xref: /openbmc/linux/drivers/spi/spi-sh-msiof.c (revision 3932b9ca)
1 /*
2  * SuperH MSIOF SPI Master Interface
3  *
4  * Copyright (c) 2009 Magnus Damm
5  * Copyright (C) 2014 Glider bvba
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  */
12 
13 #include <linux/bitmap.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/gpio.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
30 
31 #include <linux/spi/sh_msiof.h>
32 #include <linux/spi/spi.h>
33 
34 #include <asm/unaligned.h>
35 
36 
37 struct sh_msiof_chipdata {
38 	u16 tx_fifo_size;
39 	u16 rx_fifo_size;
40 	u16 master_flags;
41 };
42 
43 struct sh_msiof_spi_priv {
44 	struct spi_master *master;
45 	void __iomem *mapbase;
46 	struct clk *clk;
47 	struct platform_device *pdev;
48 	const struct sh_msiof_chipdata *chipdata;
49 	struct sh_msiof_spi_info *info;
50 	struct completion done;
51 	int tx_fifo_size;
52 	int rx_fifo_size;
53 	void *tx_dma_page;
54 	void *rx_dma_page;
55 	dma_addr_t tx_dma_addr;
56 	dma_addr_t rx_dma_addr;
57 };
58 
59 #define TMDR1	0x00	/* Transmit Mode Register 1 */
60 #define TMDR2	0x04	/* Transmit Mode Register 2 */
61 #define TMDR3	0x08	/* Transmit Mode Register 3 */
62 #define RMDR1	0x10	/* Receive Mode Register 1 */
63 #define RMDR2	0x14	/* Receive Mode Register 2 */
64 #define RMDR3	0x18	/* Receive Mode Register 3 */
65 #define TSCR	0x20	/* Transmit Clock Select Register */
66 #define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
67 #define CTR	0x28	/* Control Register */
68 #define FCTR	0x30	/* FIFO Control Register */
69 #define STR	0x40	/* Status Register */
70 #define IER	0x44	/* Interrupt Enable Register */
71 #define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
72 #define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
73 #define TFDR	0x50	/* Transmit FIFO Data Register */
74 #define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
75 #define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
76 #define RFDR	0x60	/* Receive FIFO Data Register */
77 
78 /* TMDR1 and RMDR1 */
79 #define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81 #define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
82 #define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
83 #define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
84 #define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
85 #define MDR1_FLD_MASK	 0x000000c0 /* Frame Sync Signal Interval (0-3) */
86 #define MDR1_FLD_SHIFT		  2
87 #define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
88 /* TMDR1 */
89 #define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
90 
91 /* TMDR2 and RMDR2 */
92 #define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
93 #define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
94 #define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
95 
96 #define MAX_WDLEN	256U
97 
98 /* TSCR and RSCR */
99 #define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
100 #define SCR_BRPS(i)	(((i) - 1) << 8)
101 #define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
102 #define SCR_BRDV_DIV_2	    0x0000
103 #define SCR_BRDV_DIV_4	    0x0001
104 #define SCR_BRDV_DIV_8	    0x0002
105 #define SCR_BRDV_DIV_16	    0x0003
106 #define SCR_BRDV_DIV_32	    0x0004
107 #define SCR_BRDV_DIV_1	    0x0007
108 
109 /* CTR */
110 #define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
111 #define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
112 #define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
113 #define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
114 #define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
115 #define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
116 #define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
117 #define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
118 #define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
119 #define CTR_TXDIZ_LOW	0x00000000 /*   0 */
120 #define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
121 #define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
122 #define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
123 #define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
124 #define CTR_TXE		0x00000200 /* Transmit Enable */
125 #define CTR_RXE		0x00000100 /* Receive Enable */
126 
127 /* FCTR */
128 #define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
129 #define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
130 #define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
131 #define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
132 #define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
133 #define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
134 #define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
135 #define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
136 #define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
137 #define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
138 #define FCTR_TFUA_SHIFT		20
