1 /* 2 * SuperH MSIOF SPI Master Interface 3 * 4 * Copyright (c) 2009 Magnus Damm 5 * Copyright (C) 2014 Renesas Electronics Corporation 6 * Copyright (C) 2014-2017 Glider bvba 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 */ 13 14 #include <linux/bitmap.h> 15 #include <linux/clk.h> 16 #include <linux/completion.h> 17 #include <linux/delay.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/dmaengine.h> 20 #include <linux/err.h> 21 #include <linux/gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/interrupt.h> 24 #include <linux/io.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/platform_device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/sh_dma.h> 32 33 #include <linux/spi/sh_msiof.h> 34 #include <linux/spi/spi.h> 35 36 #include <asm/unaligned.h> 37 38 struct sh_msiof_chipdata { 39 u16 tx_fifo_size; 40 u16 rx_fifo_size; 41 u16 master_flags; 42 u16 min_div_pow; 43 }; 44 45 struct sh_msiof_spi_priv { 46 struct spi_master *master; 47 void __iomem *mapbase; 48 struct clk *clk; 49 struct platform_device *pdev; 50 struct sh_msiof_spi_info *info; 51 struct completion done; 52 struct completion done_txdma; 53 unsigned int tx_fifo_size; 54 unsigned int rx_fifo_size; 55 unsigned int min_div_pow; 56 void *tx_dma_page; 57 void *rx_dma_page; 58 dma_addr_t tx_dma_addr; 59 dma_addr_t rx_dma_addr; 60 unsigned short unused_ss; 61 bool native_cs_inited; 62 bool native_cs_high; 63 bool slave_aborted; 64 }; 65 66 #define MAX_SS 3 /* Maximum number of native chip selects */ 67 68 #define TMDR1 0x00 /* Transmit Mode Register 1 */ 69 #define TMDR2 0x04 /* Transmit Mode Register 2 */ 70 #define TMDR3 0x08 /* Transmit Mode Register 3 */ 71 #define RMDR1 0x10 /* Receive Mode Register 1 */ 72 #define RMDR2 0x14 /* Receive Mode Register 2 */ 73 #define RMDR3 0x18 /* Receive Mode Register 3 */ 74 #define TSCR 0x20 /* Transmit Clock Select Register */ 75 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */ 76 #define CTR 0x28 /* Control Register */ 77 #define FCTR 0x30 /* FIFO Control Register */ 78 #define STR 0x40 /* Status Register */ 79 #define IER 0x44 /* Interrupt Enable Register */ 80 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */ 81 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */ 82 #define TFDR 0x50 /* Transmit FIFO Data Register */ 83 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */ 84 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */ 85 #define RFDR 0x60 /* Receive FIFO Data Register */ 86 87 /* TMDR1 and RMDR1 */ 88 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */ 89 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */ 90 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */ 91 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */ 92 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */ 93 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */ 94 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */ 95 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */ 96 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */ 97 #define MDR1_FLD_SHIFT 2 98 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */ 99 /* TMDR1 */ 100 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */ 101 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */ 102 #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */ 103 104 /* TMDR2 and RMDR2 */ 105 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */ 106 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ 107 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */ 108 109 /* TSCR and RSCR */ 110 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */ 111 #define SCR_BRPS(i) (((i) - 1) << 8) 112 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */ 113 #define SCR_BRDV_DIV_2 0x0000 114 #define SCR_BRDV_DIV_4 0x0001 115 #define SCR_BRDV_DIV_8 0x0002 116 #define SCR_BRDV_DIV_16 0x0003 117 #define SCR_BRDV_DIV_32 0x0004 118 #define SCR_BRDV_DIV_1 0x0007 119 120 /* CTR */ 121 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */ 122 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */ 123 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */ 124 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */ 125 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */ 126 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */ 127 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */ 128 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */ 129 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */ 130 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */ 131 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */ 132 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */ 133 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */ 134 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */ 135 #define CTR_TXE 0x00000200 /* Transmit Enable */ 136 #define CTR_RXE 0x00000100 /* Receive Enable */ 137 138 /* FCTR */ 139 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */ 140 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */ 141 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */ 142 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */ 143 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */ 144 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */ 145 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */ 146 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */ 147 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */ 148 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */ 149 #define FCTR_TFUA_SHIFT 20 150 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT) 151 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */ 152 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */ 153 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */ 154 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */ 155 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */ 156 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */ 157 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */ 158 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */ 159 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */ 160 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */ 161 #define FCTR_RFUA_SHIFT 4 162 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT) 163 164 /* STR */ 165 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */ 166 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */ 167 #define STR_TEOF 0x00800000 /* Frame Transmission End */ 168 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */ 169 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */ 170 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */ 171 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */ 172 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */ 173 #define STR_REOF 0x00000080 /* Frame Reception End */ 174 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */ 175 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */ 176 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */ 177 178 /* IER */ 179 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */ 180 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */ 181 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */ 182 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */ 183 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */ 184 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */ 185 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */ 186 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */ 187 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */ 188 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */ 189 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */ 190 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */ 191 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */ 192 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */ 193 194 195 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) 196 { 197 switch (reg_offs) { 198 case TSCR: 199 case RSCR: 200 return ioread16(p->mapbase + reg_offs); 201 default: 202 return ioread32(p->mapbase + reg_offs); 203 } 204 } 205 206 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, 207 u32 value) 208 { 209 switch (reg_offs) { 210 case TSCR: 211 case RSCR: 212 iowrite16(value, p->mapbase + reg_offs); 213 break; 214 default: 215 iowrite32(value, p->mapbase + reg_offs); 216 break; 217 } 218 } 219 220 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, 221 u32 clr, u32 set) 222 { 223 u32 mask = clr | set; 224 u32 data; 225 int k; 226 227 data = sh_msiof_read(p, CTR); 228 data &= ~clr; 229 data |= set; 230 sh_msiof_write(p, CTR, data); 231 232 for (k = 100; k > 0; k--) { 233 if ((sh_msiof_read(p, CTR) & mask) == set) 234 break; 235 236 udelay(10); 237 } 238 239 return k > 0 ? 0 : -ETIMEDOUT; 240 } 241 242 static irqreturn_t sh_msiof_spi_irq(int irq, void *data) 243 { 244 struct sh_msiof_spi_priv *p = data; 245 246 /* just disable the interrupt and wake up */ 247 sh_msiof_write(p, IER, 0); 248 complete(&p->done); 249 250 return IRQ_HANDLED; 251 } 252 253 static const u32 sh_msiof_spi_div_array[] = { 254 SCR_BRDV_DIV_1, SCR_BRDV_DIV_2, SCR_BRDV_DIV_4, 255 SCR_BRDV_DIV_8, SCR_BRDV_DIV_16, SCR_BRDV_DIV_32, 256 }; 257 258 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, 259 unsigned long parent_rate, u32 spi_hz) 260 { 261 unsigned long div; 262 u32 brps, scr; 263 unsigned int div_pow = p->min_div_pow; 264 265 if (!spi_hz || !parent_rate) { 266 WARN(1, "Invalid clock rate parameters %lu and %u\n", 267 parent_rate, spi_hz); 268 return; 269 } 270 271 div = DIV_ROUND_UP(parent_rate, spi_hz); 272 if (div <= 1024) { 273 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */ 274 if (!div_pow && div <= 32 && div > 2) 275 div_pow = 1; 276 277 if (div_pow) 278 brps = (div + 1) >> div_pow; 279 else 280 brps = div; 281 282 for (; brps > 32; div_pow++) 283 brps = (brps + 1) >> 1; 284 } else { 285 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */ 286 dev_err(&p->pdev->dev, 287 "Requested SPI transfer rate %d is too low\n", spi_hz); 288 div_pow = 5; 289 brps = 32; 290 } 291 292 scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps); 293 sh_msiof_write(p, TSCR, scr); 294 if (!