_buf, int words, int fs) 414 { 415 const u16 *buf_16 = tx_buf; 416 int k; 417 418 for (k = 0; k < words; k++) 419 sh_msiof_write(p, TFDR, buf_16[k] << fs); 420 } 421 422 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, 423 const void *tx_buf, int words, int fs) 424 { 425 const u16 *buf_16 = tx_buf; 426 int k; 427 428 for (k = 0; k < words; k++) 429 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs); 430 } 431 432 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, 433 const void *tx_buf, int words, int fs) 434 { 435 const u32 *buf_32 = tx_buf; 436 int k; 437 438 for (k = 0; k < words; k++) 439 sh_msiof_write(p, TFDR, buf_32[k] << fs); 440 } 441 442 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, 443 const void *tx_buf, int words, int fs) 444 { 445 const u32 *buf_32 = tx_buf; 446 int k; 447 448 for (k = 0; k < words; k++) 449 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs); 450 } 451 452 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, 453 const void *tx_buf, int words, int fs) 454 { 455 const u32 *buf_32 = tx_buf; 456 int k; 457 458 for (k = 0; k < words; k++) 459 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs)); 460 } 461 462 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, 463 const void *tx_buf, int words, int fs) 464 { 465 const u32 *buf_32 = tx_buf; 466 int k; 467 468 for (k = 0; k < words; k++) 469 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs)); 470 } 471 472 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, 473 void *rx_buf, int words, int fs) 474 { 475 u8 *buf_8 = rx_buf; 476 int k; 477 478 for (k = 0; k < words; k++) 479 buf_8[k] = sh_msiof_read(p, RFDR) >> fs; 480 } 481 482 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, 483 void *rx_buf, int words, int fs) 484 { 485 u16 *buf_16 = rx_buf; 486 int k; 487 488 for (k = 0; k < words; k++) 489 buf_16[k] = sh_msiof_read(p, RFDR) >> fs; 490 } 491 492 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, 493 void *rx_buf, int words, int fs) 494 { 495 u16 *buf_16 = rx_buf; 496 int k; 497 498 for (k = 0; k < words; k++) 499 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]); 500 } 501 502 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, 503 void *rx_buf, int words, int fs) 504 { 505 u32 *buf_32 = rx_buf; 506 int k; 507 508 for (k = 0; k < words; k++) 509 buf_32[k] = sh_msiof_read(p, RFDR) >> fs; 510 } 511 512 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, 513 void *rx_buf, int words, int fs) 514 { 515 u32 *buf_32 = rx_buf; 516 int k; 517 518 for (k = 0; k < words; k++) 519 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]); 520 } 521 522 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, 523 void *rx_buf, int words, int fs) 524 { 525 u32 *buf_32 = rx_buf; 526 int k; 527 528 for (k = 0; k < words; k++) 529 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs); 530 } 531 532 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, 533 void *rx_buf, int words, int fs) 534 { 535 u32 *buf_32 = rx_buf; 536 int k; 537 538 for (k = 0; k < words; k++) 539 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]); 540 } 541 542 static int sh_msiof_spi_setup(struct spi_device *spi) 543 { 544 struct device_node *np = spi->master->dev.of_node; 545 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master); 546 u32 clr, set, tmp; 547 548 if (!np) { 549 /* 550 * Use spi->controller_data for CS (same strategy as spi_gpio), 551 * if any. otherwise let HW control CS 552 */ 553 