139 #define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
140 #define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
141 #define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
142 #define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
143 #define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
144 #define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
145 #define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
146 #define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
147 #define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
148 #define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
149 #define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
150 #define FCTR_RFUA_SHIFT		 4
151 #define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
152 
153 /* STR */
154 #define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
155 #define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
156 #define STR_TEOF	0x00800000 /* Frame Transmission End */
157 #define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
158 #define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
159 #define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
160 #define STR_RFFUL	0x00002000 /* Receive FIFO Full */
161 #define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
162 #define STR_REOF	0x00000080 /* Frame Reception End */
163 #define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
164 #define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
165 #define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
166 
167 /* IER */
168 #define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
169 #define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
170 #define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
171 #define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
172 #define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
173 #define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
174 #define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
175 #define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
176 #define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
177 #define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
178 #define IER_REOFE	0x00000080 /* Frame Reception End Enable */
179 #define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
180 #define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
181 #define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
182 
183 
184 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
185 {
186 	switch (reg_offs) {
187 	case TSCR:
188 	case RSCR:
189 		return ioread16(p->mapbase + reg_offs);
190 	default:
191 		return ioread32(p->mapbase + reg_offs);
192 	}
193 }
194 
195 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
196 			   u32 value)
197 {
198 	switch (reg_offs) {
199 	case TSCR:
200 	case RSCR:
201 		iowrite16(value, p->mapbase + reg_offs);
202 		break;
203 	default:
204 		iowrite32(value, p->mapbase + reg_offs);
205 		break;
206 	}
207 }
208 
209 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
210 				    u32 clr, u32 set)
211 {
212 	u32 mask = clr | set;
213 	u32 data;
214 	int k;
215 
216 	data = sh_msiof_read(p, CTR);
217 	data &= ~clr;
218 	data |= set;
219 	sh_msiof_write(p, CTR, data);
220 
221 	for (k = 100; k > 0; k--) {
222 		if ((sh_msiof_read(p, CTR) & mask) == set)
223 			break;
224 
225 		udelay(10);
226 	}
227 
228 	return k > 0 ? 0 : -ETIMEDOUT;
229 }
230 
231 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
232 {
233 	struct sh_msiof_spi_priv *p = data;
234 
235 	/* just disable the interrupt and wake up */
236 	sh_msiof_write(p, IER, 0);
237 	complete(&p->done);
238 
239 	return IRQ_HANDLED;
240 }
241 
242 static struct {
243 	unsigned short div;
244 	unsigned short scr;
245 } const sh_msiof_spi_clk_table[] = {
246 	{ 1,	SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
247 	{ 2,	SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
248 	{ 4,	SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
249 	{ 8,	SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
250 	{ 16,	SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
251 	{ 32,	SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
252 	{ 64,	SCR_BRPS(32) | SCR_BRDV_DIV_2 },
253 	{ 128,	SCR_BRPS(32) | SCR_BRDV_DIV_4 },
254 	{ 256,	SCR_BRPS(32) | SCR_BRDV_DIV_8 },
255 	{ 512,	SCR_BRPS(32) | SCR_BRDV_DIV_16 },
256 	{ 1024,	SCR_BRPS(32) | SCR_BRDV_DIV_32 },
257 };
258 
259 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
260 				      unsigned long parent_rate, u32 spi_hz)
261 {
262 	unsigned long div = 1024;
263 	size_t k;
264 
265 	if (!WARN_ON(!spi_hz || !parent_rate))
266 		div = DIV_ROUND_UP(parent_rate, spi_hz);
267 
268 	/* TODO: make more fine grained */
269 
270 	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
271 		if (sh_msiof_spi_clk_table[k].div >= div)
272 			break;
273 	}
274 
275 	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