(p->master->flags & SPI_MASTER_MUST_TX)) 295 sh_msiof_write(p, RSCR, scr); 296 } 297 298 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) 299 { 300 /* 301 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl 302 * b'000 : 0 303 * b'001 : 100 304 * b'010 : 200 305 * b'011 (SYNCDL only) : 300 306 * b'101 : 50 307 * b'110 : 150 308 */ 309 if (dtdl_or_syncdl % 100) 310 return dtdl_or_syncdl / 100 + 5; 311 else 312 return dtdl_or_syncdl / 100; 313 } 314 315 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) 316 { 317 u32 val; 318 319 if (!p->info) 320 return 0; 321 322 /* check if DTDL and SYNCDL is allowed value */ 323 if (p->info->dtdl > 200 || p->info->syncdl > 300) { 324 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); 325 return 0; 326 } 327 328 /* check if the sum of DTDL and SYNCDL becomes an integer value */ 329 if ((p->info->dtdl + p->info->syncdl) % 100) { 330 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); 331 return 0; 332 } 333 334 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT; 335 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT; 336 337 return val; 338 } 339 340 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss, 341 u32 cpol, u32 cpha, 342 u32 tx_hi_z, u32 lsb_first, u32 cs_high) 343 { 344 u32 tmp; 345 int edge; 346 347 /* 348 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG 349 * 0 0 10 10 1 1 350 * 0 1 10 10 0 0 351 * 1 0 11 11 0 0 352 * 1 1 11 11 1 1 353 */ 354 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP; 355 tmp |= !cs_high << MDR1_SYNCAC_SHIFT; 356 tmp |= lsb_first << MDR1_BITLSB_SHIFT; 357 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); 358 if (spi_controller_is_slave(p->master)) { 359 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON); 360 } else { 361 sh_msiof_write(p, TMDR1, 362 tmp | MDR1_TRMD | TMDR1_PCON | 363 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT); 364 } 365 if (p->master->flags & SPI_MASTER_MUST_TX) { 366 /* These bits are reserved if RX needs TX */ 367 tmp &= ~0x0000ffff; 368 } 369 sh_msiof_write(p, RMDR1, tmp); 370 371 tmp = 0; 372 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT; 373 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT; 374 375 edge = cpol ^ !cpha; 376 377 tmp |= edge << CTR_TEDG_SHIFT; 378 tmp |= edge << CTR_REDG_SHIFT; 379 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW; 380 sh_msiof_write(p, CTR, tmp); 381 } 382 383 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, 384 const void *tx_buf, void *rx_buf, 385 u32 bits, u32 words) 386 { 387 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words); 388 389 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX)) 390 sh_msiof_write(p, TMDR2, dr2); 391 else 392 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1); 393 394 if (rx_buf) 395 sh_msiof_write(p, RMDR2, dr2); 396 } 397 398 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) 399 { 400 sh_msiof_write(p, STR, sh_msiof_read(p, STR)); 401 } 402 403 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, 404 const void *tx_buf, int words, int fs) 405 { 406 const u8 *buf_8 = tx_buf; 407 int k; 408 409 for (k = 0; k < words; k++) 410 sh_msiof_write(p, TFDR, buf_8[k] << fs); 411 } 412 413 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, 414 const void *tx_buf, int words, int fs) 415 { 416 const u16 *buf_16 = tx_buf; 417 int k; 418 419 for (k = 0; k < words; k++) 420 sh_msiof_write(p, TFDR, buf_16[k] << fs); 421 } 422 423 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, 424 const void *tx_buf, int words, int fs) 425 { 426 const u16 *buf_16 = tx_buf; 427 int k; 428 429 for (k = 0; k < words; k++) 430 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs); 431 } 432 433 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, 434 const void *tx_buf, int words, int fs) 435 { 436 const u32 *buf_32 = tx_buf; 437 int k; 438 439 for (k = 0; k < words; k++) 440 sh_msiof_write(p, TFDR, buf_32[k] << fs); 441 } 442 443 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, 444 const void *tx_buf, int words, int fs) 445 { 446 const u32 *buf_32 = tx_buf; 447 int k; 448 449 for (k = 0; k < words; k++) 450 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs); 451 } 452 453 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, 454 const void *tx_buf, int words, int fs) 455 { 456 const u32 *buf_32 = tx_buf; 457 int k; 458 459 for (k = 0; k < words; k++) 460 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs)); 461 } 462 463 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, 464 const void *tx_buf, int words, int fs) 465 { 466 const u32 *buf_32 = tx_buf; 467 int k; 468 469 for (k = 0; k < words; k++) 470 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs)); 471 } 472 473 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, 474 void *rx_buf, int words, int fs) 475 { 476 u8 *buf_8 = rx_buf; 477 int k; 478 479 for (k = 0; k < words; k++) 480 buf_8[k] = sh_msiof_read(p, RFDR) >> fs; 481 } 482 483 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, 484 void *rx_buf, int words, int fs) 485 { 486 u16 *buf_16 = rx_buf; 487 int k; 488 489 for (k = 0; k < words; k++) 490 buf_16[k] = sh_msiof_read(p, RFDR) >> fs; 491 } 492 493 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, 494 void *rx_buf, int words, int fs) 495 { 496 u16 *buf_16 = rx_buf; 497 int k; 498 499 for (k = 0; k < words; k++) 500 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]); 501 } 502 503 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, 504 void *rx_buf, int words, int fs) 505 { 506 u32 *buf_32 = rx_buf; 507 int k; 508 509 for (k = 0; k < words; k++) 510 buf_32[k] = sh_msiof_read(p, RFDR) >> fs; 511 } 512 513 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, 514 void *rx_buf, int words, int fs) 515 { 516 u32 *buf_32 = rx_buf; 517 int k; 518 519 for (k = 0; k < words; k++) 520 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]); 521 } 522 523 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, 524 void *rx_buf, int words, int fs) 525 { 526 u32 *buf_32 = rx_buf; 527 int k; 528 529 for (k = 0; k < words; k++) 530 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs); 531 } 532 533 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, 534 void *rx_buf, int words, int fs) 535 { 536 u32 *buf_32 = rx_buf; 537 int k; 538 539 for (k = 0; k < words; k++) 540 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]); 541 } 542 543 static int sh_msiof_spi_setup(struct spi_device *spi) 544 { 545 struct device_node *np = spi->master->dev.of_node; 546 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master); 547 u32 clr, set, tmp; 548 549 if (!np) { 550 /* 551 * Use spi->controller_data for CS (same strategy as spi_gpio), 552 * if any. otherwise let HW control CS 553 */ 554 spi->cs_gpio = (uintptr_t)spi->controller_data; 555 } 556 557 if (gpio_is_valid(spi->cs_gpio)) { 558 gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH)); 559 return 0; 560 } 561 562 if (spi_controller_is_slave(p->master)) 563 return 0; 564 565 if (p->native_cs_inited && 566 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH))) 567 return 0; 568 569 /* Configure native chip select mode/polarity early */ 570 clr = MDR1_SYNCMD_MASK; 571 set = MDR1_SYNCMD_SPI; 572 if (spi->mode & SPI_CS_HIGH) 573 clr |= BIT(MDR1_SYNCAC_SHIFT); 574 else 575 set |= BIT(MDR1_SYNCAC_SHIFT); 576 pm_runtime_get_sync(&p->pdev->dev); 577 tmp = sh_msiof_read(p, TMDR1) & ~clr; 578 sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON); 579 tmp = sh_msiof_read(p, RMDR1) & ~clr; 580 sh_msiof_write(p, RMDR1, tmp | set); 581 pm_runtime_put(&p->pdev->dev); 582 p->native_cs_high = spi->mode & SPI_CS_HIGH; 583 p->native_cs_inited = true; 584 return 0; 585 } 586 587 static int sh_msiof_prepare_message(struct spi_master *master, 588 struct spi_message *msg) 589 { 590 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 591 const struct spi_device *spi = msg->spi; 592 u32 ss, cs_high; 593 594 /* Configure pins before asserting CS */ 595 if (gpio_is_valid(spi->cs_gpio)) { 596 ss = p->unused_ss; 597 cs_high = p->native_cs_high; 598 } else { 599 ss = spi->chip_select; 600 cs_high = !!(spi->mode & SPI_CS_HIGH); 601 } 602 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL), 603 !!(spi->mode & SPI_CPHA), 604 !!(spi->mode & SPI_3WIRE), 605 !!(spi->mode & SPI_LSB_FIRST), cs_high); 606 return 0; 607 } 608 609 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) 610 { 611 bool slave = spi_controller_is_slave(p->master); 612 int ret = 0; 613 614 /* setup clock and rx/tx signals */ 615 if (!slave) 616 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE); 617 if (rx_buf && !ret) 618 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE); 619 if (!ret) 620 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE); 621 622 /* start by setting frame bit */ 623 if (!ret && !slave) 624 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE); 625 626 return ret; 627 } 628 629 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) 630 { 631 bool slave = spi_controller_is_slave(p->master); 632 int ret = 0; 633 634 /* shut down frame, rx/tx and clock signals */ 635 if (!slave) 636 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0); 637 if (!ret) 638 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0); 639 if (rx_buf && !ret) 640 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0); 641 if (!ret && !slave) 642 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0); 643 644 return ret; 645 } 646 647 static int sh_msiof_slave_abort(struct spi_master *master) 648 { 649 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 650 651 p->slave_aborted = true; 652 complete(&p->done); 653 complete(&p->done_txdma); 654 return 0; 655 } 656 657 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p, 658 struct completion *x) 659 { 660 if (spi_controller_is_slave(p->master)) { 661 if (wait_for_completion_interruptible(x) || 662 p->slave_aborted) { 663 dev_dbg(&p->pdev->dev, "interrupted\n"); 664 return -EINTR; 665 } 666 } else { 667 if (!wait_for_completion_timeout(x, HZ)) { 668 dev_err(&p->pdev->dev, "timeout\n"); 669 return -ETIMEDOUT; 670 } 671 } 672 673 return 0; 674 } 675 676 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, 677 void (*tx_fifo)(struct sh_msiof_spi_priv *, 678 const void *, int, int), 679 void (*rx_fifo)(struct sh_msiof_spi_priv *, 680 void *, int, int), 681 const void *tx_buf, void *rx_buf, 682 int words, int bits) 683 { 684 int fifo_shift; 685 int ret; 686 687 /* limit maximum word transfer to rx/tx fifo size */ 688 if (tx_buf) 689 words = min_t(int, words, p->tx_fifo_size); 690 if (rx_buf) 691 words = min_t(int, words, p->rx_fifo_size); 692 693 /* the fifo contents need shifting */ 694 fifo_shift = 32 - bits; 695 696 /* default FIFO watermarks for PIO */ 697 sh_msiof_write(p, FCTR, 0); 698 699 /* setup msiof transfer mode registers */ 700 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); 701 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE); 702 703 /* write tx fifo */ 704 if (tx_buf) 705 tx_fifo(p, tx_buf, words, fifo_shift); 706 707 reinit_completion(&p->done); 708 p->slave_aborted = false; 709 710 ret = sh_msiof_spi_start(p, rx_buf); 711 if (ret) { 712 dev_err(&p->pdev->dev, "failed to start hardware\n"); 713 goto stop_ier; 714 } 715 716 /* wait for tx fifo to be emptied / rx fifo to be filled */ 717 ret = sh_msiof_wait_for_completion(p, &p->done); 718 if (ret) 719 goto stop_reset; 720 721 /* read rx fifo */ 722 if (rx_buf) 723 rx_fifo(p, rx_buf, words, fifo_shift); 724 725 /* clear status bits */ 726 sh_msiof_reset_str(p); 727 728 ret = sh_msiof_spi_stop(p, rx_buf); 729 if (ret) { 730 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 731 return ret; 732 } 733 734 return words; 735 736 stop_reset: 737 sh_msiof_reset_str(p); 738 sh_msiof_spi_stop(p, rx_buf); 739 stop_ier: 740 sh_msiof_write(p, IER, 0); 741 return ret; 742 } 743 744 static void sh_msiof_dma_complete(void *arg) 745 { 746 complete(arg); 747 } 748 749 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, 750 void *rx, unsigned int len) 751 { 752 u32 ier_bits = 0; 753 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 754 dma_cookie_t cookie; 755 int ret; 756 757 /* First prepare and submit the DMA request(s), as this may fail */ 758 if (rx) { 759 ier_bits |= IER_RDREQE | IER_RDMAE; 760 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx, 761 p->rx_dma_addr, len, DMA_DEV_TO_MEM, 762 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 763 if (!desc_rx) 764 return -EAGAIN; 765 766 desc_rx->callback = sh_msiof_dma_complete; 767 desc_rx->callback_param = &p->done; 768 cookie = dmaengine_submit(desc_rx); 769 if (dma_submit_error(cookie)) 770 return cookie; 771 } 772 773 if (tx) { 774 ier_bits |= IER_TDREQE | IER_TDMAE; 775 dma_sync_single_for_device(p->master->dma_tx->device->dev, 776 p->tx_dma_addr, len, DMA_TO_DEVICE); 777 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx, 778 p->tx_dma_addr, len, DMA_MEM_TO_DEV, 779 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 780 if (!desc_tx) { 781 ret = -EAGAIN; 782 goto no_dma_tx; 783 } 784 785 desc_tx->callback = sh_msiof_dma_complete; 786 desc_tx->callback_param = &p->done_txdma; 787 cookie = dmaengine_submit(desc_tx); 788 if (dma_submit_error(cookie)) { 789 ret = cookie; 790 goto no_dma_tx; 791 } 792 } 793 794 /* 1 stage FIFO watermarks for DMA */ 795 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1); 796 797 /* setup msiof transfer mode registers (32-bit words) */ 798 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); 799 800 sh_msiof_write(p, IER, ier_bits); 801 802 reinit_completion(&p->done); 803 if (tx) 804 reinit_completion(&p->done_txdma); 805 p->slave_aborted = false; 806 807 /* Now start DMA */ 808 if (rx) 809 dma_async_issue_pending(p->master->dma_rx); 810 if (tx) 811 dma_async_issue_pending(p->master->dma_tx); 812 813 ret = sh_msiof_spi_start(p, rx); 814 if (ret) { 815 dev_err(&p->pdev->dev, "failed to start hardware\n"); 816 goto stop_dma; 817 } 818 819 if (tx) { 820 /* wait for tx DMA completion */ 821 ret = sh_msiof_wait_for_completion(p, &p->done_txdma); 822 if (ret) 823 goto stop_reset; 824 } 825 826 if (rx) { 827 /* wait for rx DMA completion */ 828 ret = sh_msiof_wait_for_completion(p, &p->done); 829 if (ret) 830 goto stop_reset; 831 832 sh_msiof_write(p, IER, 0); 833 } else { 834 /* wait for tx fifo to be emptied */ 835 sh_msiof_write(p, IER, IER_TEOFE); 836 ret = sh_msiof_wait_for_completion(p, &p->done); 837 if (ret) 838 goto stop_reset; 839 } 840 841 /* clear status bits */ 842 sh_msiof_reset_str(p); 843 844 ret = sh_msiof_spi_stop(p, rx); 845 if (ret) { 846 dev_err(&p->pdev->dev, "failed to shut down hardware\n"); 847 return ret; 848 } 849 850 if (rx) 851 dma_sync_single_for_cpu(p->master->dma_rx->device->dev, 852 p->rx_dma_addr, len, 853 DMA_FROM_DEVICE); 854 855 return 0; 856 857 stop_reset: 858 sh_msiof_reset_str(p); 859 sh_msiof_spi_stop(p, rx); 860 stop_dma: 861 if (tx) 862 dmaengine_terminate_all(p->master->dma_tx); 863 no_dma_tx: 864 if (rx) 865 dmaengine_terminate_all(p->master->dma_rx); 866 sh_msiof_write(p, IER, 0); 867 return ret; 868 } 869 870 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) 871 { 872 /* src or dst can be unaligned, but not both */ 873 if ((unsigned long)src & 3) { 874 while (words--) { 875 *dst++ = swab32(get_unaligned(src)); 876 src++; 877 } 878 } else if ((unsigned long)dst & 3) { 879 while (words--) { 880 put_unaligned(swab32(*src++), dst); 881 dst++; 882 } 883 } else { 884 while (words--) 885 *dst++ = swab32(*src++); 886 } 887 } 888 889 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) 890 { 891 /* src or dst can be unaligned, but not both */ 892 if ((unsigned long)src & 3) { 893 