spi->cs_gpio = (uintptr_t)spi->controller_data; 554 } 555 556 if (gpio_is_valid(spi->cs_gpio)) { 557 gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH)); 558 return 0; 559 } 560 561 if (spi_controller_is_slave(p->master)) 562 return 0; 563 564 if (p->native_cs_inited && 565 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH))) 566 return 0; 567 568 /* Configure native chip select mode/polarity early */ 569 clr = MDR1_SYNCMD_MASK; 570 set = MDR1_SYNCMD_SPI; 571 if (spi->mode & SPI_CS_HIGH) 572 clr |= BIT(MDR1_SYNCAC_SHIFT); 573 else 574 set |= BIT(MDR1_SYNCAC_SHIFT); 575 pm_runtime_get_sync(&p->pdev->dev); 576 tmp = sh_msiof_read(p, TMDR1) & ~clr; 577 sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON); 578 tmp = sh_msiof_read(p, RMDR1) & ~clr; 579 sh_msiof_write(p, RMDR1, tmp | set); 580 pm_runtime_put(&p->pdev->dev); 581 p->native_cs_high = spi->mode & SPI_CS_HIGH; 582 p->native_cs_inited = true; 583 return 0; 584 } 585 586 static int sh_msiof_prepare_message(struct spi_master *master, 587 struct spi_message *msg) 588 { 589 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 590 const struct spi_device *spi = msg->spi; 591 u32 ss, cs_high; 592 593 /* Configure pins before asserting CS */ 594 if (gpio_is_valid(spi->cs_gpio)) { 595 ss = p->unused_ss; 596 cs_high = p->native_cs_high; 597 } else { 598 ss = spi->chip_select; 599 cs_high = !!(spi->mode & SPI_CS_HIGH); 600 } 601 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL), 602 !!(spi->mode & SPI_CPHA), 603 !!(spi->mode & SPI_3WIRE), 604 !!(spi->mode & SPI_LSB_FIRST), cs_high); 605 return 0; 606 } 607 608 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) 609 { 610 bool slave = spi_controller_is_slave(p->master); 611 int ret = 0; 612 613 /* setup clock and rx/tx signals */ 614 if (!slave) 615 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE); 616 if (rx_buf && !ret) 617 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE); 618 if (!ret) 619 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE); 620 621 /* start by setting frame bit */ 622 if (!ret && !slave) 623 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE); 624 625 return ret; 626 } 627 628 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) 629 { 630 bool slave = spi_controller_is_slave(p->master); 631 int ret = 0; 632 633 /* shut down frame, rx/tx and clock signals */ 634 if (!slave) 635 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0); 636 if (!ret) 637 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0); 638 if (rx_buf && !ret) 639 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0); 640 if (!ret && !slave) 641 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0); 642 643 return ret; 644 } 645 646 static int sh_msiof_slave_abort(struct spi_master *master) 647 { 648 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 649 650 p->slave_aborted = true; 651 complete(&p->done); 652 return 0; 653 } 654 655 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p) 656 { 657 if (spi_controller_is_slave(p->master)) { 658 if (wait_for_completion_interruptible(&p->done) || 659 p->slave_aborted) { 660 dev_dbg(&p->pdev->dev, "interrupted\n"); 661 return -EINTR; 662 } 663 } else { 664 if (!wait_for_completion_timeout(&p->done, HZ)) { 665 dev_err(&p->pdev->dev, "timeout\n"); 666 return -ETIMEDOUT; 667 } 668 } 669 670 return 0; 671 } 672 673 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, 674 void (*tx_fifo)(struct sh_msiof_spi_priv *, 675 const void *, int, int), 676 void (*rx_fifo)(struct sh_msiof_spi_priv *, 677 void *, int, int), 678 const void *tx_buf, void *rx_buf, 679 int words, int bits) 680 { 681 int fifo_shift; 682 int ret; 683 684 /* limit maximum word transfer to rx/tx fifo size */ 685 if (tx_buf) 686 words = min_t(int, words, p->tx_fifo_size); 687 if (rx_buf) 688 words = min_t(int, words, p->rx_fifo_size); 689 690 /* the fifo contents need shifting */ 691 fifo_shift = 32 - bits; 692 693 /* default FIFO watermarks for PIO */ 694 sh_msiof_write(p, FCTR, 0); 695 696 /* setup msiof transfer mode registers */ 697 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); 698 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE); 699 700 /* write tx fifo */ 701 if (tx_buf) 702 tx_fifo(p, tx_buf, words, fifo_shift); 703 704 reinit_completion(&p->done); 705 p->slave_aborted = false; 706 707 ret = sh_msiof_spi_start(p, rx_buf); 708 if (ret) { 709 dev_err(&p->pdev->dev, "failed to start hardware\n"); 710 goto stop_ier; 711 } 712 713 /* wait for tx fifo to be emptied / rx fifo to be filled */ 714 ret = sh_msiof_wait_for_completion(p); 715 if (ret) 716 goto stop_reset; 717 718 /* read rx fifo */ 719 if (rx_buf) 720 rx_fifo(p, rx_buf, words, fifo_shift); 721 722 /* clear status bits */ 723 sh_msiof_reset_str(p); 724 725 ret = sh_msiof_spi_stop(p, rx_buf); 726 if (ret) { 727 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 728 return ret; 729 } 730 731 return words; 732 733 stop_reset: 734 sh_msiof_reset_str(p); 735 sh_msiof_spi_stop(p, rx_buf); 736 stop_ier: 737 sh_msiof_write(p, IER, 0); 738 return ret; 739 } 740 741 static void sh_msiof_dma_complete(void *arg) 742 { 743 struct sh_msiof_spi_priv *p = arg; 744 745 sh_msiof_write(p, IER, 0); 746 complete(&p->done); 747 } 748 749 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, 750 void *rx, unsigned int len) 751 { 752 u32 ier_bits = 0; 753 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 754 dma_cookie_t cookie; 755 int ret; 756 757 /* First prepare and submit the DMA request(s), as this may fail */ 758 if (rx) { 759 ier_bits |= IER_RDREQE | IER_RDMAE; 760 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx, 761 p->rx_dma_addr, len, DMA_DEV_TO_MEM, 762 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 763 if (!desc_rx) 764 return -EAGAIN; 765 766 desc_rx->callback = sh_msiof_dma_complete; 767 desc_rx->callback_param = p; 768 cookie = dmaengine_submit(desc_rx); 769 if (dma_submit_error(cookie)) 770 return cookie; 771 } 772 773 if (tx) { 774 ier_bits |= IER_TDREQE | IER_TDMAE; 775 dma_sync_single_for_device(p->master->dma_tx->device->dev, 776 p->tx_dma_addr, len, DMA_TO_DEVICE); 777 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx, 778 p->tx_dma_addr, len, DMA_MEM_TO_DEV, 779 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 780 if (!desc_tx) { 781 ret = -EAGAIN; 782 goto no_dma_tx; 783 } 784 785 if (rx) { 786 /* No callback */ 787 desc_tx->callback = NULL; 788 } else { 789 desc_tx->callback = sh_msiof_dma_complete; 790 desc_tx->callback_param = p; 791 } 792 cookie = dmaengine_submit(desc_tx); 793 if (dma_submit_error(cookie)) { 794 ret = cookie; 795 goto no_dma_tx; 796 } 797 } 798 799 /* 1 stage FIFO watermarks for DMA */ 800 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1); 801 802 /* setup msiof transfer mode registers (32-bit words) */ 803 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); 804 805 sh_msiof_write(p, IER, ier_bits); 806 807 reinit_completion(&p->done); 