276 
277 	sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
278 	if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
279 		sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
280 }
281 
282 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
283 				      u32 cpol, u32 cpha,
284 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
285 {
286 	u32 tmp;
287 	int edge;
288 
289 	/*
290 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
291 	 *    0    0         10     10    1    1
292 	 *    0    1         10     10    0    0
293 	 *    1    0         11     11    0    0
294 	 *    1    1         11     11    1    1
295 	 */
296 	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
297 	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
298 	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
299 	sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
300 	if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
301 		/* These bits are reserved if RX needs TX */
302 		tmp &= ~0x0000ffff;
303 	}
304 	sh_msiof_write(p, RMDR1, tmp);
305 
306 	tmp = 0;
307 	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
308 	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
309 
310 	edge = cpol ^ !cpha;
311 
312 	tmp |= edge << CTR_TEDG_SHIFT;
313 	tmp |= edge << CTR_REDG_SHIFT;
314 	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
315 	sh_msiof_write(p, CTR, tmp);
316 }
317 
318 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
319 				       const void *tx_buf, void *rx_buf,
320 				       u32 bits, u32 words)
321 {
322 	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
323 
324 	if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
325 		sh_msiof_write(p, TMDR2, dr2);
326 	else
327 		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
328 
329 	if (rx_buf)
330 		sh_msiof_write(p, RMDR2, dr2);
331 }
332 
333 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
334 {
335 	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
336 }
337 
338 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
339 				      const void *tx_buf, int words, int fs)
340 {
341 	const u8 *buf_8 = tx_buf;
342 	int k;
343 
344 	for (k = 0; k < words; k++)
345 		sh_msiof_write(p, TFDR, buf_8[k] << fs);
346 }
347 
348 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
349 				       const void *tx_buf, int words, int fs)
350 {
351 	const u16 *buf_16 = tx_buf;
352 	int k;
353 
354 	for (k = 0; k < words; k++)
355 		sh_msiof_write(p, TFDR, buf_16[k] << fs);
356 }
357 
358 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
359 					const void *tx_buf, int words, int fs)
360 {
361 	const u16 *buf_16 = tx_buf;
362 	int k;
363 
364 	for (k = 0; k < words; k++)
365 		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
366 }
367 
368 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
369 				       const void *tx_buf, int words, int fs)
370 {
371 	const u32 *buf_32 = tx_buf;
372 	int k;
373 
374 	for (k = 0; k < words; k++)
375 		sh_msiof_write(p, TFDR, buf_32[k] << fs);
376 }
377 
378 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
379 					const void *tx_buf, int words, int fs)
380 {
381 	const u32 *buf_32 = tx_buf;
382 	int k;
383 
384 	for (k = 0; k < words; k++)
385 		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
386 }
387 
388 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
389 					const void *tx_buf, int words, int fs)
390 {
391 	const u32 *buf_32 = tx_buf;
392 	int k;
393 
394 	for (k = 0; k < words; k++)
395 		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
396 }
397 
398 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
399 					 const void *tx_buf, int words, int fs)
400 {
401 	const u32 *buf_32 = tx_buf;
402 	int k;
403 
404 	for (k = 0; k < words; k++)
405 		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
406 }
407 
408 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
409 				     void *rx_buf, int words, int fs)
410 {
411 	u8 *buf_8 = rx_buf;
412 	int k;
413 
414 	for (k = 0; k < words; k++)
415 		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
416 }
417 
418 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
419 				      void *rx_buf, int words, int fs)
420 {
421 	u16 *buf_16 = rx_buf;
422 	int k;
423 
424 	for (k = 0; k < words; k++)
425 		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
426 }
427 
428 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
429 				       void *rx_buf, int words, int fs)
430 {
431 	u16 *buf_16 = rx_buf;
432 	int k;
433 
434 	for (k = 0; k < words; k++)
435 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
436 }
437 
438 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
439 				      void *rx_buf, int words, int fs)
440 {
441 	u32 *buf_32 = rx_buf;
442 	int k;
443 
444 	for (k = 0; k < words; k++)
445 		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
446 }
447 
448 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
449 				       void *rx_buf, int words, int fs)
