1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SuperH MSIOF SPI Controller Interface 4 * 5 * Copyright (c) 2009 Magnus Damm 6 * Copyright (C) 2014 Renesas Electronics Corporation 7 * Copyright (C) 2014-2017 Glider bvba 8 */ 9 10 #include <linux/bitmap.h> 11 #include <linux/clk.h> 12 #include <linux/completion.h> 13 #include <linux/delay.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/dmaengine.h> 16 #include <linux/err.h> 17 #include <linux/gpio.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/sh_dma.h> 28 29 #include <linux/spi/sh_msiof.h> 30 #include <linux/spi/spi.h> 31 32 #include <asm/unaligned.h> 33 34 struct sh_msiof_chipdata { 35 u32 bits_per_word_mask; 36 u16 tx_fifo_size; 37 u16 rx_fifo_size; 38 u16 ctlr_flags; 39 u16 min_div_pow; 40 }; 41 42 struct sh_msiof_spi_priv { 43 struct spi_controller *ctlr; 44 void __iomem *mapbase; 45 struct clk *clk; 46 struct platform_device *pdev; 47 struct sh_msiof_spi_info *info; 48 struct completion done; 49 struct completion done_txdma; 50 unsigned int tx_fifo_size; 51 unsigned int rx_fifo_size; 52 unsigned int min_div_pow; 53 void *tx_dma_page; 54 void *rx_dma_page; 55 dma_addr_t tx_dma_addr; 56 dma_addr_t rx_dma_addr; 57 unsigned short unused_ss; 58 bool native_cs_inited; 59 bool native_cs_high; 60 bool slave_aborted; 61 }; 62 63 #define MAX_SS 3 /* Maximum number of native chip selects */ 64 65 #define TMDR1 0x00 /* Transmit Mode Register 1 */ 66 #define TMDR2 0x04 /* Transmit Mode Register 2 */ 67 #define TMDR3 0x08 /* Transmit Mode Register 3 */ 68 #define RMDR1 0x10 /* Receive Mode Register 1 */ 69 #define RMDR2 0x14 /* Receive Mode Register 2 */ 70 #define RMDR3 0x18 /* Receive Mode Register 3 */ 71 #define TSCR 0x20 /* Transmit Clock Select Register */ 72 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */ 73 #define CTR 0x28 /* Control Register */ 74 #define FCTR 0x30 /* FIFO Control Register */ 75 #define STR 0x40 /* Status Register */ 76 #define IER 0x44 /* Interrupt Enable Register */ 77 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */ 78 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */ 79 #define TFDR 0x50 /* Transmit FIFO Data Register */ 80 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */ 81 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */ 82 #define RFDR 0x60 /* Receive FIFO Data Register */ 83 84 /* TMDR1 and RMDR1 */ 85 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */ 86 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */ 87 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */ 88 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */ 89 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */ 90 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */ 91 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */ 92 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */ 93 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */ 94 #define MDR1_FLD_SHIFT 2 95 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */ 96 /* TMDR1 */ 97 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */ 98 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */ 99 #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */ 100 101 /* TMDR2 and RMDR2 */ 102 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */ 103 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ 104 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */ 105 106 /* TSCR and RSCR */ 107 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */ 108 #define SCR_BRPS(i) (((i) - 1) << 8) 109 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */ 110 #define SCR_BRDV_DIV_2 0x0000 111 #define SCR_BRDV_DIV_4 0x0001 112 #define SCR_BRDV_DIV_8 0x0002 113 #define SCR_BRDV_DIV_16 0x0003 114 #define SCR_BRDV_DIV_32 0x0004 115 #define SCR_BRDV_DIV_1 0x0007 116 117 /* CTR */ 118 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */ 119 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */ 120 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */ 121 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */ 122 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */ 123 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */ 124 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */ 125 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */ 126 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */ 127 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */ 128 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */ 129 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */ 130 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */ 131 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */ 132 #define CTR_TXE 0x00000200 /* Transmit Enable */ 133 #define CTR_RXE 0x00000100 /* Receive Enable */ 134 135 /* FCTR */ 136 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */ 137 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */ 138 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */ 139 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */ 140 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */ 141 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */ 142 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */ 143 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */ 144 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */ 145 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */ 146 #define FCTR_TFUA_SHIFT 20 147 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT) 148 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */ 149 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */ 150 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */ 151 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */ 152 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */ 153 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */ 154 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */ 155 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */ 156 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */ 157 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */ 158 #define FCTR_RFUA_SHIFT 4 159 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT) 160 161 /* STR */ 162 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */ 163 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */ 164 #define STR_TEOF 0x00800000 /* Frame Transmission End */ 165 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */ 166 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */ 167 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */ 168 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */ 169 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */ 170 #define STR_REOF 0x00000080 /* Frame Reception End */ 171 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */ 172 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */ 173 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */ 174 175 /* IER */ 176 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */ 177 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */ 178 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */ 179 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */ 180 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */ 181 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */ 182 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */ 183 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */ 184 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */ 185 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */ 186 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */ 187 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */ 188 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */ 189 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */ 190 191 192 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) 193 { 194 switch (reg_offs) { 195 case TSCR: 196 case RSCR: 197 return ioread16(p->mapbase + reg_offs); 198 default: 199 return ioread32(p->mapbase + reg_offs); 200 } 201 } 202 203 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, 204 u32 value) 205 { 206 switch (reg_offs) { 207 case TSCR: 208 case RSCR: 209 iowrite16(value, p->mapbase + reg_offs); 210 break; 211 default: 212 iowrite32(value, p->mapbase + reg_offs); 213 break; 214 } 215 } 216 217 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, 218 u32 clr, u32 set) 219 { 220 u32 mask = clr | set; 221 u32 data; 222 int k; 223 224 data = sh_msiof_read(p, CTR); 225 data &= ~clr; 226 data |= set; 227 sh_msiof_write(p, CTR, data); 228 229 for (k = 100; k > 0; k--) { 230 if ((sh_msiof_read(p, CTR) & mask) == set) 231 break; 232 233 udelay(10); 234 } 235 236 return k > 0 ? 0 : -ETIMEDOUT; 237 } 238 239 static irqreturn_t sh_msiof_spi_irq(int irq, void *data) 240 { 241 struct sh_msiof_spi_priv *p = data; 242 243 /* just disable the interrupt and wake up */ 244 sh_msiof_write(p, IER, 0); 245 complete(&p->done); 246 247 return IRQ_HANDLED; 248 } 249 250 static const u32 sh_msiof_spi_div_array[] = { 251 SCR_BRDV_DIV_1, SCR_BRDV_DIV_2, SCR_BRDV_DIV_4, 252 SCR_BRDV_DIV_8, SCR_BRDV_DIV_16, SCR_BRDV_DIV_32, 253 }; 254 255 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, 256 unsigned long parent_rate, u32 spi_hz) 257 { 258 unsigned long div; 259 u32 brps, scr; 260 unsigned int div_pow = p->min_div_pow; 261 262 if (!spi_hz || !parent_rate) { 263 WARN(1, "Invalid clock rate parameters %lu and %u\n", 264 parent_rate, spi_hz); 265 return; 266 } 267 268 div = DIV_ROUND_UP(parent_rate, spi_hz); 269 if (div <= 1024) { 270 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */ 271 if (!div_pow && div <= 32 && div > 2) 272 div_pow = 1; 273 274 if (div_pow) 275 brps = (div + 1) >> div_pow; 276 else 277 brps = div; 278 279 for (; brps > 32; div_pow++) 280 brps = (brps + 1) >> 1; 281 } else { 282 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */ 283 dev_err(&p->pdev->dev, 284 "Requested SPI transfer rate %d is too low\n", spi_hz); 285 div_pow = 5; 286 brps = 32; 287 } 288 289 scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps); 290 sh_msiof_write(p, TSCR, scr); 291 if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) 292 sh_msiof_write(p, RSCR, scr); 293 } 294 295 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) 296 { 297 /* 298 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl 299 * b'000 : 0 300 * b'001 : 100 301 * b'010 : 200 302 * b'011 (SYNCDL only) : 300 303 * b'101 : 50 304 * b'110 : 150 305 */ 306 if (dtdl_or_syncdl % 100) 307 return dtdl_or_syncdl / 100 + 5; 308 else 309 return dtdl_or_syncdl / 100; 310 } 311 312 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) 