xref: /openbmc/linux/drivers/spi/spi-sh-msiof.c (revision 242cdad8)
1 /*
2  * SuperH MSIOF SPI Master Interface
3  *
4  * Copyright (c) 2009 Magnus Damm
5  * Copyright (C) 2014 Renesas Electronics Corporation
6  * Copyright (C) 2014-2017 Glider bvba
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  */
13 
14 #include <linux/bitmap.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_dma.h>
32 
33 #include <linux/spi/sh_msiof.h>
34 #include <linux/spi/spi.h>
35 
36 #include <asm/unaligned.h>
37 
38 struct sh_msiof_chipdata {
39 	u16 tx_fifo_size;
40 	u16 rx_fifo_size;
41 	u16 master_flags;
42 	u16 min_div_pow;
43 };
44 
45 struct sh_msiof_spi_priv {
46 	struct spi_master *master;
47 	void __iomem *mapbase;
48 	struct clk *clk;
49 	struct platform_device *pdev;
50 	struct sh_msiof_spi_info *info;
51 	struct completion done;
52 	struct completion done_txdma;
53 	unsigned int tx_fifo_size;
54 	unsigned int rx_fifo_size;
55 	unsigned int min_div_pow;
56 	void *tx_dma_page;
57 	void *rx_dma_page;
58 	dma_addr_t tx_dma_addr;
59 	dma_addr_t rx_dma_addr;
60 	unsigned short unused_ss;
61 	bool native_cs_inited;
62 	bool native_cs_high;
63 	bool slave_aborted;
64 };
65 
66 #define MAX_SS	3	/* Maximum number of native chip selects */
67 
68 #define TMDR1	0x00	/* Transmit Mode Register 1 */
69 #define TMDR2	0x04	/* Transmit Mode Register 2 */
70 #define TMDR3	0x08	/* Transmit Mode Register 3 */
71 #define RMDR1	0x10	/* Receive Mode Register 1 */
72 #define RMDR2	0x14	/* Receive Mode Register 2 */
73 #define RMDR3	0x18	/* Receive Mode Register 3 */
74 #define TSCR	0x20	/* Transmit Clock Select Register */
75 #define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
76 #define CTR	0x28	/* Control Register */
77 #define FCTR	0x30	/* FIFO Control Register */
78 #define STR	0x40	/* Status Register */
79 #define IER	0x44	/* Interrupt Enable Register */
80 #define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
81 #define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
82 #define TFDR	0x50	/* Transmit FIFO Data Register */
83 #define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
84 #define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
85 #define RFDR	0x60	/* Receive FIFO Data Register */
86 
87 /* TMDR1 and RMDR1 */
88 #define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
89 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
90 #define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
91 #define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
92 #define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
93 #define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
94 #define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
95 #define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
96 #define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
97 #define MDR1_FLD_SHIFT		  2
98 #define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
99 /* TMDR1 */
100 #define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
101 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
102 #define TMDR1_SYNCCH_SHIFT	 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
103 
104 /* TMDR2 and RMDR2 */
105 #define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
106 #define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
107 #define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
108 
109 /* TSCR and RSCR */
110 #define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
111 #define SCR_BRPS(i)	(((i) - 1) << 8)
112 #define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
113 #define SCR_BRDV_DIV_2	    0x0000
114 #define SCR_BRDV_DIV_4	    0x0001
115 #define SCR_BRDV_DIV_8	    0x0002
116 #define SCR_BRDV_DIV_16	    0x0003
117 #define SCR_BRDV_DIV_32	    0x0004
118 #define SCR_BRDV_DIV_1	    0x0007
119 
120 /* CTR */
121 #define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
122 #define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
123 #define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
124 #define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
125 #define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
126 #define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
127 #define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
128 #define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
129 #define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
130 #define CTR_TXDIZ_LOW	0x00000000 /*   0 */
131 #define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
132 #define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
133 #define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
134 #define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
135 #define CTR_TXE		0x00000200 /* Transmit Enable */
136 #define CTR_RXE		0x00000100 /* Receive Enable */
137 
138 /* FCTR */
139 #define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
140 #define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
141 #define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
142 #define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
143 #define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
144 #define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
145 #define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
146 #define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
147 #define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
148 #define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
149 #define FCTR_TFUA_SHIFT		20
150 #define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
151 #define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
152 #define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