450 {
451 	u32 *buf_32 = rx_buf;
452 	int k;
453 
454 	for (k = 0; k < words; k++)
455 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
456 }
457 
458 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
459 				       void *rx_buf, int words, int fs)
460 {
461 	u32 *buf_32 = rx_buf;
462 	int k;
463 
464 	for (k = 0; k < words; k++)
465 		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
466 }
467 
468 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
469 				       void *rx_buf, int words, int fs)
470 {
471 	u32 *buf_32 = rx_buf;
472 	int k;
473 
474 	for (k = 0; k < words; k++)
475 		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
476 }
477 
478 static int sh_msiof_spi_setup(struct spi_device *spi)
479 {
480 	struct device_node	*np = spi->master->dev.of_node;
481 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
482 
483 	if (!np) {
484 		/*
485 		 * Use spi->controller_data for CS (same strategy as spi_gpio),
486 		 * if any. otherwise let HW control CS
487 		 */
488 		spi->cs_gpio = (uintptr_t)spi->controller_data;
489 	}
490 
491 	/* Configure pins before deasserting CS */
492 	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
493 				  !!(spi->mode & SPI_CPHA),
494 				  !!(spi->mode & SPI_3WIRE),
495 				  !!(spi->mode & SPI_LSB_FIRST),
496 				  !!(spi->mode & SPI_CS_HIGH));
497 
498 	if (spi->cs_gpio >= 0)
499 		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
500 
501 	return 0;
502 }
503 
504 static int sh_msiof_prepare_message(struct spi_master *master,
505 				    struct spi_message *msg)
506 {
507 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
508 	const struct spi_device *spi = msg->spi;
509 
510 	/* Configure pins before asserting CS */
511 	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
512 				  !!(spi->mode & SPI_CPHA),
513 				  !!(spi->mode & SPI_3WIRE),
514 				  !!(spi->mode & SPI_LSB_FIRST),
515 				  !!(spi->mode & SPI_CS_HIGH));
516 	return 0;
517 }
518 
519 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
520 {
521 	int ret;
522 
523 	/* setup clock and rx/tx signals */
524 	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
525 	if (rx_buf && !ret)
526 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
527 	if (!ret)
528 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
529 
530 	/* start by setting frame bit */
531 	if (!ret)
532 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
533 
534 	return ret;
535 }
536 
537 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
538 {
539 	int ret;
540 
541 	/* shut down frame, rx/tx and clock signals */
542 	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
543 	if (!ret)
544 		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
545 	if (rx_buf && !ret)
546 		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
547 	if (!ret)
548 		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
549 
550 	return ret;
551 }
552 
553 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
554 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
555 						  const void *, int, int),
556 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
557 						  void *, int, int),
558 				  const void *tx_buf, void *rx_buf,
559 				  int words, int bits)
560 {
561 	int fifo_shift;
562 	int ret;
563 
564 	/* limit maximum word transfer to rx/tx fifo size */
565 	if (tx_buf)
566 		words = min_t(int, words, p->tx_fifo_size);
567 	if (rx_buf)
568 		words = min_t(int, words, p->rx_fifo_size);
569 
570 	/* the fifo contents need shifting */
571 	fifo_shift = 32 - bits;
572 
573 	/* default FIFO watermarks for PIO */
574 	sh_msiof_write(p, FCTR, 0);
575 
576 	/* setup msiof transfer mode registers */
577 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
578 	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
579 
580 	/* write tx fifo */
581 	if (tx_buf)
582 		tx_fifo(p, tx_buf, words, fifo_shift);
583 
584 	reinit_completion(&p->done);
585 
586 	ret = sh_msiof_spi_start(p, rx_buf);
587 	if (ret) {
588 		dev_err(&p->pdev->dev, "failed to start hardware\n");
589 		goto stop_ier;
590 	}
591 
592 	/* wait for tx fifo to be emptied / rx fifo to be filled */
593 	ret = wait_for_completion_timeout(&p->done, HZ);
594 	if (!ret) {
595 		dev_err(&p->pdev->dev, "PIO timeout\n");
596 		ret = -ETIMEDOUT;
597 		goto stop_reset;
598 	}
599 
600 	/* read rx fifo */
601 	if (rx_buf)
602 		rx_fifo(p, rx_buf, words, fifo_shift);
603 
604 	/* clear status bits */
605 	sh_msiof_reset_str(p);
606 
607 	ret = sh_msiof_spi_stop(p, rx_buf);
608 	if (ret) {
609 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
610 		return ret;
611 	}
612 
613 	return words;
614 
615 stop_reset:
616 	sh_msiof_reset_str(p);
617 	sh_msiof_spi_stop(p, rx_buf);
618 stop_ier:
619 	sh_msiof_write(p, IER, 0);
620 	return ret;
621 }
622 
623 static void sh_msiof_dma_complete(void *arg)
624 {
625 	struct sh_msiof_spi_priv *p = arg;
626 
627 	sh_msiof_write(p, IER, 0);
628 	complete(&p->done);
629 }
630 
631 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