313 { 314 u32 val; 315 316 if (!p->info) 317 return 0; 318 319 /* check if DTDL and SYNCDL is allowed value */ 320 if (p->info->dtdl > 200 || p->info->syncdl > 300) { 321 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); 322 return 0; 323 } 324 325 /* check if the sum of DTDL and SYNCDL becomes an integer value */ 326 if ((p->info->dtdl + p->info->syncdl) % 100) { 327 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); 328 return 0; 329 } 330 331 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT; 332 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT; 333 334 return val; 335 } 336 337 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss, 338 u32 cpol, u32 cpha, 339 u32 tx_hi_z, u32 lsb_first, u32 cs_high) 340 { 341 u32 tmp; 342 int edge; 343 344 /* 345 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG 346 * 0 0 10 10 1 1 347 * 0 1 10 10 0 0 348 * 1 0 11 11 0 0 349 * 1 1 11 11 1 1 350 */ 351 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP; 352 tmp |= !cs_high << MDR1_SYNCAC_SHIFT; 353 tmp |= lsb_first << MDR1_BITLSB_SHIFT; 354 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); 355 if (spi_controller_is_slave(p->ctlr)) { 356 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON); 357 } else { 358 sh_msiof_write(p, TMDR1, 359 tmp | MDR1_TRMD | TMDR1_PCON | 360 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT); 361 } 362 if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) { 363 /* These bits are reserved if RX needs TX */ 364 tmp &= ~0x0000ffff; 365 } 366 sh_msiof_write(p, RMDR1, tmp); 367 368 tmp = 0; 369 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT; 370 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT; 371 372 edge = cpol ^ !cpha; 373 374 tmp |= edge << CTR_TEDG_SHIFT; 375 tmp |= edge << CTR_REDG_SHIFT; 376 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW; 377 sh_msiof_write(p, CTR, tmp); 378 } 379 380 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, 381 const void *tx_buf, void *rx_buf, 382 u32 bits, u32 words) 383 { 384 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words); 385 386 if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) 387 sh_msiof_write(p, TMDR2, dr2); 388 else 389 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1); 390 391 if (rx_buf) 392 sh_msiof_write(p, RMDR2, dr2); 393 } 394 395 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) 396 { 397 sh_msiof_write(p, STR, 398 sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ)); 399 } 400 401 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, 402 const void *tx_buf, int words, int fs) 403 { 404 const u8 *buf_8 = tx_buf; 405 int k; 406 407 for (k = 0; k < words; k++) 408 sh_msiof_write(p, TFDR, buf_8[k] << fs); 409 } 410 411 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, 412 const void *tx_buf, int words, int fs) 413 { 414 const u16 *buf_16 = tx_buf; 415 int k; 416 417 for (k = 0; k < words; k++) 418 sh_msiof_write(p, TFDR, buf_16[k] << fs); 419 } 420 421 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, 422 const void *tx_buf, int words, int fs) 423 { 424 const u16 *buf_16 = tx_buf; 425 int k; 426 427 for (k = 0; k < words; k++) 428 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs); 429 } 430 431 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, 432 const void *tx_buf, int words, int fs) 433 { 434 const u32 *buf_32 = tx_buf; 435 int k; 436 437 for (k = 0; k < words; k++) 438 sh_msiof_write(p, TFDR, buf_32[k] << fs); 439 } 440 441 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, 442 const void *tx_buf, int words, int fs) 443 { 444 const u32 *buf_32 = tx_buf; 445 int k; 446 447 for (k = 0; k < words; k++) 448 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs); 449 } 450 451 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, 452 const void *tx_buf, int words, int fs) 453 { 454 const u32 *buf_32 = tx_buf; 455 int k; 456 457 for (k = 0; k < words; k++) 458 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs)); 459 } 460 461 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, 462 const void *tx_buf, int words, int fs) 463 { 464 const u32 *buf_32 = tx_buf; 465 int k; 466 467 for (k = 0; k < words; k++) 468 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs)); 469 } 470 471 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, 472 void *rx_buf, int words, int fs) 473 { 474 u8 *buf_8 = rx_buf; 475 int k; 476 477 for (k = 0; k < words; k++) 478 buf_8[k] = sh_msiof_read(p, RFDR) >> fs; 479 } 480 481 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, 482 void *rx_buf, int words, int fs) 483 { 484 u16 *buf_16 = rx_buf; 485 int k; 486 487 for (k = 0; k < words; k++) 488 buf_16[k] = sh_msiof_read(p, RFDR) >> fs; 489 } 490 491 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, 492 void *rx_buf, int words, int fs) 493 { 494 u16 *buf_16 = rx_buf; 495 int k; 496 497 for (k = 0; k < words; k++) 498 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]); 499 } 500 501 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, 502 void *rx_buf, int words, int fs) 503 { 504 u32 *buf_32 = rx_buf; 505 int k; 506 507 for (k = 0; k < words; k++) 508 buf_32[k] = sh_msiof_read(p, RFDR) >> fs; 509 } 510 511 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, 512 void *rx_buf, int words, int fs) 513 { 514 