153 #define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
154 #define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
155 #define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
156 #define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
157 #define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
158 #define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
159 #define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
160 #define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
161 #define FCTR_RFUA_SHIFT		 4
162 #define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
163 
164 /* STR */
165 #define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
166 #define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
167 #define STR_TEOF	0x00800000 /* Frame Transmission End */
168 #define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
169 #define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
170 #define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
171 #define STR_RFFUL	0x00002000 /* Receive FIFO Full */
172 #define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
173 #define STR_REOF	0x00000080 /* Frame Reception End */
174 #define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
175 #define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
176 #define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
177 
178 /* IER */
179 #define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
180 #define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
181 #define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
182 #define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
183 #define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
184 #define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
185 #define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
186 #define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
187 #define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
188 #define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
189 #define IER_REOFE	0x00000080 /* Frame Reception End Enable */
190 #define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
191 #define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
192 #define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
193 
194 
195 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
196 {
197 	switch (reg_offs) {
198 	case TSCR:
199 	case RSCR:
200 		return ioread16(p->mapbase + reg_offs);
201 	default:
202 		return ioread32(p->mapbase + reg_offs);
203 	}
204 }
205 
206 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
207 			   u32 value)
208 {
209 	switch (reg_offs) {
210 	case TSCR:
211 	case RSCR:
212 		iowrite16(value, p->mapbase + reg_offs);
213 		break;
214 	default:
215 		iowrite32(value, p->mapbase + reg_offs);
216 		break;
217 	}
218 }
219 
220 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
221 				    u32 clr, u32 set)
222 {
223 	u32 mask = clr | set;
224 	u32 data;
225 	int k;
226 
227 	data = sh_msiof_read(p, CTR);
228 	data &= ~clr;
229 	data |= set;
230 	sh_msiof_write(p, CTR, data);
231 
232 	for (k = 100; k > 0; k--) {
233 		if ((sh_msiof_read(p, CTR) & mask) == set)
234 			break;
235 
236 		udelay(10);
237 	}
238 
239 	return k > 0 ? 0 : -ETIMEDOUT;
240 }
241 
242 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
243 {
244 	struct sh_msiof_spi_priv *p = data;
245 
246 	/* just disable the interrupt and wake up */
247 	sh_msiof_write(p, IER, 0);
248 	complete(&p->done);
249 
250 	return IRQ_HANDLED;
251 }
252 
253 static const u32 sh_msiof_spi_div_array[] = {
254 	SCR_BRDV_DIV_1, SCR_BRDV_DIV_2,	 SCR_BRDV_DIV_4,
255 	SCR_BRDV_DIV_8,	SCR_BRDV_DIV_16, SCR_BRDV_DIV_32,
256 };
257 
258 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
259 				      unsigned long parent_rate, u32 spi_hz)
260 {
261 	unsigned long div;
262 	u32 brps, scr;
263 	unsigned int div_pow = p->min_div_pow;
264 
265 	if (!spi_hz || !parent_rate) {
266 		WARN(1, "Invalid clock rate parameters %lu and %u\n",
267 		     parent_rate, spi_hz);
268 		return;
269 	}
270 
271 	div = DIV_ROUND_UP(parent_rate, spi_hz);
272 	if (div <= 1024) {
273 		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
274 		if (!div_pow && div <= 32 && div > 2)
275 			div_pow = 1;
276 
277 		if (div_pow)
278 			brps = (div + 1) >> div_pow;
279 		else
280 			brps = div;
281 
282 		for (; brps > 32; div_pow++)
283 			brps = (brps + 1) >> 1;
284 	} else {
285 		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
286 		dev_err(&p->pdev->dev,
287 			"Requested SPI transfer rate %d is too low\n", spi_hz);
288 		div_pow = 5;
289 		brps = 32;
290 	}
291 
292 	scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps);
293 	sh_msiof_write(p, TSCR, scr);
294 	if (!(p->master->flags & SPI_MASTER_MUST_TX))
295 		sh_msiof_write(p, RSCR, scr);
296 }
297 
298 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
299 {
300 	/*
301 	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
302 	 * b'000		: 0
303 	 * b'001		: 100
304 	 * b'010		: 200
305 	 * b'011 (SYNCDL only)	: 300
306 	 * b'101		: 50
307 	 * b'110		: 150
308 	 */
309 	if (dtdl_or_syncdl % 100)
310 		return dtdl_or_syncdl / 100 + 5;
311 	else
312 		return dtdl_or_syncdl / 100;
313 }
314 
315 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
316 {
317 	u32 val;
318 
319 	if (!p->info)
320 		return 0;
321 
322 	/* check if DTDL and SYNCDL is allowed value */
323 	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
324 		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
325 		return 0;
326 	}
327 
328 	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
329 	if ((p->info->dtdl + p->info->syncdl) % 100) {