632 			     void *rx, unsigned int len)
633 {
634 	u32 ier_bits = 0;
635 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
636 	dma_cookie_t cookie;
637 	int ret;
638 
639 	/* First prepare and submit the DMA request(s), as this may fail */
640 	if (rx) {
641 		ier_bits |= IER_RDREQE | IER_RDMAE;
642 		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
643 					p->rx_dma_addr, len, DMA_FROM_DEVICE,
644 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
645 		if (!desc_rx) {
646 			ret = -EAGAIN;
647 			goto no_dma_rx;
648 		}
649 
650 		desc_rx->callback = sh_msiof_dma_complete;
651 		desc_rx->callback_param = p;
652 		cookie = dmaengine_submit(desc_rx);
653 		if (dma_submit_error(cookie)) {
654 			ret = cookie;
655 			goto no_dma_rx;
656 		}
657 	}
658 
659 	if (tx) {
660 		ier_bits |= IER_TDREQE | IER_TDMAE;
661 		dma_sync_single_for_device(p->master->dma_tx->device->dev,
662 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
663 		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
664 					p->tx_dma_addr, len, DMA_TO_DEVICE,
665 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666 		if (!desc_tx) {
667 			ret = -EAGAIN;
668 			goto no_dma_tx;
669 		}
670 
671 		if (rx) {
672 			/* No callback */
673 			desc_tx->callback = NULL;
674 		} else {
675 			desc_tx->callback = sh_msiof_dma_complete;
676 			desc_tx->callback_param = p;
677 		}
678 		cookie = dmaengine_submit(desc_tx);
679 		if (dma_submit_error(cookie)) {
680 			ret = cookie;
681 			goto no_dma_tx;
682 		}
683 	}
684 
685 	/* 1 stage FIFO watermarks for DMA */
686 	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
687 
688 	/* setup msiof transfer mode registers (32-bit words) */
689 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
690 
691 	sh_msiof_write(p, IER, ier_bits);
692 
693 	reinit_completion(&p->done);
694 
695 	/* Now start DMA */
696 	if (rx)
697 		dma_async_issue_pending(p->master->dma_rx);
698 	if (tx)
699 		dma_async_issue_pending(p->master->dma_tx);
700 
701 	ret = sh_msiof_spi_start(p, rx);
702 	if (ret) {
703 		dev_err(&p->pdev->dev, "failed to start hardware\n");
704 		goto stop_dma;
705 	}
706 
707 	/* wait for tx fifo to be emptied / rx fifo to be filled */
708 	ret = wait_for_completion_timeout(&p->done, HZ);
709 	if (!ret) {
710 		dev_err(&p->pdev->dev, "DMA timeout\n");
711 		ret = -ETIMEDOUT;
712 		goto stop_reset;
713 	}
714 
715 	/* clear status bits */
716 	sh_msiof_reset_str(p);
717 
718 	ret = sh_msiof_spi_stop(p, rx);
719 	if (ret) {
720 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
721 		return ret;
722 	}
723 
724 	if (rx)
725 		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
726 					p->rx_dma_addr, len,
727 					DMA_FROM_DEVICE);
728 
729 	return 0;
730 
731 stop_reset:
732 	sh_msiof_reset_str(p);
733 	sh_msiof_spi_stop(p, rx);
734 stop_dma:
735 	if (tx)
736 		dmaengine_terminate_all(p->master->dma_tx);
737 no_dma_tx:
738 	if (rx)
739 		dmaengine_terminate_all(p->master->dma_rx);
740 	sh_msiof_write(p, IER, 0);
741 no_dma_rx:
742 	return ret;
743 }
744 
745 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
746 {
747 	/* src or dst can be unaligned, but not both */
748 	if ((unsigned long)src & 3) {
749 		while (words--) {
750 			*dst++ = swab32(get_unaligned(src));
751 			src++;
752 		}
753 	} else if ((unsigned long)dst & 3) {
754 		while (words--) {
755 			put_unaligned(swab32(*src++), dst);
756 			dst++;
757 		}
758 	} else {
759 		while (words--)
760 			*dst++ = swab32(*src++);
761 	}
762 }
763 
764 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
765 {
766 	/* src or dst can be unaligned, but not both */
767 	if ((unsigned long)src & 3) {
768 		while (words--) {
769 			*dst++ = swahw32(get_unaligned(src));
770 			src++;
771 		}
772 	} else if ((unsigned long)dst & 3) {
773 		while (words--) {
774 			put_unaligned(swahw32(*src++), dst);
775 			dst++;
776 		}
777 	} else {
778 		while (words--)
779 			*dst++ = swahw32(*src++);
780 	}
781 }
782 
783 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
784 {
785 	memcpy(dst, src, words * 4);
786 }
787 
788 static int sh_msiof_transfer_one(struct spi_master *master,
789 				 struct spi_device *spi,
790 				 struct spi_transfer *t)
791 {
792 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
793 	void (*copy32)(u32 *, const u32 *, unsigned int);
794 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
795 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
796 	const void *tx_buf = t->tx_buf;
797 	void *rx_buf = t->rx_buf;
798 	unsigned int len = t->len;
799 	unsigned int bits = t->bits_per_word;
800 	unsigned int bytes_per_word;
801 	unsigned int words;
802 	int n;
803 	bool swab;
804 	int ret;
805 
806 	/* setup clocks (clock already enabled in chipselect()) */
807 	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
808 
809 	while (master->dma_tx && len > 15) {
810 		/*
811 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
812 		 *  words, with byte resp. word swapping.