u32 *buf_32 = rx_buf; 515 int k; 516 517 for (k = 0; k < words; k++) 518 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]); 519 } 520 521 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, 522 void *rx_buf, int words, int fs) 523 { 524 u32 *buf_32 = rx_buf; 525 int k; 526 527 for (k = 0; k < words; k++) 528 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs); 529 } 530 531 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, 532 void *rx_buf, int words, int fs) 533 { 534 u32 *buf_32 = rx_buf; 535 int k; 536 537 for (k = 0; k < words; k++) 538 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]); 539 } 540 541 static int sh_msiof_spi_setup(struct spi_device *spi) 542 { 543 struct device_node *np = spi->controller->dev.of_node; 544 struct sh_msiof_spi_priv *p = 545 spi_controller_get_devdata(spi->controller); 546 u32 clr, set, tmp; 547 548 if (!np) { 549 /* 550 * Use spi->controller_data for CS (same strategy as spi_gpio), 551 * if any. otherwise let HW control CS 552 */ 553 spi->cs_gpio = (uintptr_t)spi->controller_data; 554 } 555 556 if (gpio_is_valid(spi->cs_gpio)) { 557 gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH)); 558 return 0; 559 } 560 561 if (spi_controller_is_slave(p->ctlr)) 562 return 0; 563 564 if (p->native_cs_inited && 565 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH))) 566 return 0; 567 568 /* Configure native chip select mode/polarity early */ 569 clr = MDR1_SYNCMD_MASK; 570 set = MDR1_SYNCMD_SPI; 571 if (spi->mode & SPI_CS_HIGH) 572 clr |= BIT(MDR1_SYNCAC_SHIFT); 573 else 574 set |= BIT(MDR1_SYNCAC_SHIFT); 575 pm_runtime_get_sync(&p->pdev->dev); 576 tmp = sh_msiof_read(p, TMDR1) & ~clr; 577 sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON); 578 tmp = sh_msiof_read(p, RMDR1) & ~clr; 579 sh_msiof_write(p, RMDR1, tmp | set); 580 pm_runtime_put(&p->pdev->dev); 581 p->native_cs_high = spi->mode & SPI_CS_HIGH; 582 p->native_cs_inited = true; 583 return 0; 584 } 585 586 static int sh_msiof_prepare_message(struct spi_controller *ctlr, 587 struct spi_message *msg) 588 { 589 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); 590 const struct spi_device *spi = msg->spi; 591 u32 ss, cs_high; 592 593 /* Configure pins before asserting CS */ 594 if (gpio_is_valid(spi->cs_gpio)) { 595 ss = p->unused_ss; 596 cs_high = p->native_cs_high; 597 } else { 598 ss = spi->chip_select; 599 cs_high = !!(spi->mode & SPI_CS_HIGH); 600 } 601 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL), 602 !!(spi->mode & SPI_CPHA), 603 !!(spi->mode & SPI_3WIRE), 604 !!(spi->mode & SPI_LSB_FIRST), cs_high); 605 return 0; 606 } 607 608 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) 609 { 610 bool slave = spi_controller_is_slave(p->ctlr); 611 int ret = 0; 612 613 /* setup clock and rx/tx signals */ 614 if (!slave) 615 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE); 616 if (rx_buf && !ret) 617 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE); 618 if (!ret) 619 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE); 620 621 /* start by setting frame bit */ 622 if (!ret && !slave) 623 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE); 624 625 return ret; 626 } 627 628 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) 629 { 630 bool slave = spi_controller_is_slave(p->ctlr); 631 int ret = 0; 632 633 /* shut down frame, rx/tx and clock signals */ 634 if (!slave) 635 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0); 636 if (!ret) 637 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0); 638 if (rx_buf && !ret) 639 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0); 640 if (!ret && !slave) 641 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0); 642 643 return ret; 644 } 645 646 static int sh_msiof_slave_abort(struct spi_controller *ctlr) 647 { 648 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); 649 650 p->slave_aborted = true; 651 complete(&p->done); 652 complete(&p->done_txdma); 653 return 0; 654 } 655 656 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p, 657 struct completion *x) 658 { 659 if (spi_controller_is_slave(p->ctlr)) { 660 if (wait_for_completion_interruptible(x) || 661 p->slave_aborted) { 662 dev_dbg(&p->pdev->dev, "interrupted\n"); 663 return -EINTR; 664 } 665 } else { 666 if (!wait_for_completion_timeout(x, HZ)) { 667 dev_err(&p->pdev->dev, "timeout\n"); 668 return -ETIMEDOUT; 669 } 670 } 671 672 return 0; 673 } 674 675 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, 676 void (*tx_fifo)(struct sh_msiof_spi_priv *, 677 const void *, int, int), 678 void (*rx_fifo)(struct sh_msiof_spi_priv *, 679 void *, int, int), 680 const void *tx_buf, void *rx_buf, 681 int words, int bits) 682 { 683 int fifo_shift; 684 int ret; 685 686 /* limit maximum word transfer to rx/tx fifo size */ 687 if (tx_buf) 688 words = min_t(int, words, p->tx_fifo_size); 689 if (rx_buf) 690 words = min_t(int, words, p->rx_fifo_size); 691 692 /* the fifo contents need shifting */ 693 fifo_shift = 32 - bits; 694 695 /* default FIFO watermarks for PIO */ 696 sh_msiof_write(p, FCTR, 0); 697 698 /* setup msiof transfer mode registers */ 699 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); 700 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE); 701 702 /* write tx fifo */ 703 if (tx_buf) 704 tx_fifo(p, tx_buf, words, fifo_shift); 