330 		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
331 		return 0;
332 	}
333 
334 	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
335 	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
336 
337 	return val;
338 }
339 
340 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
341 				      u32 cpol, u32 cpha,
342 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
343 {
344 	u32 tmp;
345 	int edge;
346 
347 	/*
348 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
349 	 *    0    0         10     10    1    1
350 	 *    0    1         10     10    0    0
351 	 *    1    0         11     11    0    0
352 	 *    1    1         11     11    1    1
353 	 */
354 	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
355 	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
356 	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
357 	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
358 	if (spi_controller_is_slave(p->master)) {
359 		sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
360 	} else {
361 		sh_msiof_write(p, TMDR1,
362 			       tmp | MDR1_TRMD | TMDR1_PCON |
363 			       (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
364 	}
365 	if (p->master->flags & SPI_MASTER_MUST_TX) {
366 		/* These bits are reserved if RX needs TX */
367 		tmp &= ~0x0000ffff;
368 	}
369 	sh_msiof_write(p, RMDR1, tmp);
370 
371 	tmp = 0;
372 	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
373 	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
374 
375 	edge = cpol ^ !cpha;
376 
377 	tmp |= edge << CTR_TEDG_SHIFT;
378 	tmp |= edge << CTR_REDG_SHIFT;
379 	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
380 	sh_msiof_write(p, CTR, tmp);
381 }
382 
383 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
384 				       const void *tx_buf, void *rx_buf,
385 				       u32 bits, u32 words)
386 {
387 	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
388 
389 	if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
390 		sh_msiof_write(p, TMDR2, dr2);
391 	else
392 		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
393 
394 	if (rx_buf)
395 		sh_msiof_write(p, RMDR2, dr2);
396 }
397 
398 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
399 {
400 	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
401 }
402 
403 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
404 				      const void *tx_buf, int words, int fs)
405 {
406 	const u8 *buf_8 = tx_buf;
407 	int k;
408 
409 	for (k = 0; k < words; k++)
410 		sh_msiof_write(p, TFDR, buf_8[k] << fs);
411 }
412 
413 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
414 				       const void *tx_buf, int words, int fs)
415 {
416 	const u16 *buf_16 = tx_buf;
417 	int k;
418 
419 	for (k = 0; k < words; k++)
420 		sh_msiof_write(p, TFDR, buf_16[k] << fs);
421 }
422 
423 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
424 					const void *tx_buf, int words, int fs)
425 {
426 	const u16 *buf_16 = tx_buf;
427 	int k;
428 
429 	for (k = 0; k < words; k++)
430 		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
431 }
432 
433 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
434 				       const void *tx_buf, int words, int fs)
435 {
436 	const u32 *buf_32 = tx_buf;
437 	int k;
438 
439 	for (k = 0; k < words; k++)
440 		sh_msiof_write(p, TFDR, buf_32[k] << fs);
441 }
442 
443 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
444 					const void *tx_buf, int words, int fs)
445 {
446 	const u32 *buf_32 = tx_buf;
447 	int k;
448 
449 	for (k = 0; k < words; k++)
450 		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
451 }
452 
453 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
454 					const void *tx_buf, int words, int fs)
455 {
456 	const u32 *buf_32 = tx_buf;
457 	int k;
458 
459 	for (k = 0; k < words; k++)
460 		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
461 }
462 
463 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
464 					 const void *tx_buf, int words, int fs)
465 {
466 	const u32 *buf_32 = tx_buf;
467 	int k;
468 
469 	for (k = 0; k < words; k++)
470 		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
471 }
472 
473 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
474 				     void *rx_buf, int words, int fs)
475 {
476 	u8 *buf_8 = rx_buf;
477 	int k;
478 
479 	for (k = 0; k < words; k++)
480 		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
481 }
482 
483 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
484 				      void *rx_buf, int words, int fs)
485 {
486 	u16 *buf_16 = rx_buf;
487 	int k;
488 
489 	for (k = 0; k < words; k++)
490 		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
491 }
492 
493 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
494 				       void *rx_buf, int words, int fs)
495 {
496 	u16 *buf_16 = rx_buf;
497 	int k;
498 
499 	for (k = 0; k < words; k++)
500 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
501 }
502 
503 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
504 				      void *rx_buf, int words, int fs)
505 {
506 	u32 *buf_32 = rx_buf;
507 	int k;
508 
509 	for (k = 0; k < words; k++)
510 		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
511 }
512 
513 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
514 				       void *rx_buf, int words, int fs)
515 {
516 	u32 *buf_32 = rx_buf;
517 	int k;
518 
519 	for (k = 0; k < words; k++)
520 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
521 }
522 
523 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
524 				       void *rx_buf, int words, int fs)
525 {
526 	u32 *buf_32 = rx_buf;
527 	int k;
528 
529 	for (k = 0; k < words; k++)
530 		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
531 }
532 