813 		 */
814 		unsigned int l = min(len, MAX_WDLEN * 4);
815 
816 		if (bits <= 8) {
817 			if (l & 3)
818 				break;
819 			copy32 = copy_bswap32;
820 		} else if (bits <= 16) {
821 			if (l & 1)
822 				break;
823 			copy32 = copy_wswap32;
824 		} else {
825 			copy32 = copy_plain32;
826 		}
827 
828 		if (tx_buf)
829 			copy32(p->tx_dma_page, tx_buf, l / 4);
830 
831 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
832 		if (ret == -EAGAIN) {
833 			pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
834 				     dev_driver_string(&p->pdev->dev),
835 				     dev_name(&p->pdev->dev));
836 			break;
837 		}
838 		if (ret)
839 			return ret;
840 
841 		if (rx_buf) {
842 			copy32(rx_buf, p->rx_dma_page, l / 4);
843 			rx_buf += l;
844 		}
845 		if (tx_buf)
846 			tx_buf += l;
847 
848 		len -= l;
849 		if (!len)
850 			return 0;
851 	}
852 
853 	if (bits <= 8 && len > 15 && !(len & 3)) {
854 		bits = 32;
855 		swab = true;
856 	} else {
857 		swab = false;
858 	}
859 
860 	/* setup bytes per word and fifo read/write functions */
861 	if (bits <= 8) {
862 		bytes_per_word = 1;
863 		tx_fifo = sh_msiof_spi_write_fifo_8;
864 		rx_fifo = sh_msiof_spi_read_fifo_8;
865 	} else if (bits <= 16) {
866 		bytes_per_word = 2;
867 		if ((unsigned long)tx_buf & 0x01)
868 			tx_fifo = sh_msiof_spi_write_fifo_16u;
869 		else
870 			tx_fifo = sh_msiof_spi_write_fifo_16;
871 
872 		if ((unsigned long)rx_buf & 0x01)
873 			rx_fifo = sh_msiof_spi_read_fifo_16u;
874 		else
875 			rx_fifo = sh_msiof_spi_read_fifo_16;
876 	} else if (swab) {
877 		bytes_per_word = 4;
878 		if ((unsigned long)tx_buf & 0x03)
879 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
880 		else
881 			tx_fifo = sh_msiof_spi_write_fifo_s32;
882 
883 		if ((unsigned long)rx_buf & 0x03)
884 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
885 		else
886 			rx_fifo = sh_msiof_spi_read_fifo_s32;
887 	} else {
888 		bytes_per_word = 4;
889 		if ((unsigned long)tx_buf & 0x03)
890 			tx_fifo = sh_msiof_spi_write_fifo_32u;
891 		else
892 			tx_fifo = sh_msiof_spi_write_fifo_32;
893 
894 		if ((unsigned long)rx_buf & 0x03)
895 			rx_fifo = sh_msiof_spi_read_fifo_32u;
896 		else
897 			rx_fifo = sh_msiof_spi_read_fifo_32;
898 	}
899 
900 	/* transfer in fifo sized chunks */
901 	words = len / bytes_per_word;
902 
903 	while (words > 0) {
904 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
905 					   words, bits);
906 		if (n < 0)
907 			return n;
908 
909 		if (tx_buf)
910 			tx_buf += n * bytes_per_word;
911 		if (rx_buf)
912 			rx_buf += n * bytes_per_word;
913 		words -= n;
914 	}
915 
916 	return 0;
917 }
918 
919 static const struct sh_msiof_chipdata sh_data = {
920 	.tx_fifo_size = 64,
921 	.rx_fifo_size = 64,
922 	.master_flags = 0,
923 };
924 
925 static const struct sh_msiof_chipdata r8a779x_data = {
926 	.tx_fifo_size = 64,
927 	.rx_fifo_size = 256,
928 	.master_flags = SPI_MASTER_MUST_TX,
929 };
930 
931 static const struct of_device_id sh_msiof_match[] = {
932 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data },
933 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
934 	{ .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
935 	{ .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
936 	{},
937 };
938 MODULE_DEVICE_TABLE(of, sh_msiof_match);
939 
940 #ifdef CONFIG_OF
941 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
942 {
943 	struct sh_msiof_spi_info *info;
944 	struct device_node *np = dev->of_node;
945 	u32 num_cs = 1;
946 
947 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
948 	if (!info)
949 		return NULL;
950 
951 	/* Parse the MSIOF properties */
952 	of_property_read_u32(np, "num-cs", &num_cs);
953 	of_property_read_u32(np, "renesas,tx-fifo-size",
954 					&info->tx_fifo_override);
955 	of_property_read_u32(np, "renesas,rx-fifo-size",
956 					&info->rx_fifo_override);
957 
958 	info->num_chipselect = num_cs;
959 
960 	return info;
961 }
962 #else
963 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
964 {
965 	return NULL;
966 }