705 706 reinit_completion(&p->done); 707 p->slave_aborted = false; 708 709 ret = sh_msiof_spi_start(p, rx_buf); 710 if (ret) { 711 dev_err(&p->pdev->dev, "failed to start hardware\n"); 712 goto stop_ier; 713 } 714 715 /* wait for tx fifo to be emptied / rx fifo to be filled */ 716 ret = sh_msiof_wait_for_completion(p, &p->done); 717 if (ret) 718 goto stop_reset; 719 720 /* read rx fifo */ 721 if (rx_buf) 722 rx_fifo(p, rx_buf, words, fifo_shift); 723 724 /* clear status bits */ 725 sh_msiof_reset_str(p); 726 727 ret = sh_msiof_spi_stop(p, rx_buf); 728 if (ret) { 729 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 730 return ret; 731 } 732 733 return words; 734 735 stop_reset: 736 sh_msiof_reset_str(p); 737 sh_msiof_spi_stop(p, rx_buf); 738 stop_ier: 739 sh_msiof_write(p, IER, 0); 740 return ret; 741 } 742 743 static void sh_msiof_dma_complete(void *arg) 744 { 745 complete(arg); 746 } 747 748 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, 749 void *rx, unsigned int len) 750 { 751 u32 ier_bits = 0; 752 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 753 dma_cookie_t cookie; 754 int ret; 755 756 /* First prepare and submit the DMA request(s), as this may fail */ 757 if (rx) { 758 ier_bits |= IER_RDREQE | IER_RDMAE; 759 desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx, 760 p->rx_dma_addr, len, DMA_DEV_TO_MEM, 761 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 762 if (!desc_rx) 763 return -EAGAIN; 764 765 desc_rx->callback = sh_msiof_dma_complete; 766 desc_rx->callback_param = &p->done; 767 cookie = dmaengine_submit(desc_rx); 768 if (dma_submit_error(cookie)) 769 return cookie; 770 } 771 772 if (tx) { 773 ier_bits |= IER_TDREQE | IER_TDMAE; 774 dma_sync_single_for_device(p->ctlr->dma_tx->device->dev, 775 p->tx_dma_addr, len, DMA_TO_DEVICE); 776 desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx, 777 p->tx_dma_addr, len, DMA_MEM_TO_DEV, 778 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 779 if (!desc_tx) { 780 ret = -EAGAIN; 781 goto no_dma_tx; 782 } 783 784 desc_tx->callback = sh_msiof_dma_complete; 785 desc_tx->callback_param = &p->done_txdma; 786 cookie = dmaengine_submit(desc_tx); 787 if (dma_submit_error(cookie)) { 788 ret = cookie; 789 goto no_dma_tx; 790 } 791 } 792 793 /* 1 stage FIFO watermarks for DMA */ 794 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1); 795 796 /* setup msiof transfer mode registers (32-bit words) */ 797 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); 798 799 sh_msiof_write(p, IER, ier_bits); 800 801 reinit_completion(&p->done); 802 if (tx) 803 reinit_completion(&p->done_txdma); 804 p->slave_aborted = false; 805 806 /* Now start DMA */ 807 if (rx) 808 dma_async_issue_pending(p->ctlr->dma_rx); 809 if (tx) 810 dma_async_issue_pending(p->ctlr->dma_tx); 811 812 ret = sh_msiof_spi_start(p, rx); 813 if (ret) { 814 dev_err(&p->pdev->dev, "failed to start hardware\n"); 815 goto stop_dma; 816 } 817 818 if (tx) { 819 /* wait for tx DMA completion */ 820 ret = sh_msiof_wait_for_completion(p, &p->done_txdma); 821 if (ret) 822 goto stop_reset; 823 } 824 825 if (rx) { 826 /* wait for rx DMA completion */ 827 ret = sh_msiof_wait_for_completion(p, &p->done); 828 if (ret) 829 goto stop_reset; 830 831 sh_msiof_write(p, IER, 0); 832 } else { 833 /* wait for tx fifo to be emptied */ 834 sh_msiof_write(p, IER, IER_TEOFE); 835 ret = sh_msiof_wait_for_completion(p, &p->done); 836 if (ret) 837 goto stop_reset; 838 } 839 840 /* clear status bits */ 841 sh_msiof_reset_str(p); 842 843 ret = sh_msiof_spi_stop(p, rx); 844 if (ret) { 845 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 846 return ret; 847 } 848 849 if (rx) 850 dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev, 851 p->rx_dma_addr, len, DMA_FROM_DEVICE); 852 853 return 0; 854 855 stop_reset: 856 sh_msiof_reset_str(p); 857 sh_msiof_spi_stop(p, rx); 858 stop_dma: 859 if (tx) 860 dmaengine_terminate_all(p->ctlr->dma_tx); 861 no_dma_tx: 862 if (rx) 863 dmaengine_terminate_all(p->ctlr->dma_rx); 864 sh_msiof_write(p, IER, 0); 865 return ret; 866 } 867 868 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) 869 { 870 /* src or dst can be unaligned, but not both */ 871 if ((unsigned long)src & 3) { 872 while (words--) { 873 *dst++ = swab32(get_unaligned(src)); 874 src++; 875 } 876 } else if ((unsigned long)dst & 3) { 877 while (words--) { 878 put_unaligned(swab32(*src++), dst); 879 dst++; 880 } 881 } else { 882 while (words--) 883 *dst++ = swab32(*src++); 884 } 885 } 886 887 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) 888 { 889 /* src or dst can be unaligned, but not both */ 890 if ((unsigned long)src & 3) { 891 while (words--) { 892 *dst++ = swahw32(get_unaligned(src)); 893 src++; 894 } 895 } else if ((unsigned long)dst & 3) { 896 while (words--) { 897 put_unaligned(swahw32(*src++), dst); 898 dst++; 899 } 900 } else { 901 while (words--) 902 *dst++ = swahw32(*src++); 903 } 904 } 905 906 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) 907 { 908 memcpy(dst, src, words * 4); 909 } 910 911 static int sh_msiof_transfer_one(struct spi_controller *ctlr, 912 struct spi_device *spi, 913 struct spi_transfer *t) 914 { 915 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); 916 void (*copy32)(u32 *, const u32 *, unsigned int); 917 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); 918 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); 919 const void *tx_buf = t->tx_buf; 920 void *rx_buf = t->rx_buf; 921 unsigned int len = t->len; 922 unsigned int bits = t->bits_per_word; 923 unsigned int bytes_per_word; 924 unsigned int words; 925 int n; 926 bool swab; 927 int ret; 928 929 /* setup clocks (clock already enabled in chipselect()) */ 930 if (!spi_controller_is_slave(p->ctlr)) 931 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz); 932 933 while (ctlr->dma_tx && len > 15) { 934 /* 935 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit 936 * words, with byte resp. word swapping. 