533 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
534 				       void *rx_buf, int words, int fs)
535 {
536 	u32 *buf_32 = rx_buf;
537 	int k;
538 
539 	for (k = 0; k < words; k++)
540 		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
541 }
542 
543 static int sh_msiof_spi_setup(struct spi_device *spi)
544 {
545 	struct device_node	*np = spi->master->dev.of_node;
546 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
547 	u32 clr, set, tmp;
548 
549 	if (!np) {
550 		/*
551 		 * Use spi->controller_data for CS (same strategy as spi_gpio),
552 		 * if any. otherwise let HW control CS
553 		 */
554 		spi->cs_gpio = (uintptr_t)spi->controller_data;
555 	}
556 
557 	if (gpio_is_valid(spi->cs_gpio)) {
558 		gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
559 		return 0;
560 	}
561 
562 	if (spi_controller_is_slave(p->master))
563 		return 0;
564 
565 	if (p->native_cs_inited &&
566 	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
567 		return 0;
568 
569 	/* Configure native chip select mode/polarity early */
570 	clr = MDR1_SYNCMD_MASK;
571 	set = MDR1_SYNCMD_SPI;
572 	if (spi->mode & SPI_CS_HIGH)
573 		clr |= BIT(MDR1_SYNCAC_SHIFT);
574 	else
575 		set |= BIT(MDR1_SYNCAC_SHIFT);
576 	pm_runtime_get_sync(&p->pdev->dev);
577 	tmp = sh_msiof_read(p, TMDR1) & ~clr;
578 	sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
579 	tmp = sh_msiof_read(p, RMDR1) & ~clr;
580 	sh_msiof_write(p, RMDR1, tmp | set);
581 	pm_runtime_put(&p->pdev->dev);
582 	p->native_cs_high = spi->mode & SPI_CS_HIGH;
583 	p->native_cs_inited = true;
584 	return 0;
585 }
586 
587 static int sh_msiof_prepare_message(struct spi_master *master,
588 				    struct spi_message *msg)
589 {
590 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
591 	const struct spi_device *spi = msg->spi;
592 	u32 ss, cs_high;
593 
594 	/* Configure pins before asserting CS */
595 	if (gpio_is_valid(spi->cs_gpio)) {
596 		ss = p->unused_ss;
597 		cs_high = p->native_cs_high;
598 	} else {
599 		ss = spi->chip_select;
600 		cs_high = !!(spi->mode & SPI_CS_HIGH);
601 	}
602 	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
603 				  !!(spi->mode & SPI_CPHA),
604 				  !!(spi->mode & SPI_3WIRE),
605 				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
606 	return 0;
607 }
608 
609 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
610 {
611 	bool slave = spi_controller_is_slave(p->master);
612 	int ret = 0;
613 
614 	/* setup clock and rx/tx signals */
615 	if (!slave)
616 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
617 	if (rx_buf && !ret)
618 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
619 	if (!ret)
620 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
621 
622 	/* start by setting frame bit */
623 	if (!ret && !slave)
624 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
625 
626 	return ret;
627 }
628 
629 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
630 {
631 	bool slave = spi_controller_is_slave(p->master);
632 	int ret = 0;
633 
634 	/* shut down frame, rx/tx and clock signals */
635 	if (!slave)
636 		ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
637 	if (!ret)
638 		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
639 	if (rx_buf && !ret)
640 		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
641 	if (!ret && !slave)
642 		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
643 
644 	return ret;
645 }
646 
647 static int sh_msiof_slave_abort(struct spi_master *master)
648 {
649 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
650 
651 	p->slave_aborted = true;
652 	complete(&p->done);
653 	complete(&p->done_txdma);
654 	return 0;
655 }
656 
657 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
658 					struct completion *x)
659 {
660 	if (spi_controller_is_slave(p->master)) {
661 		if (wait_for_completion_interruptible(x) ||
662 		    p->slave_aborted) {
663 			dev_dbg(&p->pdev->dev, "interrupted\n");
664 			return -EINTR;
665 		}
666 	} else {
667 		if (!wait_for_completion_timeout(x, HZ)) {
668 			dev_err(&p->pdev->dev, "timeout\n");
669 			return -ETIMEDOUT;
670 		}
671 	}
672 
673 	return 0;
674 }
675 
676 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
677 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
678 						  const void *, int, int),
679 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
680 						  void *, int, int),
681 				  const void *tx_buf, void *rx_buf,
682 				  int words, int bits)
683 {
684 	int fifo_shift;
685 	int ret;
686 
687 	/* limit maximum word transfer to rx/tx fifo size */
688 	if (tx_buf)
689 		words = min_t(int, words, p->tx_fifo_size);
690 	if (rx_buf)
691 		words = min_t(int, words, p->rx_fifo_size);
692 
693 	/* the fifo contents need shifting */
694 	fifo_shift = 32 - bits;
695 
696 	/* default FIFO watermarks for PIO */
697 	sh_msiof_write(p, FCTR, 0);
698 
699 	/* setup msiof transfer mode registers */
700 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
701 	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
702 
703 	/* write tx fifo */
704 	if (tx_buf)
705 		tx_fifo(p, tx_buf, words, fifo_shift);
706 
707 	reinit_completion(&p->done);
708 	p->slave_aborted = false;
709 
710 	ret = sh_msiof_spi_start(p, rx_buf);
711 	if (ret) {
712 		dev_err(&p->pdev->dev, "failed to start hardware\n");
713 		goto stop_ier;
714 	}
715 
716 	/* wait for tx fifo to be emptied / rx fifo to be filled */
717 	ret = sh_msiof_wait_for_completion(p, &p->done);
718 	if (ret)
719 		goto stop_reset;
720 
721 	/* read rx fifo */
722 	if (rx_buf)
723 		rx_fifo(p, rx_buf, words, fifo_shift);
724 
725 	/* clear status bits */
726 	sh_msiof_reset_str(p);
727 
728 	ret = sh_msiof_spi_stop(p, rx_buf);
729 	if (ret) {