while (words--) { 894 *dst++ = swahw32(get_unaligned(src)); 895 src++; 896 } 897 } else if ((unsigned long)dst & 3) { 898 while (words--) { 899 put_unaligned(swahw32(*src++), dst); 900 dst++; 901 } 902 } else { 903 while (words--) 904 *dst++ = swahw32(*src++); 905 } 906 } 907 908 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) 909 { 910 memcpy(dst, src, words * 4); 911 } 912 913 static int sh_msiof_transfer_one(struct spi_master *master, 914 struct spi_device *spi, 915 struct spi_transfer *t) 916 { 917 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master); 918 void (*copy32)(u32 *, const u32 *, unsigned int); 919 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); 920 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); 921 const void *tx_buf = t->tx_buf; 922 void *rx_buf = t->rx_buf; 923 unsigned int len = t->len; 924 unsigned int bits = t->bits_per_word; 925 unsigned int bytes_per_word; 926 unsigned int words; 927 int n; 928 bool swab; 929 int ret; 930 931 /* setup clocks (clock already enabled in chipselect()) */ 932 if (!spi_controller_is_slave(p->master)) 933 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz); 934 935 while (master->dma_tx && len > 15) { 936 /* 937 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit 938 * words, with byte resp. word swapping. 939 */ 940 unsigned int l = 0; 941 942 if (tx_buf) 943 l = min(len, p->tx_fifo_size * 4); 944 if (rx_buf) 945 l = min(len, p->rx_fifo_size * 4); 946 947 if (bits <= 8) { 948 if (l & 3) 949 break; 950 copy32 = copy_bswap32; 951 } else if (bits <= 16) { 952 if (l & 3) 953 break; 954 copy32 = copy_wswap32; 955 } else { 956 copy32 = copy_plain32; 957 } 958 959 if (tx_buf) 960 copy32(p->tx_dma_page, tx_buf, l / 4); 961 962 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); 963 if (ret == -EAGAIN) { 964 dev_warn_once(&p->pdev->dev, 965 "DMA not available, falling back to PIO\n"); 966 break; 967 } 968 if (ret) 969 return ret; 970 971 if (rx_buf) { 972 copy32(rx_buf, p->rx_dma_page, l / 4); 973 rx_buf += l; 974 } 975 if (tx_buf) 976 tx_buf += l; 977 978 len -= l; 979 if (!len) 980 return 0; 981 } 982 983 if (bits <= 8 && len > 15 && !(len & 3)) { 984 bits = 32; 985 swab = true; 986 } else { 987 swab = false; 988 } 989 990 /* setup bytes per word and fifo read/write functions */ 991 if (bits <= 8) { 992 bytes_per_word = 1; 993 tx_fifo = sh_msiof_spi_write_fifo_8; 994 rx_fifo = sh_msiof_spi_read_fifo_8; 995 } else if (bits <= 16) { 996 bytes_per_word = 2; 997 if ((unsigned long)tx_buf & 0x01) 998 tx_fifo = sh_msiof_spi_write_fifo_16u; 999 else 1000 tx_fifo = sh_msiof_spi_write_fifo_16; 1001 1002 if ((unsigned long)rx_buf & 0x01) 1003 rx_fifo = sh_msiof_spi_read_fifo_16u; 1004 else 1005 rx_fifo = sh_msiof_spi_read_fifo_16; 1006 } else if (swab) { 1007 bytes_per_word = 4; 1008 if ((unsigned long)tx_buf & 0x03) 1009 tx_fifo = sh_msiof_spi_write_fifo_s32u; 1010 else 1011 tx_fifo = sh_msiof_spi_write_fifo_s32; 1012 1013 if ((unsigned long)rx_buf & 0x03) 1014 rx_fifo = sh_msiof_spi_read_fifo_s32u; 1015 else 1016 rx_fifo = sh_msiof_spi_read_fifo_s32; 1017 } else { 1018 bytes_per_word = 4; 1019 if ((unsigned long)tx_buf & 0x03) 1020 tx_fifo = sh_msiof_spi_write_fifo_32u; 1021 else 1022 tx_fifo = sh_msiof_spi_write_fifo_32; 1023 1024 if ((unsigned long)rx_buf & 0x03) 1025 rx_fifo = sh_msiof_spi_read_fifo_32u; 1026 else 1027 rx_fifo = sh_msiof_spi_read_fifo_32; 1028 } 1029 1030 /* transfer in fifo sized chunks */ 1031 words = len / bytes_per_word; 1032 1033 while (words > 0) { 1034 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, 1035 words, bits); 1036 if (n < 0) 1037 return n; 1038 1039 if (tx_buf) 1040 tx_buf += n * bytes_per_word; 1041 if (rx_buf) 1042 rx_buf += n * bytes_per_word; 1043 words -= n; 1044 } 1045 1046 return 0; 1047 } 1048 1049 static const struct sh_msiof_chipdata sh_data = { 1050 .tx_fifo_size = 64, 1051 .rx_fifo_size = 64, 1052 .master_flags = 0, 1053 .min_div_pow = 0, 1054 }; 1055 1056 static const struct sh_msiof_chipdata rcar_gen2_data = { 1057 .tx_fifo_size = 64, 1058 .rx_fifo_size = 64, 1059 .master_flags = SPI_MASTER_MUST_TX, 1060 .min_div_pow = 0, 1061 }; 1062 1063 static const struct sh_msiof_chipdata rcar_gen3_data = { 1064 .tx_fifo_size = 64, 1065 .rx_fifo_size = 64, 1066 .master_flags = SPI_MASTER_MUST_TX, 1067 .min_div_pow = 1, 1068 }; 1069 1070 static const struct of_device_id sh_msiof_match[] = { 1071 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, 1072 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data }, 1073 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data }, 1074 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data }, 1075 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data }, 1076 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data }, 1077 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data }, 1078 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data }, 1079 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data }, 1080 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data }, 1081 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data }, 1082 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */ 1083 {}, 