967 #endif
968 
969 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
970 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
971 {
972 	dma_cap_mask_t mask;
973 	struct dma_chan *chan;
974 	struct dma_slave_config cfg;
975 	int ret;
976 
977 	dma_cap_zero(mask);
978 	dma_cap_set(DMA_SLAVE, mask);
979 
980 	chan = dma_request_channel(mask, shdma_chan_filter,
981 				  (void *)(unsigned long)id);
982 	if (!chan) {
983 		dev_warn(dev, "dma_request_channel failed\n");
984 		return NULL;
985 	}
986 
987 	memset(&cfg, 0, sizeof(cfg));
988 	cfg.slave_id = id;
989 	cfg.direction = dir;
990 	if (dir == DMA_MEM_TO_DEV)
991 		cfg.dst_addr = port_addr;
992 	else
993 		cfg.src_addr = port_addr;
994 
995 	ret = dmaengine_slave_config(chan, &cfg);
996 	if (ret) {
997 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
998 		dma_release_channel(chan);
999 		return NULL;
1000 	}
1001 
1002 	return chan;
1003 }
1004 
1005 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1006 {
1007 	struct platform_device *pdev = p->pdev;
1008 	struct device *dev = &pdev->dev;
1009 	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1010 	const struct resource *res;
1011 	struct spi_master *master;
1012 	struct device *tx_dev, *rx_dev;
1013 
1014 	if (!info || !info->dma_tx_id || !info->dma_rx_id)
1015 		return 0;	/* The driver assumes no error */
1016 
1017 	/* The DMA engine uses the second register set, if present */
1018 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1019 	if (!res)
1020 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1021 
1022 	master = p->master;
1023 	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1024 						   info->dma_tx_id,
1025 						   res->start + TFDR);
1026 	if (!master->dma_tx)
1027 		return -ENODEV;
1028 
1029 	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1030 						   info->dma_rx_id,
1031 						   res->start + RFDR);
1032 	if (!master->dma_rx)
1033 		goto free_tx_chan;
1034 
1035 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1036 	if (!p->tx_dma_page)
1037 		goto free_rx_chan;
1038 
1039 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1040 	if (!p->rx_dma_page)
1041 		goto free_tx_page;
1042 
1043 	tx_dev = master->dma_tx->device->dev;
1044 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1045 					DMA_TO_DEVICE);
1046 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1047 		goto free_rx_page;
1048 
1049 	rx_dev = master->dma_rx->device->dev;
1050 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1051 					DMA_FROM_DEVICE);
1052 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1053 		goto unmap_tx_page;
1054 
1055 	dev_info(dev, "DMA available");
1056 	return 0;
1057 
1058 unmap_tx_page:
1059 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1060 free_rx_page:
1061 	free_page((unsigned long)p->rx_dma_page);
1062 free_tx_page:
1063 	free_page((unsigned long)p->tx_dma_page);
1064 free_rx_chan:
1065 	dma_release_channel(master->dma_rx);
1066 free_tx_chan:
1067 	dma_release_channel(master->dma_tx);
1068 	master->dma_tx = NULL;
1069 	return -ENODEV;
1070 }
1071 
1072 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1073 {
1074 	struct spi_master *master = p->master;
1075 	struct device *dev;
1076 
1077 	if (!master->dma_tx)
1078 		return;
1079 
1080 	dev = &p->pdev->dev;
1081 	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1082 			 PAGE_SIZE, DMA_FROM_DEVICE);
1083 	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1084 			 PAGE_SIZE, DMA_TO_DEVICE);
1085 	free_page((unsigned long)p->rx_dma_page);
1086 	free_page((unsigned long)p->tx_dma_page);
1087 	dma_release_channel(master->dma_rx);
1088 	dma_release_channel(master->dma_tx);
1089 }
1090 
1091 static int sh_msiof_spi_probe(struct platform_device *pdev)
1092 {
1093 	struct resource	*r;
1094 	struct spi_master *master;
1095 	const struct of_device_id *of_id;
1096 	struct sh_msiof_spi_priv *p;
1097 	int i;
1098 	int ret;
1099 
1100 	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1101 	if (master == NULL) {