730 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
731 		return ret;
732 	}
733 
734 	return words;
735 
736 stop_reset:
737 	sh_msiof_reset_str(p);
738 	sh_msiof_spi_stop(p, rx_buf);
739 stop_ier:
740 	sh_msiof_write(p, IER, 0);
741 	return ret;
742 }
743 
744 static void sh_msiof_dma_complete(void *arg)
745 {
746 	complete(arg);
747 }
748 
749 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
750 			     void *rx, unsigned int len)
751 {
752 	u32 ier_bits = 0;
753 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
754 	dma_cookie_t cookie;
755 	int ret;
756 
757 	/* First prepare and submit the DMA request(s), as this may fail */
758 	if (rx) {
759 		ier_bits |= IER_RDREQE | IER_RDMAE;
760 		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
761 					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
762 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
763 		if (!desc_rx)
764 			return -EAGAIN;
765 
766 		desc_rx->callback = sh_msiof_dma_complete;
767 		desc_rx->callback_param = &p->done;
768 		cookie = dmaengine_submit(desc_rx);
769 		if (dma_submit_error(cookie))
770 			return cookie;
771 	}
772 
773 	if (tx) {
774 		ier_bits |= IER_TDREQE | IER_TDMAE;
775 		dma_sync_single_for_device(p->master->dma_tx->device->dev,
776 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
777 		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
778 					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
779 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
780 		if (!desc_tx) {
781 			ret = -EAGAIN;
782 			goto no_dma_tx;
783 		}
784 
785 		desc_tx->callback = sh_msiof_dma_complete;
786 		desc_tx->callback_param = &p->done_txdma;
787 		cookie = dmaengine_submit(desc_tx);
788 		if (dma_submit_error(cookie)) {
789 			ret = cookie;
790 			goto no_dma_tx;
791 		}
792 	}
793 
794 	/* 1 stage FIFO watermarks for DMA */
795 	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
796 
797 	/* setup msiof transfer mode registers (32-bit words) */
798 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
799 
800 	sh_msiof_write(p, IER, ier_bits);
801 
802 	reinit_completion(&p->done);
803 	if (tx)
804 		reinit_completion(&p->done_txdma);
805 	p->slave_aborted = false;
806 
807 	/* Now start DMA */
808 	if (rx)
809 		dma_async_issue_pending(p->master->dma_rx);
810 	if (tx)
811 		dma_async_issue_pending(p->master->dma_tx);
812 
813 	ret = sh_msiof_spi_start(p, rx);
814 	if (ret) {
815 		dev_err(&p->pdev->dev, "failed to start hardware\n");
816 		goto stop_dma;
817 	}
818 
819 	if (tx) {
820 		/* wait for tx DMA completion */
821 		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
822 		if (ret)
823 			goto stop_reset;
824 	}
825 
826 	if (rx) {
827 		/* wait for rx DMA completion */
828 		ret = sh_msiof_wait_for_completion(p, &p->done);
829 		if (ret)
830 			goto stop_reset;
831 
832 		sh_msiof_write(p, IER, 0);
833 	} else {
834 		/* wait for tx fifo to be emptied */
835 		sh_msiof_write(p, IER, IER_TEOFE);
836 		ret = sh_msiof_wait_for_completion(p, &p->done);
837 		if (ret)
838 			goto stop_reset;
839 	}
840 
841 	/* clear status bits */
842 	sh_msiof_reset_str(p);
843 
844 	ret = sh_msiof_spi_stop(p, rx);
845 	if (ret) {
846 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
847 		return ret;
848 	}
849 
850 	if (rx)
851 		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
852 					p->rx_dma_addr, len,
853 					DMA_FROM_DEVICE);
854 
855 	return 0;
856 
857 stop_reset:
858 	sh_msiof_reset_str(p);
859 	sh_msiof_spi_stop(p, rx);
860 stop_dma:
861 	if (tx)
862 		dmaengine_terminate_all(p->master->dma_tx);
863 no_dma_tx:
864 	if (rx)
865 		dmaengine_terminate_all(p->master->dma_rx);
866 	sh_msiof_write(p, IER, 0);
867 	return ret;
868 }
869 
870 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
871 {
872 	/* src or dst can be unaligned, but not both */
873 	if ((unsigned long)src & 3) {
874 		while (words--) {
875 			*dst++ = swab32(get_unaligned(src));
876 			src++;
877 		}
878 	} else if ((unsigned long)dst & 3) {
879 		while (words--) {
880 			put_unaligned(swab32(*src++), dst);
881 			dst++;
882 		}
883 	} else {
884 		while (words--)
885 			*dst++ = swab32(*src++);
886 	}
887 }
888 
889 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
890 {
891 	/* src or dst can be unaligned, but not both */
892 	if ((unsigned long)src & 3) {
893 		while (words--) {
894 			*dst++ = swahw32(get_unaligned(src));
895 			src++;
896 		}
897 	} else if ((unsigned long)dst & 3) {
898 		while (words--) {
899 			put_unaligned(swahw32(*src++), dst);
900 			dst++;
901 		}
902 	} else {
903 		while (words--)
904 			*dst++ = swahw32(*src++);
905 	}
906 }
907 
908 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
909 {
910 	memcpy(dst, src, words * 4);
911 }
912 
913 static int sh_msiof_transfer_one(struct spi_master *master,
914 				 struct spi_device *spi,
915 				 struct spi_transfer *t)
916 {
917 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
918 	void (*copy32)(u32 *, const u32 *, unsigned int);
919 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
920 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
921 	const void *tx_buf = t->tx_buf;
922 	void *rx_buf = t->rx_buf;
923 	unsigned int len = t->len;
924 	unsigned int bits = t->bits_per_word;
925 	unsigned int bytes_per_word;
926 	unsigned int words;
927 	int n;
928 	bool swab;
929 	int ret;
930 
931 	/* setup clocks (clock already enabled in chipselect()) */
932 	if (!spi_controller_is_slave(p->master))
933 		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
934 
935 	while (master->dma_tx && len > 15) {
936 		/*
937 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
938 		 *  words, with byte resp. word swapping.