937 */ 938 unsigned int l = 0; 939 940 if (tx_buf) 941 l = min(round_down(len, 4), p->tx_fifo_size * 4); 942 if (rx_buf) 943 l = min(round_down(len, 4), p->rx_fifo_size * 4); 944 945 if (bits <= 8) { 946 copy32 = copy_bswap32; 947 } else if (bits <= 16) { 948 copy32 = copy_wswap32; 949 } else { 950 copy32 = copy_plain32; 951 } 952 953 if (tx_buf) 954 copy32(p->tx_dma_page, tx_buf, l / 4); 955 956 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); 957 if (ret == -EAGAIN) { 958 dev_warn_once(&p->pdev->dev, 959 "DMA not available, falling back to PIO\n"); 960 break; 961 } 962 if (ret) 963 return ret; 964 965 if (rx_buf) { 966 copy32(rx_buf, p->rx_dma_page, l / 4); 967 rx_buf += l; 968 } 969 if (tx_buf) 970 tx_buf += l; 971 972 len -= l; 973 if (!len) 974 return 0; 975 } 976 977 if (bits <= 8 && len > 15) { 978 bits = 32; 979 swab = true; 980 } else { 981 swab = false; 982 } 983 984 /* setup bytes per word and fifo read/write functions */ 985 if (bits <= 8) { 986 bytes_per_word = 1; 987 tx_fifo = sh_msiof_spi_write_fifo_8; 988 rx_fifo = sh_msiof_spi_read_fifo_8; 989 } else if (bits <= 16) { 990 bytes_per_word = 2; 991 if ((unsigned long)tx_buf & 0x01) 992 tx_fifo = sh_msiof_spi_write_fifo_16u; 993 else 994 tx_fifo = sh_msiof_spi_write_fifo_16; 995 996 if ((unsigned long)rx_buf & 0x01) 997 rx_fifo = sh_msiof_spi_read_fifo_16u; 998 else 999 rx_fifo = sh_msiof_spi_read_fifo_16; 1000 } else if (swab) { 1001 bytes_per_word = 4; 1002 if ((unsigned long)tx_buf & 0x03) 1003 tx_fifo = sh_msiof_spi_write_fifo_s32u; 1004 else 1005 tx_fifo = sh_msiof_spi_write_fifo_s32; 1006 1007 if ((unsigned long)rx_buf & 0x03) 1008 rx_fifo = sh_msiof_spi_read_fifo_s32u; 1009 else 1010 rx_fifo = sh_msiof_spi_read_fifo_s32; 1011 } else { 1012 bytes_per_word = 4; 1013 if ((unsigned long)tx_buf & 0x03) 1014 tx_fifo = sh_msiof_spi_write_fifo_32u; 1015 else 1016 tx_fifo = sh_msiof_spi_write_fifo_32; 1017 1018 if ((unsigned long)rx_buf & 0x03) 1019 rx_fifo = sh_msiof_spi_read_fifo_32u; 1020 else 1021 rx_fifo = sh_msiof_spi_read_fifo_32; 1022 } 1023 1024 /* transfer in fifo sized chunks */ 1025 words = len / bytes_per_word; 1026 1027 while (words > 0) { 1028 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, 1029 words, bits); 1030 if (n < 0) 1031 return n; 1032 1033 if (tx_buf) 1034 tx_buf += n * bytes_per_word; 1035 if (rx_buf) 1036 rx_buf += n * bytes_per_word; 1037 words -= n; 1038 1039 if (words == 0 && (len % bytes_per_word)) { 1040 words = len % bytes_per_word; 1041 bits = t->bits_per_word; 1042 bytes_per_word = 1; 1043 tx_fifo = sh_msiof_spi_write_fifo_8; 1044 rx_fifo = sh_msiof_spi_read_fifo_8; 1045 } 1046 } 1047 1048 return 0; 1049 } 1050 1051 static const struct sh_msiof_chipdata sh_data = { 1052 .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32), 1053 .tx_fifo_size = 64, 1054 .rx_fifo_size = 64, 1055 .ctlr_flags = 0, 1056 .min_div_pow = 0, 1057 }; 1058 1059 static const struct sh_msiof_chipdata rcar_gen2_data = { 1060 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | 1061 SPI_BPW_MASK(24) | SPI_BPW_MASK(32), 1062 .tx_fifo_size = 64, 1063 .rx_fifo_size = 64, 1064 .ctlr_flags = SPI_CONTROLLER_MUST_TX, 1065 .min_div_pow = 0, 1066 }; 1067 1068 static const struct sh_msiof_chipdata rcar_gen3_data = { 1069 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | 1070 SPI_BPW_MASK(24) | SPI_BPW_MASK(32), 1071 .tx_fifo_size = 64, 1072 .rx_fifo_size = 64, 1073 .ctlr_flags = SPI_CONTROLLER_MUST_TX, 1074 .min_div_pow = 1, 1075 }; 1076 1077 static const struct of_device_id sh_msiof_match[] = { 1078 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, 1079 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data }, 1080 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data }, 1081 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data }, 1082 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data }, 1083 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data }, 1084 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data }, 1085 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data }, 1086 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data }, 1087 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data }, 1088 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data }, 1089 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */ 1090 {}, 1091 }; 1092 MODULE_DEVICE_TABLE(of, sh_msiof_match); 1093 1094 #ifdef CONFIG_OF 1095 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 1096 { 1097 struct sh_msiof_spi_info *info; 1098 struct device_node *np = dev->of_node; 1099 u32 num_cs = 1; 1100 1101 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); 