808 p->slave_aborted = false; 809 810 /* Now start DMA */ 811 if (rx) 812 dma_async_issue_pending(p->master->dma_rx); 813 if (tx) 814 dma_async_issue_pending(p->master->dma_tx); 815 816 ret = sh_msiof_spi_start(p, rx); 817 if (ret) { 818 dev_err(&p->pdev->dev, "failed to start hardware\n"); 819 goto stop_dma; 820 } 821 822 /* wait for tx/rx DMA completion */ 823 ret = sh_msiof_wait_for_completion(p); 824 if (ret) 825 goto stop_reset; 826 827 if (!rx) { 828 reinit_completion(&p->done); 829 sh_msiof_write(p, IER, IER_TEOFE); 830 831 /* wait for tx fifo to be emptied */ 832 ret = sh_msiof_wait_for_completion(p); 833 if (ret) 834 goto stop_reset; 835 } 836 837 /* clear status bits */ 838 sh_msiof_reset_str(p); 839 840 ret = sh_msiof_spi_stop(p, rx); 841 if (ret) { 842 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 843 return ret; 844 } 845 846 if (rx) 847 dma_sync_single_for_cpu(p->master->dma_rx->device->dev, 848 p->rx_dma_addr, len, 849 DMA_FROM_DEVICE); 850 851 return 0; 852 853 stop_reset: 854 sh_msiof_reset_str(p); 855 sh_msiof_spi_stop(p, rx); 856 stop_dma: 857 if (tx) 858 dmaengine_terminate_all(p->master->dma_tx); 859 no_dma_tx: 860 if (rx) 861 dmaengine_terminate_all(p->master->dma_rx); 862 sh_msiof_write(p, IER, 0); 863 return ret; 864 } 865 866 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) 867 { 868 /* src or dst can be unaligned, but not both */ 869 if ((unsigned long)src & 3) { 870 while (words--) { 871 *dst++ = swab32(get_unaligned(src)); 872 src++; 873 } 874 } else if ((unsigned long)dst & 3) { 875 while (words--) { 876 put_unaligned(swab32(*src++), dst); 877 dst++; 878 } 879 } else { 880 while (words--) 881 *dst++ = swab32(*src++); 882 } 883 } 884 885 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) 886 { 887 /* src or dst can be unaligned, but not both */ 888 if ((unsigned long)src & 3) { 889 while (words--) { 890 *dst++ = swahw32(get_unaligned(src)); 891 src++; 892 } 893 } else if ((unsigned long)dst & 3) { 894 while (words--) { 895 put_unaligned(swahw32(*src++), dst); 896 dst++; 897 } 898 } else { 899 while (words--) 900 *dst++ = swahw32(*src++); 901 } 902 } 903 904 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) 905 { 906 memcpy(dst, src, words * 4); 907 } 908 909 static int sh_msiof_transfer_one(struct spi_master *master, 910 struct spi_device *spi, 911 struct spi_transfer *t) 912 { 913 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 914 void (*copy32)(u32 *, const u32 *, unsigned int); 915 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); 916 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); 917 const void *tx_buf = t->tx_buf; 918 void *rx_buf = t->rx_buf; 919 unsigned int len = t->len; 920 unsigned int bits = t->bits_per_word; 921 unsigned int bytes_per_word; 922 unsigned int words; 923 int n; 924 bool swab; 925 int ret; 926 927 /* setup clocks (clock already enabled in chipselect()) */ 928 if (!spi_controller_is_slave(p->master)) 929 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz); 930 931 while (master->dma_tx && len > 15) { 932 /* 933 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit 934 * words, with byte resp. word swapping. 