939 		 */
940 		unsigned int l = 0;
941 
942 		if (tx_buf)
943 			l = min(len, p->tx_fifo_size * 4);
944 		if (rx_buf)
945 			l = min(len, p->rx_fifo_size * 4);
946 
947 		if (bits <= 8) {
948 			if (l & 3)
949 				break;
950 			copy32 = copy_bswap32;
951 		} else if (bits <= 16) {
952 			if (l & 3)
953 				break;
954 			copy32 = copy_wswap32;
955 		} else {
956 			copy32 = copy_plain32;
957 		}
958 
959 		if (tx_buf)
960 			copy32(p->tx_dma_page, tx_buf, l / 4);
961 
962 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
963 		if (ret == -EAGAIN) {
964 			dev_warn_once(&p->pdev->dev,
965 				"DMA not available, falling back to PIO\n");
966 			break;
967 		}
968 		if (ret)
969 			return ret;
970 
971 		if (rx_buf) {
972 			copy32(rx_buf, p->rx_dma_page, l / 4);
973 			rx_buf += l;
974 		}
975 		if (tx_buf)
976 			tx_buf += l;
977 
978 		len -= l;
979 		if (!len)
980 			return 0;
981 	}
982 
983 	if (bits <= 8 && len > 15 && !(len & 3)) {
984 		bits = 32;
985 		swab = true;
986 	} else {
987 		swab = false;
988 	}
989 
990 	/* setup bytes per word and fifo read/write functions */
991 	if (bits <= 8) {
992 		bytes_per_word = 1;
993 		tx_fifo = sh_msiof_spi_write_fifo_8;
994 		rx_fifo = sh_msiof_spi_read_fifo_8;
995 	} else if (bits <= 16) {
996 		bytes_per_word = 2;
997 		if ((unsigned long)tx_buf & 0x01)
998 			tx_fifo = sh_msiof_spi_write_fifo_16u;
999 		else
1000 			tx_fifo = sh_msiof_spi_write_fifo_16;
1001 
1002 		if ((unsigned long)rx_buf & 0x01)
1003 			rx_fifo = sh_msiof_spi_read_fifo_16u;
1004 		else
1005 			rx_fifo = sh_msiof_spi_read_fifo_16;
1006 	} else if (swab) {
1007 		bytes_per_word = 4;
1008 		if ((unsigned long)tx_buf & 0x03)
1009 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1010 		else
1011 			tx_fifo = sh_msiof_spi_write_fifo_s32;
1012 
1013 		if ((unsigned long)rx_buf & 0x03)
1014 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1015 		else
1016 			rx_fifo = sh_msiof_spi_read_fifo_s32;
1017 	} else {
1018 		bytes_per_word = 4;
1019 		if ((unsigned long)tx_buf & 0x03)
1020 			tx_fifo = sh_msiof_spi_write_fifo_32u;
1021 		else
1022 			tx_fifo = sh_msiof_spi_write_fifo_32;
1023 
1024 		if ((unsigned long)rx_buf & 0x03)
1025 			rx_fifo = sh_msiof_spi_read_fifo_32u;
1026 		else
1027 			rx_fifo = sh_msiof_spi_read_fifo_32;
1028 	}
1029 
1030 	/* transfer in fifo sized chunks */
1031 	words = len / bytes_per_word;
1032 
1033 	while (words > 0) {
1034 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1035 					   words, bits);
1036 		if (n < 0)
1037 			return n;
1038 
1039 		if (tx_buf)
1040 			tx_buf += n * bytes_per_word;
1041 		if (rx_buf)
1042 			rx_buf += n * bytes_per_word;
1043 		words -= n;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static const struct sh_msiof_chipdata sh_data = {
1050 	.tx_fifo_size = 64,
1051 	.rx_fifo_size = 64,
1052 	.master_flags = 0,
1053 	.min_div_pow = 0,
1054 };
1055 
1056 static const struct sh_msiof_chipdata rcar_gen2_data = {
1057 	.tx_fifo_size = 64,
1058 	.rx_fifo_size = 64,
1059 	.master_flags = SPI_MASTER_MUST_TX,
1060 	.min_div_pow = 0,
1061 };
1062 
1063 static const struct sh_msiof_chipdata rcar_gen3_data = {
1064 	.tx_fifo_size = 64,
1065 	.rx_fifo_size = 64,
1066 	.master_flags = SPI_MASTER_MUST_TX,
1067 	.min_div_pow = 1,
1068 };
1069 
1070 static const struct of_device_id sh_msiof_match[] = {
1071 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1072 	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1073 	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1074 	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1075 	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1076 	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1077 	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1078 	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1079 	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1080 	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1081 	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1082 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1083 	{},
1084 };
1085 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1086 
1087 #ifdef CONFIG_OF
1088 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1089 {
1090 	struct sh_msiof_spi_info *info;
1091 	struct device_node *np = dev->of_node;
1092 	u32 num_cs = 1;
1093 
1094 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1095 	if (!info)
1096 		return NULL;
1097 
1098 	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1099 							    : MSIOF_SPI_MASTER;
1100 
1101 	/* Parse the MSIOF properties */
1102 	if (info->mode == MSIOF_SPI_MASTER)
1103 		of_property_read_u32(np, "num-cs", &num_cs);
1104 	of_property_read_u32(np, "renesas,tx-fifo-size",
1105 					&info->tx_fifo_override);
1106 	of_property_read_u32(np, "renesas,rx-fifo-size",
1107 					&info->rx_fifo_override);
1108 	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1109 	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1110 