1102 		dev_err(&pdev->dev, "failed to allocate spi master\n");
1103 		return -ENOMEM;
1104 	}
1105 
1106 	p = spi_master_get_devdata(master);
1107 
1108 	platform_set_drvdata(pdev, p);
1109 	p->master = master;
1110 
1111 	of_id = of_match_device(sh_msiof_match, &pdev->dev);
1112 	if (of_id) {
1113 		p->chipdata = of_id->data;
1114 		p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1115 	} else {
1116 		p->chipdata = (const void *)pdev->id_entry->driver_data;
1117 		p->info = dev_get_platdata(&pdev->dev);
1118 	}
1119 
1120 	if (!p->info) {
1121 		dev_err(&pdev->dev, "failed to obtain device info\n");
1122 		ret = -ENXIO;
1123 		goto err1;
1124 	}
1125 
1126 	init_completion(&p->done);
1127 
1128 	p->clk = devm_clk_get(&pdev->dev, NULL);
1129 	if (IS_ERR(p->clk)) {
1130 		dev_err(&pdev->dev, "cannot get clock\n");
1131 		ret = PTR_ERR(p->clk);
1132 		goto err1;
1133 	}
1134 
1135 	i = platform_get_irq(pdev, 0);
1136 	if (i < 0) {
1137 		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1138 		ret = -ENOENT;
1139 		goto err1;
1140 	}
1141 
1142 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1143 	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1144 	if (IS_ERR(p->mapbase)) {
1145 		ret = PTR_ERR(p->mapbase);
1146 		goto err1;
1147 	}
1148 
1149 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1150 			       dev_name(&pdev->dev), p);
1151 	if (ret) {
1152 		dev_err(&pdev->dev, "unable to request irq\n");
1153 		goto err1;
1154 	}
1155 
1156 	p->pdev = pdev;
1157 	pm_runtime_enable(&pdev->dev);
1158 
1159 	/* Platform data may override FIFO sizes */
1160 	p->tx_fifo_size = p->chipdata->tx_fifo_size;
1161 	p->rx_fifo_size = p->chipdata->rx_fifo_size;
1162 	if (p->info->tx_fifo_override)
1163 		p->tx_fifo_size = p->info->tx_fifo_override;
1164 	if (p->info->rx_fifo_override)
1165 		p->rx_fifo_size = p->info->rx_fifo_override;
1166 
1167 	/* init master code */
1168 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1169 	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1170 	master->flags = p->chipdata->master_flags;
1171 	master->bus_num = pdev->id;
1172 	master->dev.of_node = pdev->dev.of_node;
1173 	master->num_chipselect = p->info->num_chipselect;
1174 	master->setup = sh_msiof_spi_setup;
1175 	master->prepare_message = sh_msiof_prepare_message;
1176 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1177 	master->auto_runtime_pm = true;
1178 	master->transfer_one = sh_msiof_transfer_one;
1179 
1180 	ret = sh_msiof_request_dma(p);
1181 	if (ret < 0)
1182 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1183 
1184 	ret = devm_spi_register_master(&pdev->dev, master);
1185 	if (ret < 0) {
1186 		dev_err(&pdev->dev, "spi_register_master error.\n");
1187 		goto err2;
1188 	}
1189 
1190 	return 0;
1191 
1192  err2:
1193 	sh_msiof_release_dma(p);
1194 	pm_runtime_disable(&pdev->dev);
1195  err1:
1196 	spi_master_put(master);
1197 	return ret;
1198 }
1199 
1200 static int sh_msiof_spi_remove(struct platform_device *pdev)
1201 {
1202 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1203 
1204 	sh_msiof_release_dma(p);
1205 	pm_runtime_disable(&pdev->dev);
1206 	return 0;
1207 }
1208 
1209 static struct platform_device_id spi_driver_ids[] = {
1210 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1211 	{ "spi_r8a7790_msiof",	(kernel_ulong_t)&r8a779x_data },
1212 	{ "spi_r8a7791_msiof",	(kernel_ulong_t)&r8a779x_data },
1213 	{},
1214 };
1215 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1216 
1217 static struct platform_driver sh_msiof_spi_drv = {
1218 	.probe		= sh_msiof_spi_probe,
1219 	.remove		= sh_msiof_spi_remove,
1220 	.id_table	= spi_driver_ids,
1221 	.driver		= {
1222 		.name		= "spi_sh_msiof",
1223 		.owner		= THIS_MODULE,
1224 		.of_match_table = of_match_ptr(sh_msiof_match),
1225 	},
1226 };
1227 module_platform_driver(sh_msiof_spi_drv);
1228 
1229 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1230 MODULE_AUTHOR("Magnus Damm");
1231 MODULE_LICENSE("GPL v2");
1232 MODULE_ALIAS("platform:spi_sh_msiof");
1233