935 */ 936 unsigned int l = 0; 937 938 if (tx_buf) 939 l = min(len, p->tx_fifo_size * 4); 940 if (rx_buf) 941 l = min(len, p->rx_fifo_size * 4); 942 943 if (bits <= 8) { 944 if (l & 3) 945 break; 946 copy32 = copy_bswap32; 947 } else if (bits <= 16) { 948 if (l & 3) 949 break; 950 copy32 = copy_wswap32; 951 } else { 952 copy32 = copy_plain32; 953 } 954 955 if (tx_buf) 956 copy32(p->tx_dma_page, tx_buf, l / 4); 957 958 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); 959 if (ret == -EAGAIN) { 960 dev_warn_once(&p->pdev->dev, 961 "DMA not available, falling back to PIO\n"); 962 break; 963 } 964 if (ret) 965 return ret; 966 967 if (rx_buf) { 968 copy32(rx_buf, p->rx_dma_page, l / 4); 969 rx_buf += l; 970 } 971 if (tx_buf) 972 tx_buf += l; 973 974 len -= l; 975 if (!len) 976 return 0; 977 } 978 979 if (bits <= 8 && len > 15 && !(len & 3)) { 980 bits = 32; 981 swab = true; 982 } else { 983 swab = false; 984 } 985 986 /* setup bytes per word and fifo read/write functions */ 987 if (bits <= 8) { 988 bytes_per_word = 1; 989 tx_fifo = sh_msiof_spi_write_fifo_8; 990 rx_fifo = sh_msiof_spi_read_fifo_8; 991 } else if (bits <= 16) { 992 bytes_per_word = 2; 993 if ((unsigned long)tx_buf & 0x01) 994 tx_fifo = sh_msiof_spi_write_fifo_16u; 995 else 996 tx_fifo = sh_msiof_spi_write_fifo_16; 997 998 if ((unsigned long)rx_buf & 0x01) 999 rx_fifo = sh_msiof_spi_read_fifo_16u; 1000 else 1001 rx_fifo = sh_msiof_spi_read_fifo_16; 1002 } else if (swab) { 1003 bytes_per_word = 4; 1004 if ((unsigned long)tx_buf & 0x03) 1005 tx_fifo = sh_msiof_spi_write_fifo_s32u; 1006 else 1007 tx_fifo = sh_msiof_spi_write_fifo_s32; 1008 1009 if ((unsigned long)rx_buf & 0x03) 1010 rx_fifo = sh_msiof_spi_read_fifo_s32u; 1011 else 1012 rx_fifo = sh_msiof_spi_read_fifo_s32; 1013 } else { 1014 bytes_per_word = 4; 1015 if ((unsigned long)tx_buf & 0x03) 1016 tx_fifo = sh_msiof_spi_write_fifo_32u; 1017 else 1018 tx_fifo = sh_msiof_spi_write_fifo_32; 1019 1020 if ((unsigned long)rx_buf & 0x03) 1021 rx_fifo = sh_msiof_spi_read_fifo_32u; 1022 else 1023 rx_fifo = sh_msiof_spi_read_fifo_32; 1024 } 1025 1026 /* transfer in fifo sized chunks */ 1027 words = len / bytes_per_word; 1028 1029 while (words > 0) { 1030 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, 1031 words, bits); 1032 if (n < 0) 1033 return n; 1034 1035 if (tx_buf) 1036 tx_buf += n * bytes_per_word; 1037 if (rx_buf) 1038 rx_buf += n * bytes_per_word; 1039 words -= n; 1040 } 1041 1042 return 0; 1043 } 1044 1045 static const struct sh_msiof_chipdata sh_data = { 1046 .tx_fifo_size = 64, 1047 .rx_fifo_size = 64, 1048 .master_flags = 0, 1049 .min_div_pow = 0, 1050 }; 1051 1052 static const struct sh_msiof_chipdata rcar_gen2_data = { 1053 .tx_fifo_size = 64, 1054 .rx_fifo_size = 64, 1055 .master_flags = SPI_MASTER_MUST_TX, 1056 .min_div_pow = 0, 1057 }; 1058 1059 static const struct sh_msiof_chipdata rcar_gen3_data = { 1060 .tx_fifo_size = 64, 1061 .rx_fifo_size = 64, 1062 .master_flags = SPI_MASTER_MUST_TX, 1063 .min_div_pow = 1, 1064 }; 1065 1066 static const struct of_device_id sh_msiof_match[] = { 1067 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, 1068 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data }, 1069 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data }, 1070 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data }, 1071 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data }, 1072 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data }, 1073 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data }, 1074 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data }, 1075 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data }, 1076 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data }, 1077 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data }, 1078 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */ 1079 {}, 1080 }; 1081 MODULE_DEVICE_TABLE(of, sh_msiof_match); 1082 1083 #ifdef CONFIG_OF 1084 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 1085 { 1086 struct sh_msiof_spi_info *info; 1087 struct device_node *np = dev->of_node; 1088 u32 num_cs = 1; 1089 1090 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); 1091 if (!info) 1092 return NULL; 1093 1094 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE 1095 : MSIOF_SPI_MASTER; 1096 1097 /* Parse the MSIOF properties */ 1098 if (info->mode == MSIOF_SPI_MASTER) 1099 of_property_read_u32(np, "num-cs", &num_cs); 1100 of_property_read_u32(np, "renesas,tx-fifo-size", 1101 &info->tx_fifo_override); 1102 of_property_read_u32(np, "renesas,rx-fifo-size", 1103 &info->rx_fifo_override); 1104 of_property_read_u32(np, "renesas,dtdl", &info->dtdl); 1105 of_property_read_u32(np, "renesas,syncdl", &info->syncdl); 1106 1107 info->num_chipselect = num_cs; 1108 1109 return info; 1110 } 1111 #else 1112 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 1113 { 1114 return NULL; 1115 } 1116 #endif 1117 1118 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p) 1119 { 1120 struct device *dev = &p->pdev->dev; 1121 unsigned int used_ss_mask = 0; 1122 unsigned int cs_gpios = 0; 1123 unsigned int num_cs, i; 1124 int ret; 1125 1126 ret = gpiod_count(dev, "cs"); 1127 if (ret <= 0) 1128 return 0; 1129 1130 num_cs = max_t(unsigned int, ret, p->master->num_chipselect); 1131 for (i = 0; i < num_cs; i++) { 1132 struct gpio_desc *gpiod; 1133 1134 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS); 1135 if (!IS_ERR(gpiod)) { 1136 cs_gpios++; 1137 continue; 1138 } 1139 1140 if (PTR_ERR(gpiod) != -ENOENT) 1141 return PTR_ERR(gpiod); 1142 1143 if (i >= MAX_SS) { 1144 dev_err(dev, "Invalid native chip select %d\n", i); 1145 return -EINVAL; 1146 } 1147 used_ss_mask |= BIT(i); 1148 } 1149 p->unused_ss = ffz(used_ss_mask); 1150 if (cs_gpios && p->unused_ss >= MAX_SS) { 1151 dev_err(dev, "No unused native chip select available\n"); 1152 return -EINVAL; 1153 } 1154 return 0; 1155 } 1156 1157 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, 1158 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) 1159 { 1160 dma_cap_mask_t mask; 1161 struct dma_chan *chan; 1162 struct dma_slave_config cfg; 1163 int ret; 1164 1165 dma_cap_zero(mask); 1166 dma_cap_set(DMA_SLAVE, mask); 1167 1168 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1169 (void *)(unsigned long)id, dev, 1170 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1171 if (!chan) { 1172 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1173 return NULL; 1174 } 1175 1176 memset(&cfg, 0, sizeof(cfg)); 1177 cfg.direction = dir; 1178 if (dir == DMA_MEM_TO_DEV) { 1179 cfg.dst_addr = port_addr; 1180 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1181 } else { 1182 cfg.src_addr = port_addr; 1183 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1184 } 1185 1186 ret = dmaengine_slave_config(chan, &cfg); 1187 if (ret) { 1188 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1189 dma_release_channel(chan); 1190 return NULL; 1191 } 1192 1193 return chan; 1194 } 1195 1196 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) 1197 { 1198 struct platform_device *pdev = p->pdev; 1199 struct device *dev = &pdev->dev; 1200 const struct sh_msiof_spi_info *info = dev_get_platdata(dev); 1201 unsigned int dma_tx_id, dma_rx_id; 1202 const