1084 }; 1085 MODULE_DEVICE_TABLE(of, sh_msiof_match); 1086 1087 #ifdef CONFIG_OF 1088 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 1089 { 1090 struct sh_msiof_spi_info *info; 1091 struct device_node *np = dev->of_node; 1092 u32 num_cs = 1; 1093 1094 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); 1095 if (!info) 1096 return NULL; 1097 1098 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE 1099 : MSIOF_SPI_MASTER; 1100 1101 /* Parse the MSIOF properties */ 1102 if (info->mode == MSIOF_SPI_MASTER) 1103 of_property_read_u32(np, "num-cs", &num_cs); 1104 of_property_read_u32(np, "renesas,tx-fifo-size", 1105 &info->tx_fifo_override); 1106 of_property_read_u32(np, "renesas,rx-fifo-size", 1107 &info->rx_fifo_override); 1108 of_property_read_u32(np, "renesas,dtdl", &info->dtdl); 1109 of_property_read_u32(np, "renesas,syncdl", &info->syncdl); 1110 1111 info->num_chipselect = num_cs; 1112 1113 return info; 1114 } 1115 #else 1116 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) 1117 { 1118 return NULL; 1119 } 1120 #endif 1121 1122 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p) 1123 { 1124 struct device *dev = &p->pdev->dev; 1125 unsigned int used_ss_mask = 0; 1126 unsigned int cs_gpios = 0; 1127 unsigned int num_cs, i; 1128 int ret; 1129 1130 ret = gpiod_count(dev, "cs"); 1131 if (ret <= 0) 1132 return 0; 1133 1134 num_cs = max_t(unsigned int, ret, p->master->num_chipselect); 1135 for (i = 0; i < num_cs; i++) { 1136 struct gpio_desc *gpiod; 1137 1138 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS); 1139 if (!IS_ERR(gpiod)) { 1140 cs_gpios++; 1141 continue; 1142 } 1143 1144 if (PTR_ERR(gpiod) != -ENOENT) 1145 return PTR_ERR(gpiod); 1146 1147 if (i >= MAX_SS) { 1148 dev_err(dev, "Invalid native chip select %d\n", i); 1149 return -EINVAL; 1150 } 1151 used_ss_mask |= BIT(i); 1152 } 1153 p->unused_ss = ffz(used_ss_mask); 1154 if (cs_gpios && p->unused_ss >= MAX_SS) { 1155 dev_err(dev, "No unused native chip select available\n"); 1156 return -EINVAL; 1157 } 1158 return 0; 1159 } 1160 1161 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, 1162 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) 1163 { 1164 dma_cap_mask_t mask; 1165 struct dma_chan *chan; 1166 struct dma_slave_config cfg; 1167 int ret; 1168 1169 dma_cap_zero(mask); 1170 dma_cap_set(DMA_SLAVE, mask); 1171 1172 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1173 (void *)(unsigned long)id, dev, 1174 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1175 if (!chan) { 1176 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1177 return NULL; 1178 } 1179 1180 memset(&cfg, 0, sizeof(cfg)); 1181 cfg.direction = dir; 1182 if (dir == DMA_MEM_TO_DEV) { 1183 cfg.dst_addr = port_addr; 1184 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1185 } else { 1186 cfg.src_addr = port_addr; 1187 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1188 } 1189 1190 ret = dmaengine_slave_config(chan, &cfg); 1191 if (ret) { 1192 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1193 dma_release_channel(chan); 1194 return NULL; 1195 } 1196 1197 return chan; 1198 } 1199 1200 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) 1201 { 1202 struct platform_device *pdev = p->pdev; 1203 struct device *dev = &pdev->dev; 1204 const struct sh_msiof_spi_info *info = dev_get_platdata(dev); 1205 unsigned int dma_tx_id, dma_rx_id; 1206 const struct resource *res; 1207 struct spi_master *master; 1208 struct device *tx_dev, *rx_dev; 1209 1210 if (dev->of_node) { 1211 /* In the OF case we will get the slave IDs from the DT */ 1212 dma_tx_id = 0; 1213 dma_rx_id = 0; 1214 } else if (info && info->dma_tx_id && info->dma_rx_id) { 1215 dma_tx_id = info->dma_tx_id; 1216 dma_rx_id = info->dma_rx_id; 1217 } else { 1218 /* The driver assumes no error */ 1219 return 0; 1220 } 1221 1222 /* The DMA engine uses the second register set, if present */ 1223 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1224 if (!res) 1225 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1226 1227 master = p->master; 1228 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, 1229 dma_tx_id, 1230 res->start + TFDR); 1231 if (!master->dma_tx) 1232 return -ENODEV; 1233 1234 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, 1235 dma_rx_id, 1236 res->start + RFDR); 1237 if (!master->dma_rx) 1238 goto free_tx_chan; 1239 1240 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1241 if (!p->tx_dma_page) 1242 goto free_rx_chan; 1243 1244 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 1245 if (!p->rx_dma_page) 1246 goto free_tx_page; 1247 1248 tx_dev = master->dma_tx->device->dev; 1249 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, 1250 DMA_TO_DEVICE); 1251 if (dma_mapping_error(tx_dev, p->tx_dma_addr)) 1252 goto free_rx_page; 1253 1254 rx_dev = master->dma_rx->device->dev; 1255 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, 1256 DMA_FROM_DEVICE); 1257 if (dma_mapping_error(rx_dev, p->rx_dma_addr)) 1258 goto unmap_tx_page; 1259 1260 dev_info(dev, "DMA available"); 1261 return 0; 1262 1263 unmap_tx_page: 1264 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); 1265 free_rx_page: 1266 free_page((unsigned