1111 	info->num_chipselect = num_cs;
1112 
1113 	return info;
1114 }
1115 #else
1116 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1117 {
1118 	return NULL;
1119 }
1120 #endif
1121 
1122 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1123 {
1124 	struct device *dev = &p->pdev->dev;
1125 	unsigned int used_ss_mask = 0;
1126 	unsigned int cs_gpios = 0;
1127 	unsigned int num_cs, i;
1128 	int ret;
1129 
1130 	ret = gpiod_count(dev, "cs");
1131 	if (ret <= 0)
1132 		return 0;
1133 
1134 	num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
1135 	for (i = 0; i < num_cs; i++) {
1136 		struct gpio_desc *gpiod;
1137 
1138 		gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1139 		if (!IS_ERR(gpiod)) {
1140 			cs_gpios++;
1141 			continue;
1142 		}
1143 
1144 		if (PTR_ERR(gpiod) != -ENOENT)
1145 			return PTR_ERR(gpiod);
1146 
1147 		if (i >= MAX_SS) {
1148 			dev_err(dev, "Invalid native chip select %d\n", i);
1149 			return -EINVAL;
1150 		}
1151 		used_ss_mask |= BIT(i);
1152 	}
1153 	p->unused_ss = ffz(used_ss_mask);
1154 	if (cs_gpios && p->unused_ss >= MAX_SS) {
1155 		dev_err(dev, "No unused native chip select available\n");
1156 		return -EINVAL;
1157 	}
1158 	return 0;
1159 }
1160 
1161 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1162 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1163 {
1164 	dma_cap_mask_t mask;
1165 	struct dma_chan *chan;
1166 	struct dma_slave_config cfg;
1167 	int ret;
1168 
1169 	dma_cap_zero(mask);
1170 	dma_cap_set(DMA_SLAVE, mask);
1171 
1172 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1173 				(void *)(unsigned long)id, dev,
1174 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1175 	if (!chan) {
1176 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1177 		return NULL;
1178 	}
1179 
1180 	memset(&cfg, 0, sizeof(cfg));
1181 	cfg.direction = dir;
1182 	if (dir == DMA_MEM_TO_DEV) {
1183 		cfg.dst_addr = port_addr;
1184 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1185 	} else {
1186 		cfg.src_addr = port_addr;
1187 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1188 	}
1189 
1190 	ret = dmaengine_slave_config(chan, &cfg);
1191 	if (ret) {
1192 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1193 		dma_release_channel(chan);
1194 		return NULL;
1195 	}
1196 
1197 	return chan;
1198 }
1199 
1200 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1201 {
1202 	struct platform_device *pdev = p->pdev;
1203 	struct device *dev = &pdev->dev;
1204 	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1205 	unsigned int dma_tx_id, dma_rx_id;
1206 	const struct resource *res;
1207 	struct spi_master *master;
1208 	struct device *tx_dev, *rx_dev;
1209 
1210 	if (dev->of_node) {
1211 		/* In the OF case we will get the slave IDs from the DT */
1212 		dma_tx_id = 0;
1213 		dma_rx_id = 0;
1214 	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1215 		dma_tx_id = info->dma_tx_id;
1216 		dma_rx_id = info->dma_rx_id;
1217 	} else {
1218 		/* The driver assumes no error */
1219 		return 0;
1220 	}
1221 
1222 	/* The DMA engine uses the second register set, if present */
1223 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1224 	if (!res)
1225 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1226 
1227 	master = p->master;
1228 	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1229 						   dma_tx_id,
1230 						   res->start + TFDR);
1231 	if (!master->dma_tx)
1232 		return -ENODEV;
1233 
1234 	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1235 						   dma_rx_id,
1236 						   res->start + RFDR);
1237 	if (!master->dma_rx)
1238 		goto free_tx_chan;
1239 
1240 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1241 	if (!p->tx_dma_page)
1242 		goto free_rx_chan;
1243 
1244 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1245 	if (!p->rx_dma_page)
1246 		goto free_tx_page;
1247 
1248 	tx_dev = master->dma_tx->device->dev;
1249 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1250 					DMA_TO_DEVICE);
1251 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1252 		goto free_rx_page;
1253 
1254 	rx_dev = master->dma_rx->device->dev;
1255 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1256 					DMA_FROM_DEVICE);
1257 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1258 		goto unmap_tx_page;
1259 
1260 	dev_info(dev, "DMA available");
1261 	return 0;
1262 
1263 unmap_tx_page:
1264 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1265 free_rx_page:
1266 	free_page((unsigned long)p->rx_dma_page);
1267 free_tx_page:
1268 	free_page((unsigned long)p->tx_dma_page);
1269 free_rx_chan:
1270 	dma_release_channel(master->dma_rx);
1271 free_tx_chan:
1272 	dma_release_channel(master->dma_tx);
1273 	master->dma_tx = NULL;
1274 	return -ENODEV;
1275 }
1276 
1277 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1278 {
1279 	struct spi_master *master = p->master;
1280 
1281 	if (!master->dma_tx)
1282 		return;