1102 if (!info) 1103 return NULL; 1104 1105 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE 1106 : MSIOF_SPI_MASTER; 1107 1108 /* Parse the MSIOF properties */ 1109 if (info->mode == MSIOF_SPI_MASTER) 1110 of_property_read_u32(np, "num-cs", &num_cs); 1111 of_property_read_u32(np, "renesas,tx-fifo-size", 1112 &info->tx_fifo_override); 1113 of_property_read_u32(np, "renesas,rx-fifo-size", 1114 &info->rx_fifo_override); 1115 of_property_read_u32(np, "renesas,dtdl", &info->dtdl); 1116 of_property_read_u32(np, "renesas,syncdl", &info->syncdl); 1117 1118 info->num_chipselect = num_cs; 1119 1120 return info; 1121 } 1122 #else 1123 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 1124 { 1125 return NULL; 1126 } 1127 #endif 1128 1129 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p) 1130 { 1131 struct device *dev = &p->pdev->dev; 1132 unsigned int used_ss_mask = 0; 1133 unsigned int cs_gpios = 0; 1134 unsigned int num_cs, i; 1135 int ret; 1136 1137 ret = gpiod_count(dev, "cs"); 1138 if (ret <= 0) 1139 return 0; 1140 1141 num_cs = max_t(unsigned int, ret, p->ctlr->num_chipselect); 1142 for (i = 0; i < num_cs; i++) { 1143 struct gpio_desc *gpiod; 1144 1145 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS); 1146 if (!IS_ERR(gpiod)) { 1147 cs_gpios++; 1148 continue; 1149 } 1150 1151 if (PTR_ERR(gpiod) != -ENOENT) 1152 return PTR_ERR(gpiod); 1153 1154 if (i >= MAX_SS) { 1155 dev_err(dev, "Invalid native chip select %d\n", i); 1156 return -EINVAL; 1157 } 1158 used_ss_mask |= BIT(i); 1159 } 1160 p->unused_ss = ffz(used_ss_mask); 1161 if (cs_gpios && p->unused_ss >= MAX_SS) { 1162 dev_err(dev, "No unused native chip select available\n"); 1163 return -EINVAL; 1164 } 1165 return 0; 1166 } 1167 1168 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, 1169 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) 1170 { 1171 dma_cap_mask_t mask; 1172 struct dma_chan *chan; 1173 struct dma_slave_config cfg; 1174 int ret; 1175 1176 dma_cap_zero(mask); 1177 dma_cap_set(DMA_SLAVE, mask); 1178 1179 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1180 (void *)(unsigned long)id, dev, 1181 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1182 if (!chan) { 1183 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1184 return NULL; 1185 } 1186 1187 memset(&cfg, 0, sizeof(cfg)); 1188 cfg.direction = dir; 1189 if (dir == DMA_MEM_TO_DEV) { 1190 cfg.dst_addr = port_addr; 1191 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1192 } else { 1193 cfg.src_addr = port_addr; 1194 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1195 } 1196 1197 ret = dmaengine_slave_config(chan, &cfg); 1198 if (ret) { 1199 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1200 dma_release_channel(chan); 1201 return NULL; 1202 } 1203 1204 return chan; 1205 } 1206 1207 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) 1208 { 1209 struct platform_device *pdev = p->pdev; 1210 struct device *dev = &pdev->dev; 1211 const struct sh_msiof_spi_info *info = p->info; 1212 unsigned int dma_tx_id, dma_rx_id; 1213 const struct resource *res; 1214 struct spi_controller *ctlr; 1215 struct device *tx_dev, *rx_dev; 1216 1217 if (dev->of_node) { 1218 /* In the OF case we will get the slave IDs from the DT */ 1219 dma_tx_id = 0; 1220 dma_rx_id = 0; 1221 } else if (info && info->dma_tx_id && info->dma_rx_id) { 1222 dma_tx_id = info->dma_tx_id; 1223 dma_rx_id = info->dma_rx_id; 1224 } else { 1225 /* The driver assumes no error */ 1226 return 0; 1227 } 1228 1229 /* The DMA engine uses the second register set, if present */ 1230 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1231 if (!res) 1232 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1233 1234 ctlr = p->ctlr; 1235 ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, 1236 dma_tx_id, res->start + TFDR); 1237 if (!ctlr->dma_tx) 1238 return -ENODEV; 1239 1240 ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, 1241 dma_rx_id, res->start + RFDR); 1242 if (!ctlr->dma_rx) 1243 goto free_tx_chan; 1244 1245 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1246 if (!p->tx_dma_page) 1247 goto free_rx_chan; 1248 1249 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1250 if (!p->rx_dma_page) 1251 goto free_tx_page; 1252 1253 tx_dev = ctlr->dma_tx->device->dev; 1254 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, 1255 DMA_TO_DEVICE); 1256 if (dma_mapping_error(tx_dev, p->tx_dma_addr)) 1257 goto free_rx_page; 1258 1259 rx_dev = ctlr->dma_rx->device->dev; 1260 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, 1261 DMA_FROM_DEVICE); 1262 if (dma_mapping_error(rx_dev, p->rx_dma_addr)) 1263 goto unmap_tx_page; 1264 1265 dev_info(dev, "DMA available"); 1266 return 0; 1267 1268 unmap_tx_page: 1269 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); 1270 free_rx_page: 1271 free_page((unsigned long)p->rx_dma_page); 1272 free_tx_page: 1273 free_page((unsigned long)p->tx_dma_page); 1274 free_rx_chan: 1275 dma_release_channel(ctlr->dma_rx); 1276 free_tx_chan: 1277 dma_release_channel(ctlr->dma_tx); 1278 ctlr->dma_tx = NULL; 1279 return -ENODEV; 1280 } 1281 1282 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) 1283 { 1284 struct spi_controller *ctlr = p->ctlr; 1285 1286 if (!ctlr->dma_tx) 1287 return; 1288 1289 dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE, 