long)p->rx_dma_page); 1267 free_tx_page: 1268 free_page((unsigned long)p->tx_dma_page); 1269 free_rx_chan: 1270 dma_release_channel(master->dma_rx); 1271 free_tx_chan: 1272 dma_release_channel(master->dma_tx); 1273 master->dma_tx = NULL; 1274 return -ENODEV; 1275 } 1276 1277 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) 1278 { 1279 struct spi_master *master = p->master; 1280 1281 if (!master->dma_tx) 1282 return; 1283 1284 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr, 1285 PAGE_SIZE, DMA_FROM_DEVICE); 1286 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr, 1287 PAGE_SIZE, DMA_TO_DEVICE); 1288 free_page((unsigned long)p->rx_dma_page); 1289 free_page((unsigned long)p->tx_dma_page); 1290 dma_release_channel(master->dma_rx); 1291 dma_release_channel(master->dma_tx); 1292 } 1293 1294 static int sh_msiof_spi_probe(struct platform_device *pdev) 1295 { 1296 struct resource *r; 1297 struct spi_master *master; 1298 const struct sh_msiof_chipdata *chipdata; 1299 struct sh_msiof_spi_info *info; 1300 struct sh_msiof_spi_priv *p; 1301 int i; 1302 int ret; 1303 1304 chipdata = of_device_get_match_data(&pdev->dev); 1305 if (chipdata) { 1306 info = sh_msiof_spi_parse_dt(&pdev->dev); 1307 } else { 1308 chipdata = (const void *)pdev->id_entry->driver_data; 1309 info = dev_get_platdata(&pdev->dev); 1310 } 1311 1312 if (!info) { 1313 dev_err(&pdev->dev, "failed to obtain device info\n"); 1314 return -ENXIO; 1315 } 1316 1317 if (info->mode == MSIOF_SPI_SLAVE) 1318 master = spi_alloc_slave(&pdev->dev, 1319 sizeof(struct sh_msiof_spi_priv)); 1320 else 1321 master = spi_alloc_master(&pdev->dev, 1322 sizeof(struct sh_msiof_spi_priv)); 1323 if (master == NULL) 1324 return -ENOMEM; 1325 1326 p = spi_master_get_devdata(master); 1327 1328 platform_set_drvdata(pdev, p); 1329 p->master = master; 1330 p->info = info; 1331 p->min_div_pow = chipdata->min_div_pow; 1332 1333 init_completion(&p->done); 1334 init_completion(&p->done_txdma); 1335 1336 p->clk = devm_clk_get(&pdev->dev, NULL); 1337 if (IS_ERR(p->clk)) { 1338 dev_err(&pdev->dev, "cannot get clock\n"); 1339 ret = PTR_ERR(p->clk); 1340 goto err1; 1341 } 1342 1343 i = platform_get_irq(pdev, 0); 1344 if (i < 0) { 1345 dev_err(&pdev->dev, "cannot get platform IRQ\n"); 1346 ret = -ENOENT; 1347 goto err1; 1348 } 1349 1350 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1351 p->mapbase = devm_ioremap_resource(&pdev->dev, r); 1352 if (IS_ERR(p->mapbase)) { 1353 ret = PTR_ERR(p->mapbase); 1354 goto err1; 1355 } 1356 1357 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, 1358 dev_name(&pdev->dev), p); 1359 if (ret) { 1360 dev_err(&pdev->dev, "unable to request irq\n"); 1361 goto err1; 1362 } 1363 1364 p->pdev = pdev; 1365 pm_runtime_enable(&pdev->dev); 1366 1367 /* Platform data may override FIFO sizes */ 1368 p->tx_fifo_size = chipdata->tx_fifo_size; 1369 p->rx_fifo_size = chipdata->rx_fifo_size; 1370 if (p->info->tx_fifo_override) 1371 p->tx_fifo_size = p->info->tx_fifo_override; 1372 if (p->info->rx_fifo_override) 1373 p->rx_fifo_size = p->info->rx_fifo_override; 1374 1375 /* Setup GPIO chip selects */ 1376 master->num_chipselect = p->info->num_chipselect; 1377 ret = sh_msiof_get_cs_gpios(p); 1378 if (ret) 1379 goto err1; 1380 1381 /* init master code */ 1382 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1383 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; 1384 master->flags = chipdata->master_flags; 1385 master->bus_num = pdev->id; 1386 master->dev.of_node = pdev->dev.of_node; 1387 master->setup = sh_msiof_spi_setup; 1388 master->prepare_message = sh_msiof_prepare_message; 1389 master->slave_abort = sh_msiof_slave_abort; 1390 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32); 1391 master->auto_runtime_pm = true; 1392 master->transfer_one = sh_msiof_transfer_one; 1393 1394 ret = sh_msiof_request_dma(p); 1395 if (ret < 0) 1396 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1397 1398 ret = devm_spi_register_master(&pdev->dev, master); 1399 if (ret < 0) { 1400 dev_err(&pdev->dev, "spi_register_master error.\n"); 1401 goto err2; 1402 } 1403 1404 return 0; 1405 1406 err2: 1407 sh_msiof_release_dma(p); 1408 pm_runtime_disable(&pdev->dev); 1409 err1: 1410 spi_master_put(master); 1411 return ret; 1412 } 1413 1414 static int sh_msiof_spi_remove(struct platform_device *pdev) 1415 { 1416 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); 1417 1418 sh_msiof_release_dma(p); 1419 pm_runtime_disable(&pdev->dev); 1420 return 0; 1421 } 1422 1423 static const struct platform_device_id spi_driver_ids[] = { 1424 { "spi_sh_msiof", (kernel_ulong_t)&sh_data }, 1425 {}, 1426 }; 1427 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1428 1429 static struct platform_driver sh_msiof_spi_drv = { 1430 .probe = sh_msiof_spi_probe, 1431 .remove = sh_msiof_spi_remove, 1432 .id_table = spi_driver_ids, 1433 .driver = { 1434 .name = "spi_sh_msiof", 1435 .of_match_table = of_match_ptr(sh_msiof_match), 1436 }, 1437 }; 1438 module_platform_driver(sh_msiof_spi_drv); 1439 1440 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver"); 1441 MODULE_AUTHOR("Magnus Damm"); 1442 MODULE_LICENSE("GPL v2"); 1443 MODULE_ALIAS("platform:spi_sh_msiof"); 1444