struct resource *res; 1203 struct spi_master *master; 1204 struct device *tx_dev, *rx_dev; 1205 1206 if (dev->of_node) { 1207 /* In the OF case we will get the slave IDs from the DT */ 1208 dma_tx_id = 0; 1209 dma_rx_id = 0; 1210 } else if (info && info->dma_tx_id && info->dma_rx_id) { 1211 dma_tx_id = info->dma_tx_id; 1212 dma_rx_id = info->dma_rx_id; 1213 } else { 1214 /* The driver assumes no error */ 1215 return 0; 1216 } 1217 1218 /* The DMA engine uses the second register set, if present */ 1219 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1220 if (!res) 1221 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1222 1223 master = p->master; 1224 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, 1225 dma_tx_id, 1226 res->start + TFDR); 1227 if (!master->dma_tx) 1228 return -ENODEV; 1229 1230 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, 1231 dma_rx_id, 1232 res->start + RFDR); 1233 if (!master->dma_rx) 1234 goto free_tx_chan; 1235 1236 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1237 if (!p->tx_dma_page) 1238 goto free_rx_chan; 1239 1240 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1241 if (!p->rx_dma_page) 1242 goto free_tx_page; 1243 1244 tx_dev = master->dma_tx->device->dev; 1245 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, 1246 DMA_TO_DEVICE); 1247 if (dma_mapping_error(tx_dev, p->tx_dma_addr)) 1248 goto free_rx_page; 1249 1250 rx_dev = master->dma_rx->device->dev; 1251 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, 1252 DMA_FROM_DEVICE); 1253 if (dma_mapping_error(rx_dev, p->rx_dma_addr)) 1254 goto unmap_tx_page; 1255 1256 dev_info(dev, "DMA available"); 1257 return 0; 1258 1259 unmap_tx_page: 1260 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); 1261 free_rx_page: 1262 free_page((unsigned long)p->rx_dma_page); 1263 free_tx_page: 1264 free_page((unsigned long)p->tx_dma_page); 1265 free_rx_chan: 1266 dma_release_channel(master->dma_rx); 1267 free_tx_chan: 1268 dma_release_channel(master->dma_tx); 1269 master->dma_tx = NULL; 1270 return -ENODEV; 1271 } 1272 1273 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) 1274 { 1275 struct spi_master *master = p->master; 1276 1277 if (!master->dma_tx) 1278 return; 1279 1280 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr, 1281 PAGE_SIZE, DMA_FROM_DEVICE); 1282 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr, 1283 PAGE_SIZE, DMA_TO_DEVICE); 1284 free_page((unsigned long)p->rx_dma_page); 1285 free_page((unsigned long)p->tx_dma_page); 1286 dma_release_channel(master->dma_rx); 1287 dma_release_channel(master->dma_tx); 1288 } 1289 1290 static int sh_msiof_spi_probe(struct platform_device *pdev) 1291 { 1292 struct resource *r; 1293 struct spi_master *master; 1294 const struct sh_msiof_chipdata *chipdata; 1295 struct sh_msiof_spi_info *info; 1296 struct sh_msiof_spi_priv *p; 1297 int i; 1298 int ret; 1299 1300 chipdata = of_device_get_match_data(&pdev->dev); 1301 if (chipdata) { 1302 info = sh_msiof_spi_parse_dt(&pdev->dev); 1303 } else { 1304 chipdata = (const void *)pdev->id_entry->driver_data; 1305 info = dev_get_platdata(&pdev->dev); 1306 } 1307 1308 if (!info) { 1309 dev_err(&pdev->dev, "failed to obtain device info\n"); 1310 return -ENXIO; 1311 } 1312 1313 if (info->mode == MSIOF_SPI_SLAVE) 1314 master = spi_alloc_slave(&pdev->dev, 1315 sizeof(struct sh_msiof_spi_priv)); 1316 else 1317 master = spi_alloc_master(&pdev->dev, 1318 sizeof(struct sh_msiof_spi_priv)); 1319 if (master == NULL) 1320 return -ENOMEM; 1321 1322 p = spi_master_get_devdata(master); 1323 1324 platform_set_drvdata(pdev, p); 1325 p->master = master; 1326 p->info = info; 1327 p->min_div_pow = chipdata->min_div_pow; 1328 1329 init_completion(&p->done); 1330 1331 p->clk = devm_clk_get(&pdev->dev, NULL); 1332 if (IS_ERR(p->clk)) { 1333 dev_err(&pdev->dev, "cannot get clock\n"); 1334 ret = PTR_ERR(p->clk); 1335 goto err1; 1336 } 1337 1338 i = platform_get_irq(pdev, 0); 1339 if (i < 0) { 1340 dev_err(&pdev->dev, "cannot get platform IRQ\n"); 1341 ret = -ENOENT; 1342 goto err1; 1343 } 1344 1345 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1346 p->mapbase = devm_ioremap_resource(&pdev->dev, r); 1347 if (IS_ERR(p->mapbase)) { 1348 ret = PTR_ERR(p->mapbase); 1349 goto err1; 1350 } 1351 1352 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, 1353 dev_name(&pdev->dev), p); 1354 if (ret) { 1355 dev_err(&pdev->dev, "unable to request irq\n"); 1356 goto err1; 1357 } 1358 1359 p->pdev = pdev; 1360 pm_runtime_enable(&pdev->dev); 1361 1362 /* Platform data may override FIFO sizes */ 1363 p->tx_fifo_size = chipdata->tx_fifo_size; 1364 p->rx_fifo_size = chipdata->rx_fifo_size; 1365 if (p->info->tx_fifo_override) 1366 p->tx_fifo_size = p->info->tx_fifo_override; 1367 if (p->info->rx_fifo_override) 1368 p->rx_fifo_size = p->info->rx_fifo_override; 1369 1370 /* Setup GPIO chip selects */ 1371 master->num_chipselect = p->info->num_chipselect; 1372 ret = sh_msiof_get_cs_gpios(p); 1373 if (ret) 1374 goto err1; 1375 1376 /* init master code */ 1377 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1378 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; 1379 master->flags = chipdata->master_flags; 1380 master->bus_num = pdev->id; 1381 master->dev.of_node = pdev->dev.of_node; 1382 master->setup = sh_msiof_spi_setup; 1383 master->prepare_message = sh_msiof_prepare_message; 1384 master->slave_abort = sh_msiof_slave_abort; 1385 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32); 1386 master->auto_runtime_pm = true; 1387 master->transfer_one = sh_msiof_transfer_one; 1388 1389 ret = sh_msiof_request_dma(p); 1390 if (ret < 0) 1391 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1392 1393 ret = devm_spi_register_master(&pdev->dev, master); 1394 if (ret < 0) { 1395 dev_err(&pdev->dev, "spi_register_master error.\n"); 1396 goto err2; 1397 } 1398 1399 return 0; 1400 1401 err2: 1402 sh_msiof_release_dma(p); 1403 pm_runtime_disable(&pdev->dev); 1404 err1: 1405 spi_master_put(master); 1406 return ret; 1407 } 1408 1409 static int sh_msiof_spi_remove(struct platform_device *pdev) 1410 { 1411 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); 1412 1413 sh_msiof_release_dma(p); 1414 pm_runtime_disable(&pdev->dev); 1415 return 0; 1416 } 1417 1418 static const struct platform_device_id spi_driver_ids[] = { 1419 { "spi_sh_msiof", (kernel_ulong_t)&sh_data }, 1420 {}, 1421 }; 1422 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1423 1424 static struct platform_driver sh_msiof_spi_drv = { 1425 .probe = sh_msiof_spi_probe, 1426 .remove = sh_msiof_spi_remove, 1427 .id_table = spi_driver_ids, 1428 .driver = { 1429 .name = "spi_sh_msiof", 1430 .of_match_table = of_match_ptr(sh_msiof_match), 1431 }, 1432 }; 1433 module_platform_driver(sh_msiof_spi_drv); 1434 1435 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver"); 1436 MODULE_AUTHOR("Magnus Damm"); 1437 MODULE_LICENSE("GPL v2"); 1438 MODULE_ALIAS("platform:spi_sh_msiof"); 1439