1290 DMA_FROM_DEVICE); 1291 dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE, 1292 DMA_TO_DEVICE); 1293 free_page((unsigned long)p->rx_dma_page); 1294 free_page((unsigned long)p->tx_dma_page); 1295 dma_release_channel(ctlr->dma_rx); 1296 dma_release_channel(ctlr->dma_tx); 1297 } 1298 1299 static int sh_msiof_spi_probe(struct platform_device *pdev) 1300 { 1301 struct resource *r; 1302 struct spi_controller *ctlr; 1303 const struct sh_msiof_chipdata *chipdata; 1304 struct sh_msiof_spi_info *info; 1305 struct sh_msiof_spi_priv *p; 1306 int i; 1307 int ret; 1308 1309 chipdata = of_device_get_match_data(&pdev->dev); 1310 if (chipdata) { 1311 info = sh_msiof_spi_parse_dt(&pdev->dev); 1312 } else { 1313 chipdata = (const void *)pdev->id_entry->driver_data; 1314 info = dev_get_platdata(&pdev->dev); 1315 } 1316 1317 if (!info) { 1318 dev_err(&pdev->dev, "failed to obtain device info\n"); 1319 return -ENXIO; 1320 } 1321 1322 if (info->mode == MSIOF_SPI_SLAVE) 1323 ctlr = spi_alloc_slave(&pdev->dev, 1324 sizeof(struct sh_msiof_spi_priv)); 1325 else 1326 ctlr = spi_alloc_master(&pdev->dev, 1327 sizeof(struct sh_msiof_spi_priv)); 1328 if (ctlr == NULL) 1329 return -ENOMEM; 1330 1331 p = spi_controller_get_devdata(ctlr); 1332 1333 platform_set_drvdata(pdev, p); 1334 p->ctlr = ctlr; 1335 p->info = info; 1336 p->min_div_pow = chipdata->min_div_pow; 1337 1338 init_completion(&p->done); 1339 init_completion(&p->done_txdma); 1340 1341 p->clk = devm_clk_get(&pdev->dev, NULL); 1342 if (IS_ERR(p->clk)) { 1343 dev_err(&pdev->dev, "cannot get clock\n"); 1344 ret = PTR_ERR(p->clk); 1345 goto err1; 1346 } 1347 1348 i = platform_get_irq(pdev, 0); 1349 if (i < 0) { 1350 dev_err(&pdev->dev, "cannot get IRQ\n"); 1351 ret = i; 1352 goto err1; 1353 } 1354 1355 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1356 p->mapbase = devm_ioremap_resource(&pdev->dev, r); 1357 if (IS_ERR(p->mapbase)) { 1358 ret = PTR_ERR(p->mapbase); 1359 goto err1; 1360 } 1361 1362 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, 1363 dev_name(&pdev->dev), p); 1364 if (ret) { 1365 dev_err(&pdev->dev, "unable to request irq\n"); 1366 goto err1; 1367 } 1368 1369 p->pdev = pdev; 1370 pm_runtime_enable(&pdev->dev); 1371 1372 /* Platform data may override FIFO sizes */ 1373 p->tx_fifo_size = chipdata->tx_fifo_size; 1374 p->rx_fifo_size = chipdata->rx_fifo_size; 1375 if (p->info->tx_fifo_override) 1376 p->tx_fifo_size = p->info->tx_fifo_override; 1377 if (p->info->rx_fifo_override) 1378 p->rx_fifo_size = p->info->rx_fifo_override; 1379 1380 /* Setup GPIO chip selects */ 1381 ctlr->num_chipselect = p->info->num_chipselect; 1382 ret = sh_msiof_get_cs_gpios(p); 1383 if (ret) 1384 goto err1; 1385 1386 /* init controller code */ 1387 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1388 ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; 1389 ctlr->flags = chipdata->ctlr_flags; 1390 ctlr->bus_num = pdev->id; 1391 ctlr->dev.of_node = pdev->dev.of_node; 1392 ctlr->setup = sh_msiof_spi_setup; 1393 ctlr->prepare_message = sh_msiof_prepare_message; 1394 ctlr->slave_abort = sh_msiof_slave_abort; 1395 ctlr->bits_per_word_mask = chipdata->bits_per_word_mask; 1396 ctlr->auto_runtime_pm = true; 1397 ctlr->transfer_one = sh_msiof_transfer_one; 1398 1399 ret = sh_msiof_request_dma(p); 1400 if (ret < 0) 1401 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1402 1403 ret = devm_spi_register_controller(&pdev->dev, ctlr); 1404 if (ret < 0) { 1405 dev_err(&pdev->dev, "devm_spi_register_controller error.\n"); 1406 goto err2; 1407 } 1408 1409 return 0; 1410 1411 err2: 1412 sh_msiof_release_dma(p); 1413 pm_runtime_disable(&pdev->dev); 1414 err1: 1415 spi_controller_put(ctlr); 1416 return ret; 1417 } 1418 1419 static int sh_msiof_spi_remove(struct platform_device *pdev) 1420 { 1421 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); 1422 1423 sh_msiof_release_dma(p); 1424 pm_runtime_disable(&pdev->dev); 1425 return 0; 1426 } 1427 1428 static const struct platform_device_id spi_driver_ids[] = { 1429 { "spi_sh_msiof", (kernel_ulong_t)&sh_data }, 1430 {}, 1431 }; 1432 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1433 1434 #ifdef CONFIG_PM_SLEEP 1435 static int sh_msiof_spi_suspend(struct device *dev) 1436 { 1437 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); 1438 1439 return spi_controller_suspend(p->ctlr); 1440 } 1441 1442 static int sh_msiof_spi_resume(struct device *dev) 1443 { 1444 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); 1445 1446 return spi_controller_resume(p->ctlr); 1447 } 1448 1449 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend, 1450 sh_msiof_spi_resume); 1451 #define DEV_PM_OPS &sh_msiof_spi_pm_ops 1452 #else 1453 #define DEV_PM_OPS NULL 1454 #endif /* CONFIG_PM_SLEEP */ 1455 1456 static struct platform_driver sh_msiof_spi_drv = { 1457 .probe = sh_msiof_spi_probe, 1458 .remove = sh_msiof_spi_remove, 1459 .id_table = spi_driver_ids, 1460 .driver = { 1461 .name = "spi_sh_msiof", 1462 .pm = DEV_PM_OPS, 1463 .of_match_table = of_match_ptr(sh_msiof_match), 1464 }, 1465 }; 1466 module_platform_driver(sh_msiof_spi_drv); 1467 1468 MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver"); 1469 MODULE_AUTHOR("Magnus Damm"); 1470 MODULE_LICENSE("GPL v2"); 1471 MODULE_ALIAS("platform:spi_sh_msiof"); 1472