1283 
1284 	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1285 			 PAGE_SIZE, DMA_FROM_DEVICE);
1286 	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1287 			 PAGE_SIZE, DMA_TO_DEVICE);
1288 	free_page((unsigned long)p->rx_dma_page);
1289 	free_page((unsigned long)p->tx_dma_page);
1290 	dma_release_channel(master->dma_rx);
1291 	dma_release_channel(master->dma_tx);
1292 }
1293 
1294 static int sh_msiof_spi_probe(struct platform_device *pdev)
1295 {
1296 	struct resource	*r;
1297 	struct spi_master *master;
1298 	const struct sh_msiof_chipdata *chipdata;
1299 	struct sh_msiof_spi_info *info;
1300 	struct sh_msiof_spi_priv *p;
1301 	int i;
1302 	int ret;
1303 
1304 	chipdata = of_device_get_match_data(&pdev->dev);
1305 	if (chipdata) {
1306 		info = sh_msiof_spi_parse_dt(&pdev->dev);
1307 	} else {
1308 		chipdata = (const void *)pdev->id_entry->driver_data;
1309 		info = dev_get_platdata(&pdev->dev);
1310 	}
1311 
1312 	if (!info) {
1313 		dev_err(&pdev->dev, "failed to obtain device info\n");
1314 		return -ENXIO;
1315 	}
1316 
1317 	if (info->mode == MSIOF_SPI_SLAVE)
1318 		master = spi_alloc_slave(&pdev->dev,
1319 					 sizeof(struct sh_msiof_spi_priv));
1320 	else
1321 		master = spi_alloc_master(&pdev->dev,
1322 					  sizeof(struct sh_msiof_spi_priv));
1323 	if (master == NULL)
1324 		return -ENOMEM;
1325 
1326 	p = spi_master_get_devdata(master);
1327 
1328 	platform_set_drvdata(pdev, p);
1329 	p->master = master;
1330 	p->info = info;
1331 	p->min_div_pow = chipdata->min_div_pow;
1332 
1333 	init_completion(&p->done);
1334 	init_completion(&p->done_txdma);
1335 
1336 	p->clk = devm_clk_get(&pdev->dev, NULL);
1337 	if (IS_ERR(p->clk)) {
1338 		dev_err(&pdev->dev, "cannot get clock\n");
1339 		ret = PTR_ERR(p->clk);
1340 		goto err1;
1341 	}
1342 
1343 	i = platform_get_irq(pdev, 0);
1344 	if (i < 0) {
1345 		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1346 		ret = -ENOENT;
1347 		goto err1;
1348 	}
1349 
1350 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1351 	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1352 	if (IS_ERR(p->mapbase)) {
1353 		ret = PTR_ERR(p->mapbase);
1354 		goto err1;
1355 	}
1356 
1357 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1358 			       dev_name(&pdev->dev), p);
1359 	if (ret) {
1360 		dev_err(&pdev->dev, "unable to request irq\n");
1361 		goto err1;
1362 	}
1363 
1364 	p->pdev = pdev;
1365 	pm_runtime_enable(&pdev->dev);
1366 
1367 	/* Platform data may override FIFO sizes */
1368 	p->tx_fifo_size = chipdata->tx_fifo_size;
1369 	p->rx_fifo_size = chipdata->rx_fifo_size;
1370 	if (p->info->tx_fifo_override)
1371 		p->tx_fifo_size = p->info->tx_fifo_override;
1372 	if (p->info->rx_fifo_override)
1373 		p->rx_fifo_size = p->info->rx_fifo_override;
1374 
1375 	/* Setup GPIO chip selects */
1376 	master->num_chipselect = p->info->num_chipselect;
1377 	ret = sh_msiof_get_cs_gpios(p);
1378 	if (ret)
1379 		goto err1;
1380 
1381 	/* init master code */
1382 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1383 	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1384 	master->flags = chipdata->master_flags;
1385 	master->bus_num = pdev->id;
1386 	master->dev.of_node = pdev->dev.of_node;
1387 	master->setup = sh_msiof_spi_setup;
1388 	master->prepare_message = sh_msiof_prepare_message;
1389 	master->slave_abort = sh_msiof_slave_abort;
1390 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1391 	master->auto_runtime_pm = true;
1392 	master->transfer_one = sh_msiof_transfer_one;
1393 
1394 	ret = sh_msiof_request_dma(p);
1395 	if (ret < 0)
1396 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1397 
1398 	ret = devm_spi_register_master(&pdev->dev, master);
1399 	if (ret < 0) {
1400 		dev_err(&pdev->dev, "spi_register_master error.\n");
1401 		goto err2;
1402 	}
1403 
1404 	return 0;
1405 
1406  err2:
1407 	sh_msiof_release_dma(p);
1408 	pm_runtime_disable(&pdev->dev);
1409  err1:
1410 	spi_master_put(master);
1411 	return ret;
1412 }
1413 
1414 static int sh_msiof_spi_remove(struct platform_device *pdev)
1415 {
1416 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1417 
1418 	sh_msiof_release_dma(p);
1419 	pm_runtime_disable(&pdev->dev);
1420 	return 0;
1421 }
1422 
1423 static const struct platform_device_id spi_driver_ids[] = {
1424 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1425 	{},
1426 };
1427 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1428 
1429 static struct platform_driver sh_msiof_spi_drv = {
1430 	.probe		= sh_msiof_spi_probe,
1431 	.remove		= sh_msiof_spi_remove,
1432 	.id_table	= spi_driver_ids,
1433 	.driver		= {
1434 		.name		= "spi_sh_msiof",
1435 		.of_match_table = of_match_ptr(sh_msiof_match),
1436 	},
1437 };
1438 module_platform_driver(sh_msiof_spi_drv);
1439 
1440 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1441 MODULE_AUTHOR("Magnus Damm");
1442 MODULE_LICENSE("GPL v2");
1443 MODULE_ALIAS("platform:spi_sh_msiof");
1444